5.266 minimum_weight_alldifferent

	DESCRIPTI	ION	LINKS	GRAPH
Origin	[171]			
Constraint	minimum_weight_a	alldifferent(N)	ARIABLES,	MATRIX, COST)
Synonyms	minimum_weight_a min_weight_alldi	alldiff, minim fferent, min <u>w</u>	um_weight_ veight_all	alldistinct, min_weight_alldiff, distinct.
Arguments	VARIABLES : 0 MATRIX : 0 COST : 0	collection(var collection(i- dvar	r-dvar) int,j-int	t, c-int)
Restrictions	<pre> VARIABLES > 0 required(VARIA VARIABLES.var ≥ VARIABLES.var ≤ required(MATRI increasing_seq MATRIX.i ≥ 1 MATRIX.i ≤ VAR MATRIX.j ≥ 1 MATRIX.j ≤ VAR MATRIX.j ≤ VAR</pre>	BLES, var) ≥ 1 ≤ VARIABLES X,[i,j,c]) (MATRIX,[i,j]) IABLES IABLES IABLES * VARIA	ABLES	
Purpose	All variables of the interval [1, VARIAE with the fact that w MATRIX.	e VARIABLES co BLES]. In additi- ve assign value <i>i</i>	llection sho on COST is a to variable	uld take a distinct value located within equal to the sum of the costs associated j . These costs are given by the matrix
Example	$\left(\begin{array}{c} \langle 2,3,1,4\rangle,\\ {\rm i}-1{\rm j}\\ {\rm i}-1{\rm j}\\ {\rm i}-1{\rm j}\\ {\rm i}-1{\rm j}\\ {\rm i}-2{\rm j}\\ {\rm i}-3{\rm j}\\ {\rm i}-3{\rm j}\\ {\rm i}-3{\rm j}\\ {\rm i}-3{\rm j}\\ {\rm i}-4{\rm j}\\ {\rm i}\\ {\rm i}-4{\rm j}\\ {\rm j}\\ {\rm i}-4{\rm j}\\ {\rm i}\\ {\rm i}-4{\rm j}\\ {\rm j}\\ {\rm i}-4{\rm j}\\ {\rm i}\\ {\rm i}-4{\rm i}\\ i}-4{\rm i}\\ {\rm i}-4{\rm i}\\ {\rm i}-4{\rm i}\\ {\rm i}-4{\rm$	$ \begin{array}{cccc} -1 & {\rm c}-4, \\ -2 & {\rm c}-1, \\ -3 & {\rm c}-7, \\ -4 & {\rm c}-0, \\ -1 & {\rm c}-1, \\ -2 & {\rm c}-0, \\ -3 & {\rm c}-8, \\ -4 & {\rm c}-2, \\ -1 & {\rm c}-3, \\ -2 & {\rm c}-2, \\ -3 & {\rm c}-1, \\ -4 & {\rm c}-6, \\ -1 & {\rm c}-0, \\ -2 & {\rm c}-0, \\ -3 & {\rm c}-6, \\ -4 & {\rm c}-5 \\ \end{array} $		

1744

20030820

The minimum_weight_alldifferent constraint holds since the cost 17 corresponds to the sum $MATRIX[(1-1)\cdot 4+2]$.c + $MATRIX[(2-1)\cdot 4+3]$.c + $MATRIX[(3-1)\cdot 4+1]$.c + $\texttt{MATRIX}[(4-1) \cdot 4 + 4].\texttt{c} = \texttt{MATRIX}[2].\texttt{c} + \texttt{MATRIX}[7].\texttt{c} + \texttt{MATRIX}[9].\texttt{c} + \texttt{MATRIX}[16].\texttt{c} =$ 1 + 8 + 3 + 5. All solutions Figure 5.569 gives all solutions to the following non ground instance of the minimum_weight_alldifferent constraint: $V_1 \in [2, 4], V_2 \in [2, 3], V_3 \in [1, 6], V_4 \in [2, 5], V_5 \in [2, 3], V_6 \in [1, 6], C \in [0, 25],$ minimum_weight_alldifferent($\langle V_1, V_2, V_3, V_4, V_5, V_6 \rangle$, $\langle 1\ 1\ 5,\ 1\ 2\ 0,\ 1\ 3\ 1,\ 1\ 4\ 1,\ 1\ 5\ 3,\ 1\ 6\ 0,$ 212, 227, 230, 242, 255, 261, 313, 323, 336, 346, 350, 369, 414, 423, 430, 440, 450, 462, 512, 520, 536, 543, 557, 562, $615, 624, 635, 644, 655, 664\rangle, C$. $(\langle 4, 2, 1, 5, 3, 6 \rangle, 21)$ $(\langle 4, 3, 1, 5, 2, 6 \rangle, 8)$ $(\langle 4, 3, 6, 5, 2, 1 \rangle, \mathbf{15})$ $1 \ 2 \ 3 \ 4 \ 5 \ 6$ $1 \ 2 \ 3 \ 4 \ 5 \ 6$ $1 \ 2 \ 3 \ 4 \ 5$ $3/V_{1}5$ 0 1 1 3 0 $(1)/V_1 5 \ 0 \ 1 \ 1 \ 3 \ 0$ $2/V_1 5 0 1 1 3 0$ 21 $V_2 2 \ 7 \ 0 \ 2 \ 5 \ 1$ $8 V_2 2 7 0 2 5 1$ **15** V_2 2 7 **0** 2 5 1 V_3 **3 3 6 6 0 9** V₃ **3** 3 6 6 0 9 $V_3 3 3 6 6 0 9$ $V_4 4 \ 3 \ 0 \ 0 \ 0 \ 2$ $V_4 4 \ 3 \ 0 \ 0 \ 0 \ 2$ $V_4 4 \ 3 \ 0 \ 0 \ 0 \ 2$ V₅ 2 0 6 3 7 2 V₅ 2 0 6 3 7 2 $V_5 2 0 6 3 7 2$ $V_6 5 4 5 4$ 54 $V_6 5 4 5 4 5$ V_6 5 4 5 4 5 4

