5.216 length_last_sequence

DESCRIPTION
 LINKS
 AUTOMATON

Origin

Constraint

Arguments

Restrictions

Purpose

Example

Typical

Symmetry

Arg. properties

Reformulation

Inspired by stretch_path
length_last_sequence(LEN, VARIABLES)

$$
\begin{array}{ll}
\text { LEN } & : \text { dvar } \\
\text { VARIABLES } & : ~ c o l l e c t i o n(v a r-d v a r) ~
\end{array}
$$

LEN ≥ 0
LEN $\leq \mid$ VARIABLES \mid
required(VARIABLES, var)

LEN is the length of the maximum sequence of variables that take the same value that contains the last variable of the collection VARIABLES (or 0 if the collection is empty).

$$
\begin{aligned}
& (1,\langle 4,4,4,5,5,4\rangle) \\
& (6,\langle 4,4,4,4,4,4\rangle) \\
& (5,\langle 2,4,4,4,4,4\rangle)
\end{aligned}
$$

The first length_last_sequence constraint holds since the sequence associated with the last value of the collection VARIABLES $=\langle 4,4,4,5,5,4\rangle$ spans over a single variable.

$$
\begin{aligned}
& \text { LEN < |VARIABLES| } \\
& \mid \text { |VARIABLES } \mid>1
\end{aligned}
$$

All occurrences of two distinct values of VARIABLES.var can be swapped; all occurrences of a value of VARIABLES.var can be renamed to any unused value.

Functional dependency: LEN determined by VARIABLES.

Without loss of generality let assume that the collection VARIABLES $=\left\langle V_{1}, V_{2}, \ldots, V_{n}\right\rangle$ has more than one variable. By introducing $2 \cdot n-10-1$ variables, the length_last_sequence(LEN, VARIABLES) constraint can be expressed in term of $2 \cdot n-1$ reified constraints and one arithmetic constraint (i.e., a sum_ctr constraint). We first introduce $n-1$ variables that are respectively set to 1 if and only if two given consecutive variables of the collection VARIABLES are equal:

$$
\begin{aligned}
& B_{n-1, n} \Leftrightarrow V_{n-1}=V_{n}, \\
& B_{n-2, n-1} \Leftrightarrow V_{n-2}=V_{n-1},
\end{aligned}
$$

$$
B_{1,2} \quad \Leftrightarrow V_{1}=V_{2} .
$$

We then introduce n variables $A_{n}, A_{n-1}, \ldots, A_{1}$ that are respectively associated to the different sliding sequences ending on the last variable of the sequence $V_{1} V_{2} \ldots V_{n}$. Variable A_{i} is set to 1 if and only if $V_{n}=V_{n-1}=\cdots=V_{i}$:
$A_{n}=1$,
$A_{n-1} \Leftrightarrow B_{n-1, n} \quad \wedge A_{n}$,
$A_{n-2} \Leftrightarrow B_{n-2, n-1} \wedge A_{n-1}$,
...................................
$A_{1} \Leftrightarrow B_{1,2} \quad \wedge A_{2}$.
Finally we state the following arithmetic constraint: $\operatorname{LEN}=A_{n}+A_{n-1}+\cdots+A_{1}$.

Counting

Length (n)	2	3	4	5	6	7	8
Solutions	9	64	625	7776	117649	2097152	43046721

Solution density for length_last_sequence

Length (n)		2	3	4	5	6	7	8
Total		9	64	625	7776	117649	2097152	43046721
	1	6	48	500	6480	100842	1835008	38263752
	2	3	12	100	1080	14406	229376	4251528
	3	-	4	20	180	2058	28672	472392
Parameter	4	-	-	5	30	294	3584	52488
value	5	-	-	-	6	42	448	5832
	6	-	-	-	-	7	56	648
	7	-	-	-	-	-	8	72
	8	-	-	-	-	-	-	9
Solution count for length_last_sequence: domains 0..n								

See also
Keywords
common keyword: length_first_sequence (counting constraint,sequence).
combinatorial object: sequence.
constraint arguments: reverse of a constraint, pure functional dependency.
constraint network structure: sliding cyclic(1) constraint network(2).
constraint type: value constraint, counting constraint.
filtering: glue matrix.
modelling: functional dependency.

Automaton

Figure 5.472 depicts the automaton associated with the length_last_sequence constraint. To each pair of consecutive variables $\left(\operatorname{VAR}_{i}, \mathrm{VAR}_{i+1}\right)$ of the collection VARIABLES corresponds a signature variable S_{i}. The following signature constraint links $\operatorname{VAR}_{i}, \mathrm{VAR}_{i+1}$ and $S_{i}: \operatorname{VAR}_{i}=\operatorname{VAR}_{i+1} \Leftrightarrow S_{i}$.

Figure 5.472: Automaton of the length_last_sequence constraint when \mid VARIABLES $\mid \geq 2$

Figure 5.473: Hypergraph of the reformulation corresponding to the automaton of the length_last_sequence constraint

Figure 5.474: Automaton of the reverse of the length_last_sequence constraint (i.e., the length_first_sequence constraint) when \mid VARIABLES| ≥ 2 and corresponding glue matrix between length_last_sequence and its reverse length_first_sequence

