1788 AUTOMATON

5.278 no_peak

DESCRIPTION LINKS AUTOMATON

Origin Derived from peak.

Constraint no_peak(VARIABLES)

Argument VARIABLES : collection(var-dvar)

 $| {\tt VARIABLES} | > 0$

required(VARIABLES, var)

A variable V_k (1 < k < m) of the sequence of variables VARIABLES $= V_1, \ldots, V_m$ is a peak if and only if there exists an i $(1 < i \le k)$ such that $V_{i-1} < V_i$ and $V_i = V_{i+1} = \cdots = V_k$ and $V_k > V_{k+1}$. The total number of peaks of the sequence of variables VARIABLES is equal to 0.

Example $(\langle 1, 1, 4, 8, 8 \rangle)$

Purpose

The no_peak constraint holds since the sequence $1\ 1\ 4\ 8\ 8$ does not contain any peak.

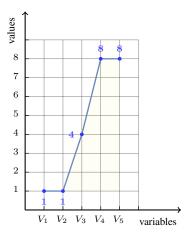


Figure 5.580: Illustration of the **Example** slot: a sequence of five variables V_1 , V_2 , V_3 , V_4 , V_5 respectively fixed to values 1, 1, 4, 8, 8 without any peak

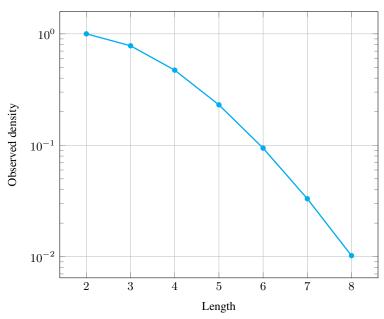
 $\begin{array}{ll} \textbf{Typical} & | \texttt{VARIABLES} | > 3 \\ & \texttt{range} \big(\texttt{VARIABLES.var} \big) > 1 \end{array}$

20031101 1789

Symmetries

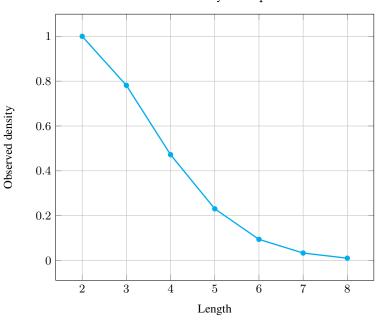
- Items of VARIABLES can be reversed.
- ullet One and the same constant can be added to the var attribute of all items of VARIABLES.

Arg. properties


Contractible wrt. VARIABLES.

Counting

Length (n)	2	3	4	5	6	7	8
Solutions	9	50	295	1792	11088	69498	439791


Number of solutions for no_peak: domains 0..n

Solution density for no_peak

1790 AUTOMATON

Solution density for no_peak

See also comp

comparison swapped: no_valley.

generalisation: peak (introduce a variable counting the number of peaks).

implied by: decreasing, increasing.

implies: all_equal_peak_max.

related: valley.

Keywords

characteristic of a constraint: automaton, automaton without counters, automaton with same input symbol, reified automaton constraint.

combinatorial object: sequence.

constraint network structure: sliding cyclic(1) constraint network(1).

20031101 1791

Automaton

Figure 5.581 depicts the automaton associated with the no_peak constraint. To each pair of consecutive variables (VAR $_i$, VAR $_{i+1}$) of the collection VARIABLES corresponds a signature variable S_i . The following signature constraint links VAR $_i$, VAR $_{i+1}$ and S_i : (VAR $_i$ < VAR $_{i+1} \Leftrightarrow S_i = 0$) \wedge (VAR $_i$ = VAR $_{i+1} \Leftrightarrow S_i = 1$) \wedge (VAR $_i$ > VAR $_{i+1} \Leftrightarrow S_i = 2$).

STATES SEMANTICS s: stationary/decreasing mode $(\{>|=\}^*)$ t: increasing mode $(\{<|=\}^*)$ VAR $_i$ = VAR $_{i+1}$ VAR $_i$ = VAR $_{i+1}$ VAR $_i$ = VAR $_{i+1}$ VAR $_i$ > VAR $_i$ < VAR $_{i+1}$

Figure 5.581: Automaton of the no_peak constraint

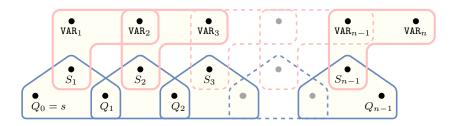


Figure 5.582: Hypergraph of the reformulation corresponding to the automaton of the no-peak constraint (since all states of the automaton are accepting there is no restriction on the last variable Q_{n-1})