Figure 5.569: All solutions corresponding to the non ground example of the minimum_weight_alldifferent constraint of the **All solutions** slot

Typical	$\begin{aligned} \texttt{VARIABLES} > 1 \\ \texttt{range}(\texttt{MATRIX.c}) > 1 \\ \texttt{MATRIX.c} > 0 \end{aligned}$
Arg. properties	Functional dependency: COST determined by VARIABLES and MATRIX.
Algorithm	The Hungarian method for the assignment problem [243] can be used for evaluating the bounds of the COST variable. A filtering algorithm is described in [377]. It can be used for handling both side of the minimum_weight_alldifferent constraint:
	• Evaluating a lower bound of the COST variable and pruning the variables of the VARIABLES collection in order to not exceed the maximum value of COST.
	• Evaluating an upper bound of the COST variable and pruning the variables of the VARIABLES collection in order to not be under the minimum value of COST.

	1746 <u>NTREE</u> , <u>SUM_WEIGHT_ARC</u> , <i>CLIQUE</i>				
Systems	all_different in SICStus, all_distinct in SICStus.				
See also	attached to cost variant: alldifferent.				
	<pre>common keyword: global_cardinality_with_costs (cost filtering constraint, weighted assignment) sum_of_weights_of_distinct_values (weighted assignment), weighted_partial_alldiff (cost filtering constraint, weighted assignment).</pre>				
Keywords	application area: assignment.				
	characteristic of a constraint: core.				
	filtering: cost filtering constraint, Hungarian method for the assignment problem.				
	final graph structure: one_succ.				
	modelling: cost matrix, functional dependency.				
	problems: weighted assignment.				

20030820

Arc input(s)	VARIABLES
Arc generator	$CLIQUE \mapsto \texttt{collection}(\texttt{variables1}, \texttt{variables2})$
Arc arity	2
Arc constraint(s)	variables1.var = variables2.key
Graph property(ies)	• NTREE= 0 • SUM_WEIGHT_ARC $\begin{pmatrix} MATRIX \begin{bmatrix} \sum ((variables1.key - 1) * VARIABLES , \\ variables1.var \end{pmatrix} \end{bmatrix}$.c $\end{pmatrix} = COST$

Graph model

Since each variable takes one value, and because of the arc constraint variables1 = variables.key, each vertex of the initial graph belongs to the final graph and has exactly one successor. Therefore the sum of the out-degrees of the vertices of the final graph is equal to the number of vertices of the final graph. Since the sum of the out-degrees, it is also equal to the number of vertices of the final graph. Since **NTREE** = 0, each vertex of the final graph belongs to a circuit. Therefore each vertex of the final graph has at least one predecessor. Since we saw that the sum of the in-degrees is equal to the number of vertices of the final graph has exactly one predecessor. We conclude that the final graph consists of a set of vertex-disjoint elementary circuits.

Finally the graph constraint expresses that the COST variable is equal to the sum of the elementary costs associated with each variable-value assignment. All these elementary costs are recorded in the MATRIX collection. More precisely, the cost c_{ij} is recorded in the attribute c of the $((i-1) \cdot |VARIABLES)| + j)^{th}$ entry of the MATRIX collection. This is ensured by the increasing restriction that enforces that the items of the MATRIX collection are sorted in lexicographically increasing order according to attributes i and j.

Figure 5.570: Initial and final graph of the minimum_weight_alldifferent constraint

Parts (A) and (B) of Figure 5.570 respectively show the initial and final graph associated with the **Example** slot. Since we use the **SUM_WEIGHT_ARC** graph property, the

arcs of the final graph are stressed in bold. We also indicate their corresponding weight.