5.260 min_width_peak

DESCRIPTION	LINKS	AUTOMATON
derived from peak		

 $\begin{tabular}{ll} \textbf{Constraint} & \texttt{min_width_peak}(\texttt{MIN_WIDTH}, \texttt{VARIABLES}) \\ \end{tabular}$

Synonym min_base_peak.

Arguments MIN_WIDTH : dvar

VARIABLES : collection(var-dvar)

Restrictions $MIN_WIDTH \ge 0$

$$\begin{split} & \texttt{MIN_WIDTH} \leq |\texttt{VARIABLES}| - 2 \\ & \texttt{required}(\texttt{VARIABLES}, \texttt{var}) \end{split}$$

Purpose

Origin

Given a sequence VARIABLES constraint MIN_WIDTH to be fixed to the width of the smallest peak, or to 0 if no peak exists.

Example

```
\begin{array}{l} (5,\langle 4,4,2,2,3,5,5,6,3,1,1,2,2,2,2,2,2,1\rangle) \\ (5,\langle 4,6,7,9,8,5,4\rangle) \\ (0,\langle 4,4,2,0,0,4,5\rangle) \end{array}
```

The first min_width_peak constraint holds since the sequence $4\ 4\ 2\ 2\ 3\ 5\ 5\ 6\ 3\ 1\ 1\ 2\ 2\ 2\ 2\ 2\ 1$ contains two peaks of respective width 5 and 6 (see Figure 5.545) and since its argument MIN_WIDTH is fixed to the smallest value 5.

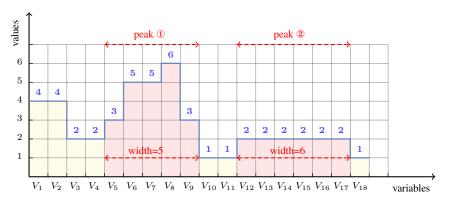


Figure 5.545: Illustration of the first example of the **Example** slot: a sequence of eighteen variables V_1 , V_2 , V_3 , V_4 , V_5 , V_6 , V_7 , V_8 , V_9 , V_{10} , V_{11} , V_{12} , V_{13} , V_{14} , V_{15} , V_{16} , V_{17} , V_{18} respectively fixed to values 4, 4, 2, 2, 3, 5, 5, 6, 3, 1, 1, 2, 2, 2, 2, 2, 1 and its two peaks of width 5 and 6.

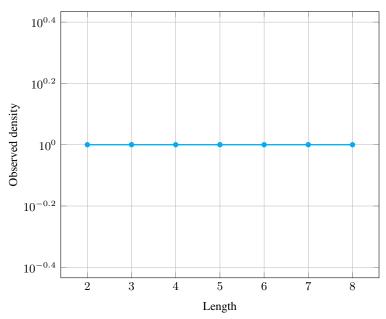
Typical

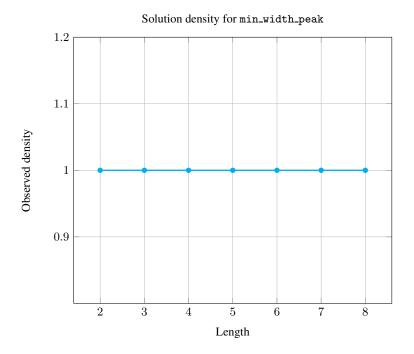
$$\begin{split} & \texttt{MIN_WIDTH} > 1 \\ & | \texttt{VARIABLES} | > 2 \end{split}$$

Symmetries

- Items of VARIABLES can be reversed.
- One and the same constant can be added to the var attribute of all items of VARIABLES.

Arg. properties

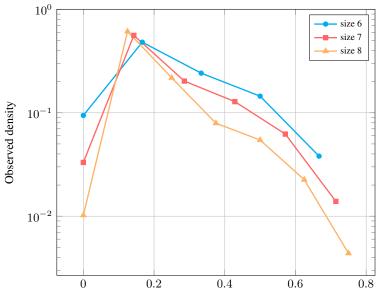

Functional dependency: MIN_WIDTH determined by VARIABLES.


Counting

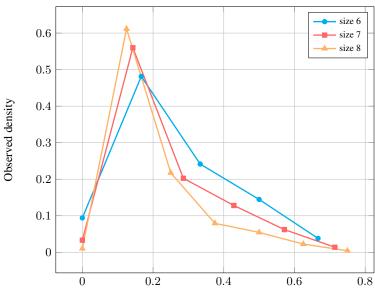
Length (n)	2	3	4	5	6	7	8
Solutions	9	64	625	7776	117649	2097152	43046721

Number of solutions for min_width_peak : domains 0..n

Solution density for min_width_peak



Length (n)		2	3	4	5	6	7	8
Total		9	64	625	7776	117649	2097152	43046721
	0	9	50	295	1792	11088	69498	439791
	1	-	14	230	3205	56637	1174398	26327058
Parameter value	2	-	-	100	2100	28420	424928	9363060
	3	-	-	-	679	17024	268722	3413256
	4	-	-	-	-	4480	130452	2345982
	5	-	-	-	-	-	29154	968946
	6	-	-	-	-	-	-	188628


Solution count for min_width_peak : domains 0..n

Solution density for min_width_peak

Parameter value as fraction of length

Solution density for min_width_peak

Parameter value as fraction of length

See also

common keyword: peak (sequence).

