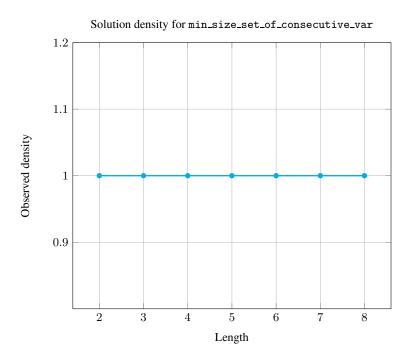
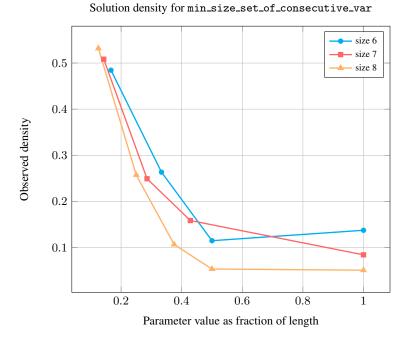

5.259 min_size_set_of_consecutive_var


	DESCRIPTION	LINKS	GRAPH
Origin	N. Beldiceanu		
Constraint	min_size_set_of_consecutive	e_var(MIN, VARIABLES)
Arguments	MIN : dvar VARIABLES : collection(var-dvar)	
Restrictions	$\texttt{MIN} \geq 1$ $\texttt{MIN} \leq \texttt{VARIABLES} $ required(VARIABLES, var)		
Purpose	MIN is the size of the smallest se their value in a set of consecutive		lection VARIABLES that all take
Example	$\begin{array}{c}(4,\langle 3,1,3,7,4,1,2,8,7,6\rangle)\\(4,\langle 3,1,3,2\rangle)\end{array}$		
	In the first example, the two parallels in the two following sets of quently, the corresponding min_s the cardinality of the smallest set of	of consecutive values { size_set_of_consecu	$1, 2, 3, 4$ and $\{6, 7, 8\}$. Conse-
Typical	$\begin{array}{l} \texttt{MIN} > 1 \\ \texttt{MIN} < \texttt{VARIABLES} \\ \texttt{VARIABLES} > 0 \\ \texttt{range}(\texttt{VARIABLES.var}) > 1 \end{array}$		
Symmetries	 Items of VARIABLES are p All occurrences of two dis One and the same consta VARIABLES. 	tinct values of VARIAB	LES.var can be swapped.
Arg. properties	Functional dependency: MIN dete	rmined by VARIABLES	
Counting			

Length (n)	2	3	4	5	6	7	8
Solutions	9	64	625	7776	117649	2097152	43046721
Number of coloring forming of coloring to the second							

Number of solutions for $\min_size_set_of_consecutive_var:$ domains 0..n

1700



Length (n)		2	3	4	5	6	7	8
Total		9	64	625	7776	117649	2097152	43046721
Parameter	1	2	30	276	3580	57000	1065834	22894984
	2	7	-	132	2480	30990	522522	11080412
	3	-	34	-	-	13500	332430	4590208
	4	-	-	217	-	-	-	2293480
value	5	-	-	-	1716	-	-	-
	6	-	-	-	-	16159	-	-
	7	-	-	-	-	-	176366	-
	8	-	-	-	-	-	-	2187637

Solution count for $min_size_set_of_consecutive_var:$ domains 0..n

 $10^{-0.2}$ $10^{-0.4}$ $10^{-0.6}$ $10^{-0.8}$ $10^{-1.2}$ 0.2 0.4 0.6 0.8 1Parameter value as fraction of length

Solution density for min_size_set_of_consecutive_var

See also common keyword: nset_of_consecutive_values (consecutive values).

Keywords

application area: assignment.

characteristic of a constraint: consecutive values, minimum.

constraint arguments: pure functional dependency.

constraint type: value constraint.

modelling: functional dependency.

$\underline{\mathbf{MIN_NSCC}}, \mathit{CLIQUE}$

Arc input(s)	VARIABLES				
Arc generator	$CLIQUE \mapsto \texttt{collection}(\texttt{variables1}, \texttt{variables2})$				
Arc arity	2				
Arc constraint(s)	$\texttt{abs}(\texttt{variables1.var}-\texttt{variables2.var}) \leq 1$				
Graph property(ies)	MIN_NSCC= MIN				
Graph model	Since the arc constraint is symmetric each strongly connected component of the final graph corresponds exactly to one connected component of the final graph. Parts (A) and (B) of Figure 5.544 respectively show the initial and final graph associated				

Parts (A) and (B) of Figure 5.544 respectively show the initial and final graph associated with the first example of the **Example** slot. Since we use the **MIN_NSCC** graph property, we show the smallest strongly connected component of the final graph.

1704

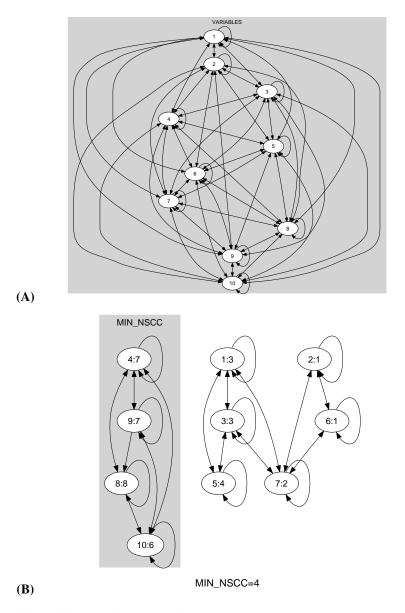


Figure 5.544: Initial and final graph of the $min_size_set_of_consecutive_var$ constraint