### 5.266 minimum_weight_alldifferent

DESCRIPTION<br>LINKS<br>GRAPH

## Origin

## Constraint

Synonyms

Arguments

## Restrictions

## Purpose

Example

## [171]

minimum_weight_alldifferent(VARIABLES, MATRIX, COST)
minimum_weight_alldiff, minimum_weight_alldistinct, min_weight_alldiff, min_weight_alldifferent, min_weight_alldistinct.

```
VARIABLES : collection(var-dvar)
MATRIX : collection(i-int,j-int,c-int)
COST : dvar
```

```
|VARIABLES| > 0
    required(VARIABLES, var)
    VARIABLES.var \geq1
    VARIABLES.var \leq |VARIABLES|
    required(MATRIX, [i, j, c])
    increasing_seq(MATRIX, [i, j])
    MATRIX.i \geq1
    MATRIX.i \leq |VARIABLES|
    MATRIX.j \geq1
    MATRIX.j \leq |VARIABLES|
    |MATRIX }|=|\mathrm{ VARIABLES }||\mathrm{ VARIABLES 
```

All variables of the VARIABLES collection should take a distinct value located within interval [ $1, \mid$ VARIABLES $\mid]$. In addition COST is equal to the sum of the costs associated with the fact that we assign value $i$ to variable $j$. These costs are given by the matrix MATRIX.

$$
\left(\begin{array}{ccl}
\langle 2,3,1,4\rangle & & \\
i-1 & j-1 & c-4, \\
i-1 & j-2 & c-1, \\
i-1 & j-3 & c-7, \\
i-1 & j-4 & c-0, \\
i-2 & j-1 & c-1, \\
i-2 & j-2 & c-0, \\
\mathbf{i}-2 & j-3 & c-8, \\
i-2 & j-4 & c-2, \\
i-3 & j-1 & c-3, \\
i-3 & j-2 & c-2, \\
i-3 & j-3 & c-1, \\
i-3 & j-4 & c-6, \\
i-4 & j-1 & c-0, \\
i-4 & j-2 & c-0, \\
i-4 & j-3 & c-6, \\
i-4 & j-4 & c-5
\end{array}\right)
$$

The minimum_weight_alldifferent constraint holds since the cost 17 corresponds to the sum MATRIX $[(1-1) \cdot 4+2] . c+\operatorname{MATRIX}[(2-1) \cdot 4+3] \cdot \mathrm{c}+\operatorname{MATRIX}[(3-1) \cdot 4+1] . \mathrm{c}+$ $\operatorname{MATRIX}[(4-1) \cdot 4+4] \cdot \mathrm{c}=\operatorname{MATRIX}[2] \cdot \mathrm{c}+\operatorname{MATRIX}[7] \cdot \mathrm{c}+\operatorname{MATRIX}[9] \cdot \mathrm{c}+\operatorname{MATRIX}[16] \cdot \mathrm{c}=$ $1+8+3+5$.

## All solutions

Arg. properties

## Algorithm

Figure 5.569 gives all solutions to the following non ground instance of the minimum_weight_alldifferent constraint:
$V_{1} \in[2,4], V_{2} \in[2,3], V_{3} \in[1,6], V_{4} \in[2,5], V_{5} \in[2,3], V_{6} \in[1,6], C \in[0,25]$, minimum_weight_alldifferent $\left(\left\langle V_{1}, V_{2}, V_{3}, V_{4}, V_{5}, V_{6}\right\rangle\right.$,
$\langle 115,120,131,141,153,160$, $212,227,230,242,255,261$, $313,323,336,346,350,369$, $414,423,430,440,450,462$, $512,520,536,543,557,562$, $615,624,635,644,655,664\rangle, C)$.


Figure 5.569: All solutions corresponding to the non ground example of the minimum_weight_alldifferent constraint of the All solutions slot

## Typical

$\mid$ VARIABLES $\mid>1$
range $($ MATRIX.c) $>1$
MATRIX.c $>0$

Functional dependency: COST determined by VARIABLES and MATRIX.
The Hungarian method for the assignment problem [243] can be used for evaluating the bounds of the COST variable. A filtering algorithm is described in [377]. It can be used for handling both side of the minimum_weight_alldifferent constraint:

- Evaluating a lower bound of the COST variable and pruning the variables of the VARIABLES collection in order to not exceed the maximum value of COST.
- Evaluating an upper bound of the COST variable and pruning the variables of the VARIABLES collection in order to not be under the minimum value of COST.

Systems
See also

Keywords
all_different in SICStus, all_distinct in SICStus.
attached to cost variant: alldifferent.
common keyword: global_cardinality_with_costs (cost filtering constraint,weighted assignment), sum_of_weights_of_distinct_values (weighted assignment), weighted_partial_alldiff (cost filtering constraint, weighted assignment).
application area: assignment.
characteristic of a constraint: core.
filtering: cost filtering constraint, Hungarian method for the assignment problem.
final graph structure: one_succ.
modelling: cost matrix, functional dependency.
problems: weighted assignment.

## Arc input(s)

Arc generator
Are arity
Arc constraint(s)
Graph property(ies)

VARIABLES

$$
C L I Q U E \mapsto \operatorname{collection(variables1,~variables2)~}
$$

2
variables1.var $=$ variables2.key

- NTREE $=0$
- SUM_WEIGHT_ARC $\left(\operatorname{MATRIX}\left[\sum\binom{(\right.\right.$ variables1.key -1$) * \mid V A R I A B L E S ~}{$ variables1.var }$\left.] \cdot \mathrm{c}\right)=\operatorname{COST}$

Since each variable takes one value, and because of the arc constraint variables1 $=$ variables.key, each vertex of the initial graph belongs to the final graph and has exactly one successor. Therefore the sum of the out-degrees of the vertices of the final graph is equal to the number of vertices of the final graph. Since the sum of the in-degrees is equal to the sum of the out-degrees, it is also equal to the number of vertices of the final graph. Since NTREE $=0$, each vertex of the final graph belongs to a circuit. Therefore each vertex of the final graph has at least one predecessor. Since we saw that the sum of the in-degrees is equal to the number of vertices of the final graph, each vertex of the final graph has exactly one predecessor. We conclude that the final graph consists of a set of vertex-disjoint elementary circuits.

Finally the graph constraint expresses that the COST variable is equal to the sum of the elementary costs associated with each variable-value assignment. All these elementary costs are recorded in the MATRIX collection. More precisely, the cost $c_{i j}$ is recorded in the attribute $c$ of the $((i-1) \cdot \mid$ VARIABLES $) \mid+j)^{t h}$ entry of the MATRIX collection. This is ensured by the increasing restriction that enforces that the items of the MATRIX collection are sorted in lexicographically increasing order according to attributes $i$ and $j$.


Figure 5.570: Initial and final graph of the minimum_weight_alldifferent constraint

Parts (A) and (B) of Figure 5.570 respectively show the initial and final graph associated with the Example slot. Since we use the SUM_WEIGHT_ARC graph property, the
arcs of the final graph are stressed in bold. We also indicate their corresponding weight.