Keywords

characteristic of a constraint:

automaton,

automaton with counters,

```
automaton with same input symbol.

combinatorial object: sequence.

constraint arguments: reverse of a constraint, pure functional dependency.

filtering: glue matrix.

modelling: functional dependency.
```

Automaton

Figure 5.546 depicts the automaton associated with the min_width_peak constraint. To each pair of consecutive variables (VAR $_i$, VAR $_{i+1}$) of the collection VARIABLES corresponds a signature variable S_i . The following signature constraint links VAR $_i$, VAR $_{i+1}$ and S_i : (VAR $_i$ < VAR $_{i+1} \Leftrightarrow S_i = 0$) \land (VAR $_i$ = VAR $_{i+1} \Leftrightarrow S_i = 1$) \land (VAR $_i$ > VAR $_{i+1} \Leftrightarrow S_i = 2$).

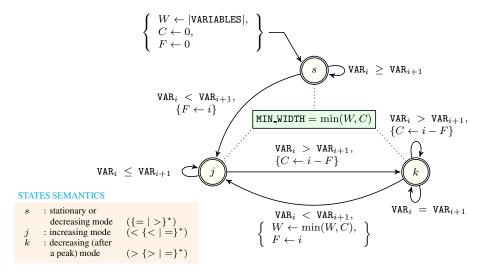


Figure 5.546: Automaton of the min_width_peak constraint: the start of the first potential peak is discovered while triggering the transition from s to j, the top of a peak is discovered while triggering the transition from j to k, the end of a peak and the start of the next potential peak are discovered while triggering the transition from k to j; the counters W, C and F respectively stand for min_width , current and first.

Glue matrix where \overrightarrow{W} , \overrightarrow{C} , \overrightarrow{F} and \overleftarrow{W} , \overleftarrow{C} , \overleftarrow{F} resp. represent the counters values W, C, F at the end of a prefix and at the end of the corresponding reverse suffix that partitions the sequence VARIABLES; $\overrightarrow{\text{MIN_WIDTH}}$ (resp. $\overrightarrow{\text{MIN_WIDTH}}$) stands for $\min(\overrightarrow{W}, \overrightarrow{C})$ (resp. $\min(\overleftarrow{W}, \overleftarrow{C})$).

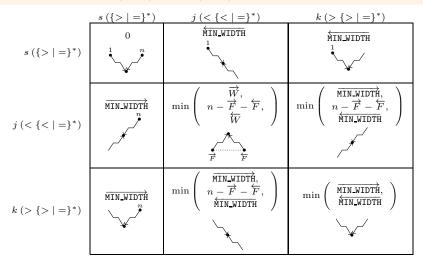


Figure 5.547: Glue matrix associated with the automaton of the min_width_peak constraint, where n stands for |VARIABLES|

$\underline{\mathtt{min_width_peak}}(\underline{\mathtt{MIN_WIDTH}} = 5, \underline{\mathtt{VARIABLES}} = \langle 4, 6, 7, 9, 8, 5, 4 \rangle)$										
	4	6	7	9		9				
_ < < < < < <										
i	0	1	2	3	::	3	2	1	0	i
$\overrightarrow{Q_i}$	s	j	j	j	::	\boldsymbol{j}	j	j	s	$\overline{Q_i}$
$\overrightarrow{W_i}$	7	7	7	7	::	7	7	7	7	$\overline{W_i}$
$\overrightarrow{C_i}$	0	0	0	0	::	0	0	0	0	$\overline{C_i}$
$\overrightarrow{F_i}$	0	1	1	1	::	1	1	1	0	$\overleftarrow{F_i}$
$\overrightarrow{\texttt{MIN_WIDTH}_i}$	0	0	0	0	::	0	0	0	0	MIN_WIDTH_i
$\begin{array}{c} \text{min_width_peak} \left(\begin{array}{c} \overrightarrow{\text{MIN_WIDTH}_3} = 0, \\ \langle 4, 6, 7, 9 \rangle \end{array} \right) & \text{min_width_peak} \left(\begin{array}{c} \overleftarrow{\text{MIN_WIDTH}_3} = 0, \\ \langle 4, 5, 8, 9 \rangle \end{array} \right) \end{array}$										
glue matrix entry associated with the state pair (j,j) : $\texttt{MIN_WIDTH} = \min(\overrightarrow{W_3}, \texttt{VARIABLES} - \overleftarrow{F_3} - \overleftarrow{F_3}, \overleftarrow{W_3}) = \min(7,7-1-1,7) = 5$										

Figure 5.548: Illustrating the use of the state pair (j,j) of the glue matrix for linking MIN_WIDTH with the counters variables obtained after reading the prefix 4,6,7,9 and corresponding suffix 9,8,5,4 of the sequence 4,6,7,9,8,5,4; note that the suffix 9,8,5,4 (in pink) is proceed in reverse order; the left (resp. right) table shows the initialisation (for i=0) and the evolution (for i>0) of the state of the automaton and its counters W,C and F upon reading the prefix 4,6,7,9 (resp. the reverse suffix 4,5,8,9).

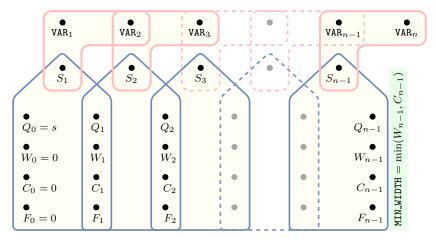


Figure 5.549: Hypergraph of the reformulation corresponding to the automaton of the \min_width_peak constraint