5.244 max_nvalue

	DESCRIPTION	LINKS	GRAPH	AUTOMATON
Origin	Derived from nvalue.			
Constraint	<pre>max_nvalue(MAX, VARIABLES)</pre>			
Arguments	MAX : dvar VARIABLES : collection	(var-dvar)		
Restrictions	$ extsf{MAX} \geq 1 \\ extsf{MAX} \leq extsf{VARIABLES} \\ extsf{required}(extsf{VARIABLES}, extsf{var}) \end{cases}$			
Purpose	MAX is the maximum number of t collection VARIABLES.	imes that the same valu	e is taken by the variable	es of the
Example	$\begin{array}{c} (3, \langle 9, 1, 7, 1, 1, 6, 7, 7, 4, 9 \rangle) \\ (1, \langle 9, 1, 7, 3, 2, 6 \rangle) \\ (6, \langle 5, 5, 5, 5, 5, 5 \rangle) \end{array}$ In the first example, values 1, the maximum number of time N	4, 6, 7, 9 are respective IAX that a same value	ely used 3, 1, 1, 3, 2 tin occurs is 3. Conseque	nes. So ently the
	corresponding max_nvalue const	raint holds.	······	
Typical	$\begin{array}{l} \texttt{MAX} > 1 \\ \texttt{MAX} < \texttt{VARIABLES} \\ \texttt{VARIABLES} > 1 \\ \texttt{range}(\texttt{VARIABLES.var}) > 1 \end{array}$			
Symmetries	• Items of VARIABLES are	ermutable.		
	• All occurrences of two d occurrences of a value of	istinct values of VARIA VARIABLES.var can be	ABLES.var can be swap renamed to any unused	ped; all value.
Arg. properties	Functional dependency: MAX dete	ermined by VARIABLES.		
Usage	This constraint may be used in or one would have to generate expli- for constraining the number of oc value in advance and without givin of each value as it is done in the g	der to replace a set of c citly one constraint for currences of the mostly ng explicitly an upper li clobal_cardinality of	count or among constrait each potential value. Als used value without know mit on the number of occ constraint.	nts were so useful wing this currences
Reformulation	Assume that VARIABLES is not e largest possible values that can tion. Let the variables $O_{\alpha}, O_{\alpha+1}$ currences of values $\alpha, \alpha + 1,$	mpty. Let α and β resp be assigned to the vari $1, \ldots, O_{\beta}$ respectively $., \beta$ within the variable	bectively denote the sma ables of the VARIABLES correspond to the numb es of the VARIABLES co	llest and 5 collec- er of oc- ollection.

1622

20000128

The max_nvalue constraint can be expressed as the conjunction of the following two constraints:

 $\begin{array}{l} \texttt{global_cardinality} (\texttt{VARIABLES}, \\ (\texttt{val} - \alpha \texttt{ noccurrence} - O_{\alpha}, \\ \texttt{val} - \alpha + 1 \texttt{ noccurrence} - O_{\alpha+1}, \\ \dots \\ \texttt{val} - \beta \texttt{ noccurrence} - O_{\beta} \rangle), \\ \texttt{maximum}(\texttt{MAX}, \langle O_{\alpha}, O_{\alpha+1}, \dots, O_{\beta} \rangle). \end{array}$

Counting

Length (n)	2	3	4	5	6	7	8
Solutions	9	64	625	7776	117649	2097152	43046721
Number of solutions for max nualue: domains 0 m							

Number of solutions for max_nvalue: domains 0..n

Solution density for max_nvalue

Length (n)		2	3	4	5	6	7	8
Total		9	64	625	7776	117649	2097152	43046721
	1	6	24	120	720	5040	40320	362880
	2	3	36	420	5400	78750	1305360	24449040
	3	-	4	80	1500	29820	646800	15382080
Parameter	4	-	-	5	150	3780	96040	2577960
value	5	-	-	-	6	252	8232	258048
	6	-	-	-	-	7	392	16128
	7	-	-	-	-	-	8	576
	8	-	-	-	-	-	-	9

Solution count for max_nvalue: domains 0..n

common keyword:among (counting constraint),count,global_cardinality (value constraint, counting constraint),min_nvalue,nvalue (counting constraint).

$\underline{\mathbf{MAX_NSCC}}, \mathit{CLIQUE}$

Keywords

application area: assignment.

characteristic of a constraint: maximum, automaton, automaton with array of counters.

constraint arguments: pure functional dependency.

constraint type: value constraint, counting constraint.

final graph structure: equivalence.

modelling: maximum number of occurrences, functional dependency.

1626

Arc input(s)	VARIABLES
Arc generator	$CLIQUE \mapsto collection(variables1, variables2)$
Arc arity	2
Arc constraint(s)	variables1.var = variables2.var
Graph property(ies)	MAX_NSCC= MAX
Graph model	Because of the arc constraint, each strongly connected component of the final graph cor- responds to a distinct value that is assigned to a subset of variables of the VARIABLES collection. Therefore the number of vertices of the largest strongly connected component is equal to the mostly used value.

Parts (A) and (B) of Figure 5.517 respectively show the initial and final graph associated with the first example of the **Example** slot. Since we use the **MAX_NSCC** graph property, we show the largest strongly connected component of the final graph.

Figure 5.517: Initial and final graph of the max_nvalue constraint

20000128

Automaton

Figure 5.518 depicts the automaton associated with the max_nvalue constraint. To each item of the collection VARIABLES corresponds a signature variable S_i that is equal to 0.

$$\{C[_] \leftarrow 0\} \longrightarrow s \rightarrow 0, \\ \{C[VAR_i] \leftarrow C[VAR_i] + 1\}$$

Figure 5.518: Automaton of the max_nvalue constraint