# 5.232 lex\_lesseq

|                 | DESCRIPTION                                                                                                                                                                                                                                                                         | LINKS                                                                                        | GRAPH                                                                                          | AUTOMATON   |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------|
| Origin          | CHIP                                                                                                                                                                                                                                                                                |                                                                                              |                                                                                                |             |
| Constraint      | <pre>lesseq(VECTOR1, VECTOR2)</pre>                                                                                                                                                                                                                                                 |                                                                                              |                                                                                                |             |
| Synonyms        | lexeq, lex_chain, rel, lesseq, leq, lex_leq.                                                                                                                                                                                                                                        |                                                                                              |                                                                                                |             |
| Arguments       | VECTOR1 : collection<br>VECTOR2 : collection                                                                                                                                                                                                                                        | · /                                                                                          |                                                                                                |             |
| Restrictions    | <pre>required(VECTOR1, var) required(VECTOR2, var)  VECTOR1  =  VECTOR2 </pre>                                                                                                                                                                                                      |                                                                                              |                                                                                                |             |
| Purpose         | VECTOR1 is lexicographically $\vec{Y}$ of <i>n</i> components, $\langle X_0, \ldots$ than or equal to $\vec{Y}$ if and only is lexicographically less than                                                                                                                          | $\langle X_{n-1} \rangle$ and $\langle Y_0, \dots, Y_n \rangle$<br>of $n = 0$ or $X_0 < Y_0$ | $\langle X_{n-1} \rangle, \vec{X}$ is <i>lexicographi</i><br>or $X_0 = Y_0$ and $\langle X_1,$ | ically less |
| Example         | $(\langle 5, 2, 3, 1 \rangle, \langle 5, 2, 6, 2 \rangle) \\ (\langle 5, 2, 3, 9 \rangle, \langle 5, 2, 3, 9 \rangle)$<br>The lex_lesseq constraints since:                                                                                                                         | associated with the                                                                          | first and second exam                                                                          | ples hold   |
|                 | <ul> <li>Within the first example equal to VECTOR2 = (5,</li> <li>Within the second example equal to VECTOR2 = (5,</li> </ul>                                                                                                                                                       | $2, 6, 2\rangle$ .<br>ble VECTOR1 = $\langle 5, 2, 3 \rangle$                                |                                                                                                |             |
| Typical         | VECTOR1  > 1<br>$\bigvee \left( \begin{array}{c}  \texttt{VECTOR1}  < 5, \\ \texttt{nval}([\texttt{VECTOR1.var}, \texttt{V}]) \\ \bigvee \left( \begin{array}{c} \texttt{maxval}([\texttt{VECTOR1.var}, \texttt{V}]) \\ 2*  \texttt{VECTOR1}  - \texttt{max.m} \end{array} \right)$ | VECTOR2.var] < 2 *   V<br>r, $\texttt{VECTOR2.var}] ) \leq 1,$<br>value([VECTOR1.var, V)     | (ECTOR1 )<br>/ECTOR2.var]) > 2)                                                                |             |
| Symmetries      | <ul><li>VECTOR1.var can be de</li><li>VECTOR2.var can be in</li></ul>                                                                                                                                                                                                               |                                                                                              |                                                                                                |             |
| Arg. properties | Suffix-contractible wrt. VECTO                                                                                                                                                                                                                                                      | R1 and VECTOR2 (remo                                                                         | ve items from same positi                                                                      | ion).       |
| Remark          | A <i>multiset ordering</i> constrain in [174].                                                                                                                                                                                                                                      | t and its corresponding                                                                      | g filtering algorithm are                                                                      | described   |

1570

#### 20030820

Algorithm

The first filtering algorithm maintaining arc-consistency for this constraint was presented in [173]. A second filtering algorithm maintaining arc-consistency and detecting entailment in a more eager way, was given in [96]. This second algorithm was derived from a deterministic finite automata. A third filtering algorithm extending the algorithm presented in [173] detecting entailment is given in the PhD thesis of Z. Kızıltan [239, page 95]. The previous thesis [239, pages 105-109] presents also a filtering algorithm handling the fact that a given variable has more than one occurrence. Finally, T. Frühwirth shows how to encode lexicographic ordering constraints within the context of CHR [175] in [176].

