5.253 min_dist_between_inflexion

	DESCRIPTION	LINKS	AUTOMATON				
Origin	Derived from inflexion						
Constraint	<pre>min_dist_between_inflexion(MINDIST, VARIABLES)</pre>						
Arguments	MINDIST : int VARIABLES : collection	(var-dvar)					
Restrictions	$\begin{array}{l} \texttt{MINDIST} \geq 0 \\ \texttt{MINDIST} \leq \texttt{VARIABLES} \\ \texttt{required}(\texttt{VARIABLES},\texttt{var}) \end{array}$						
	Given an integer value MINDIST and a sequence of variables VARIABLES enforce MINDIST to be greater than or equal to the smallest distance between two consecutive inflexions in the sequence VARIABLES, or to VARIABLES if no more than one inflexion exists. An <i>inflexion</i> of a sequence of variables VARIABLES is a set of consecutive variables V_1, V_2, \dots, V_n is V_n ($i \neq 1 < i$) such that one of the following conditions holds:						
Purpose	• $V_i < V_{i+1} \land V_{i+1} = \cdots$	$= V_{j-1} \wedge V_{j-1} > V_j$,				
	• $V_i > V_{i+1} \land V_{i+1} = \dots = V_{j-1} \land V_{j-1} < V_j.$						
	In this context, the index j is the <i>position</i> of the inflexion (i.e., the first instant when the inflexion is discovered when scanning the sequence of variables VARIABLES from left to right. The <i>distance between two consecutive inflexions</i> is the absolute value of the difference of their corresponding positions.						
Example	$(2, \langle 2, 2, 3, 3, 2, 2, 1, 4, 4, 3 \rangle)$						
	Figure 5.531 shows the three infle 4, 3 and their respective positions constraint holds since its first ar smallest distance 2 between tw VARIABLES.	exions associated with 5, 8 and 10 in red. Th gument MINDIST = o consecutive inflexio	the sequence 2, 2, 3, 3, 2, 2, 1, 4, e min_dist_between_inflexion 2 is greater than or equal to the ons of the sequence of variables				
Typical	$\begin{array}{l} \texttt{MINDIST} > 1 \\ \texttt{VARIABLES} > 3 \\ \texttt{range}(\texttt{VARIABLES.var}) > 1 \end{array}$						
Symmetries	• Items of VARIABLES can	be reversed.					
·	• One and the same constr VARIABLES.	ant can be added to	the var attribute of all items of				
Counting							

Figure 5.531: Illustration of the **Example** slot: a sequence of ten variables V_1 , V_2 , V_3 , V_4 , V_5 , V_6 , V_7 , V_8 , V_9 , V_{10} respectively fixed to values 2, 2, 3, 3, 2, 2, 1, 4, 4, 3 and its three inflexions, two peaks and one valley; each red point denotes an instant where a new inflexion is discovered while scanning the sequence from left to right; as shown by the rightmost arrow, the minimum distance between two consecutive inflexions is equal to 2.

Length (n)	2	3	4	5	6	7	8	
Solutions	9	64	1135	25444	574483	13287476	328156407	
Number of solutions for min_dist_between_inflexion: domains $0n$								

			Solutio	n density	for min_	dist_be	tween_ir	nflexio	n
Observed density	10 ^{0.8}								
	$10^{0.6}$								
	$10^{0.4}$								
	$10^{0.2}$								
	10^{0}								
		4	2	3	4 Le	5 ength	6	7	8

Length (n)		2	3	4	5	6	7	8
Total		9	64	1135	25444	574483	13287476	328156407
	1	-	-	170	3598	73794	1543512	35152278
	2	9	-	170	4690	91098	1819764	39992562
	3	-	64	170	4690	97314	1932012	41360676
Parameter	4	-	-	625	4690	97314	1965012	42025560
value	5	-	-	-	7776	97314	1965012	42192870
	6	-	-	-	-	117649	1965012	42192870
	7	-	-	-	-	-	2097152	42192870
	8	-	-	-	-	-	-	43046721

Solution count for min_dist_between_inflexion: domains 0..n

1666

Solution density for min_dist_between_inflexion

AUTOMATON

Keywords

1668

ordscharacteristic of a constraint:
automaton with same input symbol.automaton,
automatorial object: sequence.automaton,
automaton,
automaton,

constraint network structure: sliding cyclic(1) constraint network(3).

Automaton

Figure 5.532 depicts the automaton associated with the min_dist_between_inflexion constraint.

Figure 5.532: Automaton of the min_dist_between_inflexion constraint (state s means that we are in *stationary* mode, state i0 means that we are in *increasing* mode and that we did not yet found any inflexion, state d0 means that we are in *decreasing* mode and that we did not yet found any inflexion, state i1 means that we are in *increasing* mode and that we already found at least one inflexion, state d1 means that we are in *decreasing* mode and that we already found at least one inflexion, the minimum distance between two consecutive inflexions is updated each time we switch from i1 to d1 mode – or conversely from d1 to i1 mode – and the counter D is updated accordingly)

Figure 5.533: Hypergraph of the reformulation corresponding to the automaton of the min_dist_between_inflexion constraint where V is a shortcut for VARIABLES (since all states of the automaton are accepting there is no restriction on the last variable Q_{n-1})