AUTOMATON

1/92

5.279 no_valley **DESCRIPTION** LINKS **AUTOMATON** Origin Derived from **valley**. Constraint no_valley(VARIABLES) Argument VARIABLES : collection(var-dvar) Restrictions |VARIABLES| > 0required(VARIABLES, var) A variable V_k (1 < k < m) of the sequence of variables VARIABLES = V_1, \ldots, V_m is a valley if and only if there exists an $i \ (1 \ < \ i \ \leq \ k)$ such that $V_{i-1} \ > \ V_i$ and Purpose $V_i = V_{i+1} = \cdots = V_k$ and $V_k < V_{k+1}$. The total number of valleys of the sequence of variables VARIABLES is equal to 0. $(\langle 1, 1, 4, 8, 8, 2 \rangle)$ Example

The no_valley constraint holds since the sequence $1\ 1\ 4\ 8\ 8\ 2$ does not contain any valley.

Typical

|VARIABLES| > 3range(VARIABLES.var) > 1

1792

20031101

Symmetries

• Items of VARIABLES can be reversed.

• One and the same constant can be added to the var attribute of all items of VARIABLES.

Arg. properties

Contractible wrt. VARIABLES.

Counting

Length (n)	2	3	4	5	6	7	8
Solutions	9	50	295	1792	11088	69498	439791

Number of solutions for no_valley: domains 0..n

See also	<pre>comparison swapped: no_peak. generalisation: valley (introduce a variable counting the number of valleys). implied by: decreasing, global_contiguity, increasing. implies: all_equal_valley_min.</pre>							
							related: peak.	
							Keywords	characteristic of a constraint: automaton, automaton without counters automaton with same input symbol, reified automaton constraint.
								combinatorial object: sequence.
	constraint network structure: sliding cyclic(1) constraint network(1).							

1794

20031101

Automaton

Figure 5.584 depicts the automaton associated with the no-valley constraint. To each pair of consecutive variables (VAR_i, VAR_{i+1}) of the collection VARIABLES corresponds a signature variable S_i . The following signature constraint links VAR_i, VAR_{i+1} and S_i : (VAR_i < VAR_{i+1} $\Leftrightarrow S_i = 0$) \land (VAR_i = VAR_{i+1} $\Leftrightarrow S_i = 1$) \land (VAR_i > VAR_{i+1} $\Leftrightarrow S_i = 2$).

Figure 5.584: Automaton of the no_valley constraint

Figure 5.585: Hypergraph of the reformulation corresponding to the automaton of the no_valley constraint (since all states of the automaton are accepting there is no restriction on the last variable Q_{n-1})