### Reformulation

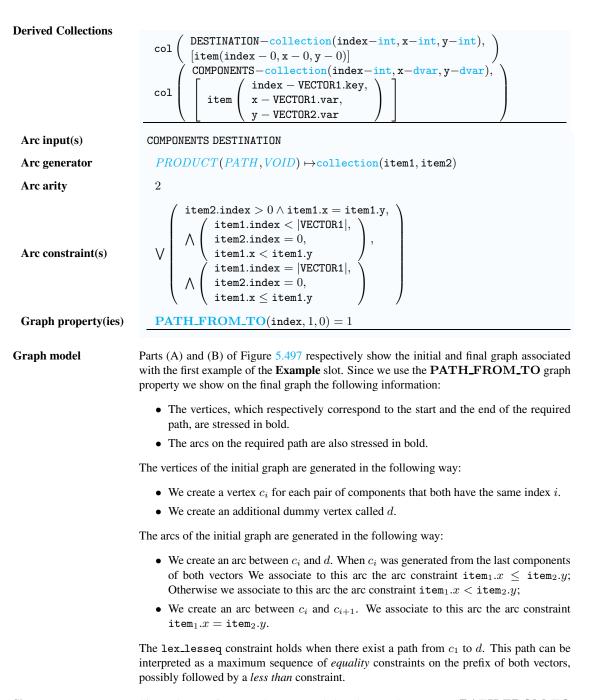
The following reformulations in term of arithmetic and/or logical expressions exist for enforcing the *lexicographically less than or equal to* constraint. The first one converts  $\vec{X}$ and  $\vec{Y}$  into numbers and post an inequality constraint. It assumes all components of  $\vec{X}$  and  $\vec{Y}$  to be within [0, a - 1]:

$$a^{n-1}X_0 + a^{n-2}X_1 + \dots + a^0X_{n-1} \le a^{n-1}Y_0 + a^{n-2}Y_1 + \dots + a^0Y_{n-1}$$

Since the previous reformulation can only be used with small values of n and a, W. Harvey came up with the following alternative model that maintains arc-consistency:

 $(X_0 < Y_0 + (X_1 < Y_1 + (\dots + (X_{n-1} < Y_{n-1} + 1)\dots))) = 1$ 

Finally, the lexicographically less than or equal to constraint can be expressed as a conjunction or a disjunction of constraints:


|          | $X_0 \le Y_0  \land  $                                                                                                                            |  |  |  |  |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|          | $(X_0 = Y_0) \Rightarrow X_1 \le Y_1  \land \\ (X_0 = Y_0 \land X_1 = Y_1) \Rightarrow X_2 \le Y_2  \land$                                        |  |  |  |  |
|          |                                                                                                                                                   |  |  |  |  |
|          | $(X_0 = Y_0 \land X_1 = Y_1 \land \dots \land X_{n-2} = Y_{n-2}) \Rightarrow X_{n-1} \le Y_{n-1}$                                                 |  |  |  |  |
|          | $\begin{array}{ccc} X_0 < Y_0 & \lor \\ X_0 = Y_0 \land X_1 < Y_1 & \lor \\ X_0 = Y_0 \land X_1 = Y_1 \land X_2 < Y_2 & \lor \end{array}$         |  |  |  |  |
|          | :                                                                                                                                                 |  |  |  |  |
|          | $X_0 = Y_0 \land X_1 = Y_1 \land \dots \land X_{n-2} = Y_{n-2} \land X_{n-1} \le Y_{n-1}$                                                         |  |  |  |  |
|          | When used separately, the two previous logical decompositions do not maintain arc-consistency.                                                    |  |  |  |  |
| Systems  | lexEq in Choco, rel in Gecode, lex_lesseq in MiniZinc, lex_chain in SICStus.                                                                      |  |  |  |  |
| Used in  | <pre>lex_between, lex_chain_greatereq, lex_chain_lesseq, ordered_atleast_nvector, ordered_atmost_nvector, ordered_nvector.</pre>                  |  |  |  |  |
| See also | common keyword: allperm, cond_lex_lesseq(lexicographic order),                                                                                    |  |  |  |  |
|          | <pre>lex2(matrix symmetry,lexicographic order), lex_chain_greater,</pre>                                                                          |  |  |  |  |
|          | <pre>lex_chain_greatereq, lex_chain_less(lexicographic order),<br/>lex_different(vector), strict_lex2(matrix symmetry,lexicographic order).</pre> |  |  |  |  |
|          |                                                                                                                                                   |  |  |  |  |
|          | implied by: lex_equal, lex_less, lex_lesseq_allperm.                                                                                              |  |  |  |  |
|          | <pre>implies (if swap arguments): lex_greatereq.</pre>                                                                                            |  |  |  |  |
|          | negation: lex_greater.                                                                                                                            |  |  |  |  |
|          | system of constraints: lex_between, lex_chain_lesseq.                                                                                             |  |  |  |  |

