## 5.309 ordered\_nvector

|              | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                        | LINKS                                                                                                                                                                                                              | GRAPH                                                                                                                                                                                                                                                                                                                                                          |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Origin       | Derived from nvector.                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                |
| Constraint   | ordered_nvector(NVEC,VECTO                                                                                                                                                                                                                                                                                                                                         | RS)                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                |
| Synonyms     | ordered_nvectors, ordered_n                                                                                                                                                                                                                                                                                                                                        | point, ordered_npoi                                                                                                                                                                                                | nts.                                                                                                                                                                                                                                                                                                                                                           |
| Туре         | VECTOR : collection(var                                                                                                                                                                                                                                                                                                                                            | -dvar)                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                |
| Arguments    | NVEC : dvar<br>VECTORS : collection(ve                                                                                                                                                                                                                                                                                                                             | c - VECTOR)                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                |
| Restrictions | $\begin{split}  \texttt{VECTOR}  &\geq 1 \\ \texttt{NVEC} &\geq \texttt{min}(1,  \texttt{VECTORS} ) \\ \texttt{NVEC} &\leq  \texttt{VECTORS}  \\ \texttt{required}(\texttt{VECTORS}, \texttt{vec}) \\ \texttt{same\_size}(\texttt{VECTORS}, \texttt{vec}) \end{split}$                                                                                             |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                |
| Purpose      | <ul> <li>of the collection VECTOD (B<sub>1</sub>, B<sub>2</sub>,, B<sub>m</sub>) are dissuch that A<sub>i</sub> ≠ B<sub>i</sub>.</li> <li>2. For each pair of consecut collection we have that VECTOR<sub>i+1</sub>. Given two v and (Y<sub>0</sub>,, Y<sub>n-1</sub>), X is</li> </ul>                                                                            | distinct tuples of va<br>RS. Two tuples of<br>stinct if and only if th<br>ive vectors VECTOR <sub>i</sub> a<br>VECTOR <sub>i</sub> is lexicographically less<br>$\zeta_0 = Y_0$ and $\langle X_1, \ldots, \rangle$ | alues assigned to the vectors<br>values $\langle A_1, A_2, \ldots, A_m \rangle$ and<br>ere exist an integer $i \in [1, m]$<br>and VECTOR <sub>i+1</sub> of the VECTORS<br>phically less than or equal to<br>components, $\langle X_0, \ldots, X_{n-1} \rangle$<br><i>than or equal to</i> $\vec{Y}$ if and only<br>$X_{n-1} \rangle$ is lexicographically less |
| Example      | $\left(\begin{array}{c} \operatorname{vec} - \langle 5, 6 \rangle , \\ \operatorname{vec} - \langle 9, 3 \rangle , \\ \operatorname{vec} - \langle 9, 3 \rangle \end{array}\right)$<br>The ordered_nvector constraint |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                |

- 1. Its first argument NVEC = 2 is set to the number of distinct tuples of values (i.e., tuples (5, 6) and (9, 3)) occurring within the collection VECTORS.
- 2. The vectors of the collection VECTORS are sorted in increasing lexicographical order.

| Typical         | $\begin{split}  \texttt{VECTOR}  &> 1 \\ \texttt{NVEC} &> 1 \\ \texttt{NVEC} &<  \texttt{VECTORS}  \\  \texttt{VECTORS}  &> 1 \end{split}$                                                                    |  |  |  |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Arg. properties | <ul> <li>Functional dependency: NVEC determined by VECTORS.</li> <li>Contractible wrt. VECTORS when NVEC = 1 and  VECTORS  &gt; 0.</li> <li>Contractible wrt. VECTORS when NVEC =  VECTORS .</li> </ul>       |  |  |  |
| Reformulation   | The ordered_nvector constraint can be reformulated as a conjunction of a nvector and a lex_chain_lesseq constraints.                                                                                          |  |  |  |
| See also        | <b>implies:</b> lex_chain_lesseq(NVEC of constraint ordered_nvector removed),<br>nvector, ordered_atleast_nvector(= NVEC replaced by $\geq$ NVEC),<br>ordered_atmost_nvector(= NVEC replaced by $\leq$ NVEC). |  |  |  |
|                 | related: increasing_nvalue_chain.                                                                                                                                                                             |  |  |  |
|                 | root concept: increasing_nvalue.                                                                                                                                                                              |  |  |  |
|                 | used in graph description: lex_less, lex_lesseq.                                                                                                                                                              |  |  |  |
| Keywords        | characteristic of a constraint: vector.                                                                                                                                                                       |  |  |  |
|                 | constraint type: counting constraint, order constraint.                                                                                                                                                       |  |  |  |
|                 | modelling: functional dependency.                                                                                                                                                                             |  |  |  |
|                 | symmetry: symmetry.                                                                                                                                                                                           |  |  |  |

| Arc input(s)        | VECTORS                                                                  |
|---------------------|--------------------------------------------------------------------------|
| Arc generator       | $PATH \mapsto \texttt{collection}(\texttt{vectors1}, \texttt{vectors2})$ |
| Arc arity           | 2                                                                        |
| Arc constraint(s)   | <pre>lex_lesseq(vectors1.vec, vectors2.vec)</pre>                        |
| Graph property(ies) | $\mathbf{NARC} =  VECTORS  - 1$                                          |
| Arc input(s)        | VECTORS                                                                  |
| Arc generator       | $PATH \mapsto \texttt{collection}(\texttt{vectors1}, \texttt{vectors2})$ |
| Arc arity           | 2                                                                        |
| Arc constraint(s)   | <pre>less(vectors1.vec, vectors2.vec)</pre>                              |
| Graph property(ies) | NCC= NVEC                                                                |

Graph model

Parts (A) and (B) of Figure 5.630 respectively show the initial and final graph of the second graph constraint associated with the **Example** slot. Since we use the **NCC** graph property in this second graph constraint, we show the different connected components of the final graph. Each strongly connected component corresponds to a tuple of values that is assigned to some vectors of the VECTORS collection. The 2 following tuple of values  $\langle 5, 6 \rangle$  and  $\langle 9, 3 \rangle$  are used by the vectors of the VECTORS collection.

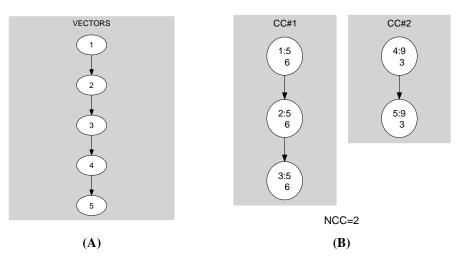



Figure 5.630: Initial and final graph of the ordered\_nvector constraint