AUTOMATON

5.222 lex_between

	DESCRIPTION	LINKS	AUTOMATON
Origin	[95]		
Constraint	lex_between(LOWER_BOUND,VE	CTOR, UPPER_BOUND)	
Synonym	between.		
Arguments	LOWER_BOUND : collectio VECTOR : collectio UPPER_BOUND : collectio	on(var-dvar)	
Restrictions	<pre>required(LOWER_BOUND, var) required(VECTOR, var) required(UPPER_BOUND, var) LOWER_BOUND = VECTOR UPPER_BOUND = VECTOR lex_lesseq(LOWER_BOUND, VE lex_lesseq(VECTOR, UPPER_B</pre>) CCTOR)	
Purpose	The vector VECTOR is lexicog tor LOWER_BOUND and lexicogr UPPER_BOUND.		
Example	$\left(\left<5,2,3,9\right>,\left<5,2,6,2\right>,\left<5,2\right>$	(6,3))	
	The lex_between constraint hold	ls since:	
	• The vector VECTOR = $LOWER_BOUND = \langle 5, 2, 3, 9 \rangle$		than or equal to the vector
	• The vector VECTOR = $\langle 5, 2 \rangle$ $\langle 5, 2, 6, 3 \rangle$.	,6,2 angle is less than or equ	al to the vector UPPER_BOUND $=$
Typical	$\begin{split} \texttt{LOWER_BOUND} > 1 \\ \texttt{lex_lesseq}(\texttt{LOWER_BOUND}, \texttt{UP}) \end{split}$	PPER_BOUND)	
Symmetries	 LOWER_BOUND.var can be UPPER_BOUND.var can be 		
Arg. properties	Suffix-contractible wrt. LOWER_J same position).	BOUND, VECTOR and UP	PER_BOUND (remove items from

1524

-	20030820 1525		
Usage	This constraint does usually not occur explicitly in practice. However it shows up indirectly in the context of the lex_chain_less and the lex_chain_lesseq constraints: in order to have a complete filtering algorithm for the lex_chain_less and the lex_chain_less eq constraints one has to come up with a complete filtering algorithm for the lex_between constraint. The reason is that the lex_chain_less as well as the lex_chain_lesseq constraints both compute feasible lower and upper bounds for each vector they mention. Therefore one ends up with a lex_between constraint for each vector of the lex_chain_less and lex_chain_lesseq constraints.		
Algorithm	[95].		
Reformulation	The lex_between(LOWER_BOUND, VECTORS, UPPER_BOUND) constraint can be expressed as the conjunction $lex_lesseq(LOWER_BOUND, VECTORS) \land lex_lesseq(VECTORS, UPPER_BOUND).$		
Systems	lexChainEq in Choco, lex_chain in SICStus.		
See also	<pre>common keyword: lex_chain_greater, lex_chain_greatereq, lex_chain_less, lex_chain_lesseq, lex_greater, lex_greatereq, lex_less(lexicographic order). part of system of constraints: lex_lesseq.</pre>		
Keywords	characteristic of a constraint: vector, automaton, automaton without counters, reified automaton constraint.		
	constraint network structure: Berge-acyclic constraint network.		
	constraint type: order constraint, system of constraints.		
	filtering: arc-consistency.		
	symmetry: symmetry, lexicographic order.		

Automaton

Figure 5.476 depicts the automaton associated with the lex_between constraint. Let L_i , V_i and U_i respectively be the var attributes of the i^{th} items of the LOWER_BOUND, the VECTOR and the UPPER_BOUND collections. To each triple (L_i, V_i, U_i) corresponds a signature variable S_i as well as the following signature constraint:

$$\begin{split} (\mathbf{L}_i < \mathbf{V}_i) \wedge (\mathbf{V}_i < \mathbf{U}_i) \Leftrightarrow S_i &= 0 \land \\ (\mathbf{L}_i < \mathbf{V}_i) \wedge (\mathbf{V}_i = \mathbf{U}_i) \Leftrightarrow S_i &= 1 \land \\ (\mathbf{L}_i < \mathbf{V}_i) \wedge (\mathbf{V}_i > \mathbf{U}_i) \Leftrightarrow S_i &= 2 \land \\ (\mathbf{L}_i = \mathbf{V}_i) \wedge (\mathbf{V}_i < \mathbf{U}_i) \Leftrightarrow S_i &= 3 \land \\ (\mathbf{L}_i = \mathbf{V}_i) \wedge (\mathbf{V}_i = \mathbf{U}_i) \Leftrightarrow S_i &= 4 \land \\ (\mathbf{L}_i = \mathbf{V}_i) \wedge (\mathbf{V}_i > \mathbf{U}_i) \Leftrightarrow S_i &= 5 \land \\ (\mathbf{L}_i > \mathbf{V}_i) \wedge (\mathbf{V}_i < \mathbf{U}_i) \Leftrightarrow S_i &= 6 \land \\ (\mathbf{L}_i > \mathbf{V}_i) \wedge (\mathbf{V}_i = \mathbf{U}_i) \Leftrightarrow S_i &= 7 \land \\ (\mathbf{L}_i > \mathbf{V}_i) \wedge (\mathbf{V}_i > \mathbf{U}_i) \Leftrightarrow S_i &= 8. \end{split}$$

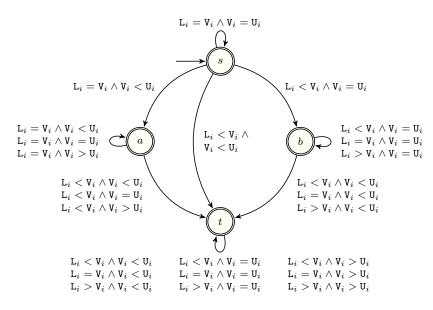


Figure 5.476: Automaton of the lex_between constraint

1526

Figure 5.477: Hypergraph of the reformulation corresponding to the automaton of the lex_between constraint (since all states of the automaton are accepting there is no restriction on the last variable Q_n)