5.202 inverse_within_range

	DESCRIPTION	LINKS	GRAPH
Origin	Derived from inverse.		
Constraint	$\tt inverse_within_range(X,Y)$		
Synonyms	inverse_in_range, inverse_r	ange.	
Arguments	X : collection(var-dva Y : collection(var-dva	r) r)	
Restrictions	<pre>required(X, var) required(Y, var)</pre>		
Purpose	If the i^{th} variable of the collection 1 and less than or equal to the model of the collection Y is assigned to Conversely, if the j^{th} variable of or equal to 1 and less than or equivalent	on X is assigned to j ar umber of items of the c i. f the collection Y is assigned to j .	Ind if j is greater than or equal to collection Y then the j^{th} variable igned to i and if i is greater than items of the collection X then the
Example	$(\langle 9, 4, 2 \rangle, \langle 9, 3, 9, 2 \rangle)$ Since the second item of X is a Similarly, since the third item of Figure 5.452 illustrates the correst	assigned to 4, the fou X is assigned to 2, the pondence between X an	Irth item of Y is assigned to 2. second item of Y is assigned to 3. Ind Y.
	1 2 3	X Y 9 9 1 4 3 2 9 3 2 9 3 4	
Figu Y = Y sic	re 5.452: Correspondence bet $\langle 9, 3, 9, 2 \rangle$: on the X side value le values between 1 and $ X = 3$	ween the items of X es between 1 and Y 3 are shown in red.	$=\langle 9,4,2\rangle$ and the items of $=4$ are shown in blue, on the

Typical

$$\begin{split} |\mathtt{X}| &> 1\\ \mathtt{range}(\mathtt{X}.\mathtt{var}) &> 1\\ |\mathtt{Y}| &> 1\\ \mathtt{range}(\mathtt{Y}.\mathtt{var}) &> 1 \end{split}$$

	20060517 1449	
Symmetry	Arguments are permutable w.r.t. permutation (X, Y).	
Usage	Consider an integer value m and a sequence of n variables S from which you have to select a subsequence S' such that:	
	• All variables of S' have to be assigned to distinct values from $[1, m]$,	
	• All variables not in S' have to be assigned a value, not necessarily distinct, outside [1, m].	
	As for the inverse constraint we may want to create explicitly a <i>value variable</i> for each value in [1,m] in order to state some specific constraints on the <i>value variables</i> or to use a heuristics involving the original variables of S as well as the <i>value variables</i> . The purpose of the inverse_within_range constraint is to link the variables of S with the <i>value variables</i> .	
See also	<pre>common keyword: inverse_set (channelling constraint).</pre>	
	specialisation: inverse (the 2 collections have not necessarly the same number of items).	
Keywords	constraint type: graph constraint.	
	final graph structure: bipartite, no loop, symmetric.	
	heuristics: heuristics.	
	modelling: channelling constraint, dual model.	

$SYMMETRIC_PRODUCT$

Arc input(s)	ХҮ
Arc generator	$SYMMETRIC_PRODUCT \mapsto \texttt{collection}(\texttt{s1},\texttt{s2})$
Arc arity	2
Arc constraint(s)	s1.var = s2.key
Graph class	• BIPARTITE • NO_LOOP • SYMMETRIC

1450