5.249 maximum

DESCRIPTION

LINKS
GRAPH
AUTOMATON

Origin
Constraint

Synonym

Arguments

Restrictions

Purpose

Example

Typical

Symmetries

Arg. properties

CHIP
maximum(MAX, VARIABLES)
\max.

MAX	$:$ dvar	
VARIABLES	$:$	collection(var-dvar)

|VARIABLES| >0
required(VARIABLES, var)

MAX is the maximum value of the collection of domain variables VARIABLES.

$$
\begin{aligned}
& (7,\langle 3,2,7,2,6\rangle) \\
& (1,\langle 0,0,1,0,1\rangle)
\end{aligned}
$$

The first maximum constraint holds since its first argument MAX $=7$ is fixed to the maximum value of the collection $\langle 3,2,7,2,6\rangle$.

```
|VARIABLES| > 1
range(VARIABLES.var) > 1
```

- Items of VARIABLES are permutable.
- All occurrences of two distinct values of VARIABLES.var can be swapped.
- One and the same constant can be added to MAX as well as to the var attribute of all items of VARIABLES.
- Functional dependency: MAX determined by VARIABLES.
- Aggregate: $\operatorname{MAX}(\max)$, VARIABLES(union).

Usage In some project scheduling problems one has to introduce dummy activities that correspond for instance to the completion time of a given set of activities. In this context one can use the maximum constraint to get the maximum completion time of a set of tasks.

Remark
Note that maximum is a constraint and not just a function that computes the maximum value of a collection of variables: potential values of MAX influence the variables of VARIABLES, and reciprocally potential values that can be assigned to variables of VARIABLES influence MAX.
The maximum constraint is called max in JaCoP (http://www.jacop.eu/).

Algorithm A filtering algorithm for the maximum constraint is described in [27].
 The maximum constraint is entailed if all the following conditions hold:

1. MAX is fixed.
2. At least one variable of VARIABLES is assigned value MAX.
3. All variables of VARIABLES have their maximum value less than or equal to value MAX.

Counting

Length (n)	2	3	4	5	6	7	8
Solutions	9	64	625	7776	117649	2097152	43046721
Number of solutions for maximum: domains 0..							

Solution density for maximum

Length (n)		2	3	4	5	6	7	8
Total		9	64	625	7776	117649	2097152	43046721
	0	1	1	1	1	1	1	1
	1	3	7	15	31	63	127	255
	2	5	19	65	211	665	2059	6305
Parameter	3	-	37	175	781	3367	14197	58975
value	4	-	-	369	2101	11529	61741	325089
	5	-	-	-	4651	31031	201811	1288991
	6	-	-	-	-	70993	543607	4085185
	7	-	-	-	-	-	1273609	11012415
	8	-	-	-	-	-	-	26269505
Solution count for maximum: domains $0 . . n$								

Systems max in Choco, max in Gecode, max in JaCoP, maximumin MiniZinc, maximumin SICStus.

See also

Keywords

Cond. implications
implies highest_peak(HEIGHT, VARIABLES).

```
common keyword: minimum (order constraint).
comparison swapped: minimum.
generalisation: maximum_modulo (variable replaced by variable mod constant).
implied by: or.
implies: between_min_max, in.
soft variant: open_maximum (open constraint).
specialisation: max_n (maximum or order n replaced by absolute maximum).
uses in its reformulation: tree_range
characteristic of a constraint: maximum, automaton, automaton without counters, reified automaton constraint.
constraint arguments: reverse of a constraint, pure functional dependency. constraint network structure: centered cyclic(1) constraint network(1).
constraint type: order constraint.
filtering: glue matrix, arc-consistency, entailment.
modelling: balanced assignment, functional dependency.
```

```
maximum(MAX, VARIABLES)
```

```
maximum(MAX, VARIABLES)
    with first(VARIABLES.var) < MAX
    with first(VARIABLES.var) < MAX
    and last(VARIABLES.var) < MAX
```

 and last(VARIABLES.var) < MAX
    ```

\section*{Arc input(s) \\ VARIABLES}

Arc generator
\[
\text { CLIQUE } \mapsto \text { collection(variables1, variables2) }
\]

Arc arity
Arc constraint(s) \(\quad V\binom{\) variables1.key \(=\) variables2.key, }{ variables1.var > variables2.var }
Graph property(ies) \(\quad \operatorname{ORDER}(0\), MININT, var \()=\) MAX

Graph model We use a similar definition that the one that was utilised for the minimum constraint. Within the arc constraint, we replace the comparison operator \(<\) by \(>\).
Parts (A) and (B) of Figure 5.520 respectively show the initial and final graph associated with the first example of the Example slot. Since we use the ORDER graph property, the vertex of rank 0 (without considering the loops) of the final graph is outlined with a thick circle.


Figure 5.520: Initial and final graph of the maximum constraint

Automaton

Figure 5.521 depicts the automaton associated with the maximum constraint. Let \(\operatorname{VAR}_{i}\) be the \(i^{t h}\) variable of the VARIABLES collection. To each pair (MAX, \(\mathrm{VAR}_{i}\) ) corresponds a signature variable \(S_{i}\) as well as the following signature constraint: ( \(\mathrm{MAX}>\mathrm{VAR}_{i} \Leftrightarrow S_{i}=\) 0) \(\wedge\left(\operatorname{MAX}=\operatorname{VAR}_{i} \Leftrightarrow S_{i}=1\right) \wedge\left(\operatorname{MAX}<\operatorname{VAR}_{i} \Leftrightarrow S_{i}=2\right)\).


Figure 5.521: Counter free automaton of the maximum constraint


Figure 5.522: Hypergraph of the reformulation corresponding to the automaton of the maximum constraint

Figure 5.522 depicts a second counter free non deterministic automaton associated with the maximum constraint, where the argument MAX is also part of the sequence passed to the automaton.

Figure 5.525 depicts a third deterministic automaton with one counter associated with the maximum constraint, where the argument MAX is unified to the final value of the counter.


Figure 5.523: Counter free non deterministic automaton of the maximum(MAX, VARIABLES) constraint assuming that the union of the domain of the variables is the set \(\{1,2,3,4\}\) and that the elements of VARIABLES are first passed to the automaton followed by MAX (state \(s_{i}\) means that no value strictly greater than value \(i\) was found and that value \(i\) was already encountered at least once)


Figure 5.524: Hypergraph of the reformulation corresponding to the counter free non deterministic automaton of the maximum constraint


Figure 5.525: Automaton (with one counter) of the maximum constraint and its glue constraint


Figure 5.526: Hypergraph of the reformulation corresponding to the automaton (with one counter) of the maximum constraint: since all states variables \(Q_{0}, Q_{1}, \ldots, Q_{n}\) are fixed to the unique state \(s\) of the automaton, the transitions constraints share only the counter variable \(C\) and the constraint network is Berge-acyclic```