Keywords characteristic of a constraint: vector, automaton, automaton without counters, reified automaton constraint, derived collection. constraint network structure: Berge-acyclic constraint network. constraint type: order constraint. filtering: duplicated variables, arc-consistency. heuristics: heuristics and lexicographical ordering.

symmetry: symmetry, matrix symmetry, lexicographic order, multiset ordering.

1572

20030820



Signature Since the maximum value returned by the graph property PATH\_FROM\_TO is equal to 1 we can rewrite PATH\_FROM\_TO(index, 1, 0) = 1 to PATH\_FROM\_TO(index, 1, 0)  $\geq$  1. Therefore we simplify <u>PATH\_FROM\_TO</u> to <u>PATH\_FROM\_TO</u>.

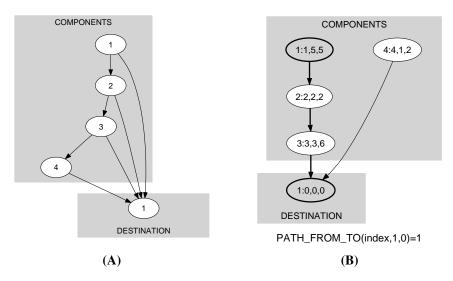



Figure 5.497: Initial and final graph of the lex\_lesseq constraint

## 20030820

Automaton

Figure 5.498 depicts the automaton associated with the lex\_lesseq constraint. Let VAR1<sub>i</sub> and VAR2<sub>i</sub> respectively be the var attributes of the  $i^{th}$  items of the VECTOR1 and the VECTOR2 collections. To each pair (VAR1<sub>i</sub>, VAR2<sub>i</sub>) corresponds a signature variable  $S_i$  as well as the following signature constraint: (VAR1<sub>i</sub> < VAR2<sub>i</sub>  $\Leftrightarrow$   $S_i = 1$ )  $\land$  (VAR1<sub>i</sub> = VAR2<sub>i</sub>  $\Leftrightarrow$   $S_i = 2$ )  $\land$  (VAR1<sub>i</sub> > VAR2<sub>i</sub>  $\Leftrightarrow$   $S_i = 3$ ).

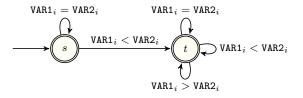



Figure 5.498: Automaton of the lex\_lesseq constraint

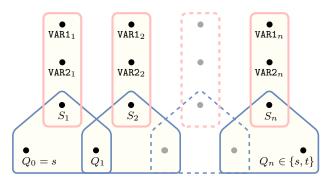



Figure 5.499: Hypergraph of the reformulation corresponding to the automaton of the lex\_lesseq constraint