
1946 MAX ID,MAX NSCC,NCC,CLIQUE

5.315 path

DESCRIPTION LINKS GRAPH

Origin Derived from binary tree.

Constraint path(NPATH, NODES)

Arguments NPATH : dvar

NODES : collection(index−int, succ−dvar)

Restrictions NPATH ≥ 1
NPATH ≤ |NODES|
required(NODES, [index, succ])
|NODES| > 0
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose
Cover the digraph G described by the NODES collection with NPATH paths in such a way

that each vertex of G belongs to exactly one path.

Example

























3,

〈

index− 1 succ− 1,
index− 2 succ− 3,
index− 3 succ− 5,
index− 4 succ− 7,
index− 5 succ− 1,
index− 6 succ− 6,
index− 7 succ− 7,
index− 8 succ− 6

〉

















































1,

〈

index− 1 succ− 8,
index− 2 succ− 7,
index− 3 succ− 6,
index− 4 succ− 5,
index− 5 succ− 5,
index− 6 succ− 4,
index− 7 succ− 3,
index− 8 succ− 2

〉

















































8,

〈

index− 1 succ− 1,
index− 2 succ− 2,
index− 3 succ− 3,
index− 4 succ− 4,
index− 5 succ− 5,
index− 6 succ− 6,
index− 7 succ− 7,
index− 8 succ− 8

〉

























Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20090101 1947

The first path constraint holds since its second argument corresponds to the 3
(i.e., the first argument of the path constraint) paths depicted by Figure 5.638.

1|15|13|52|3

6|68|6

7|74|7

index − 1 succ − 1

index − 2 succ − 3

index − 3 succ − 5

index − 4 succ − 7

index − 5 succ − 1

index − 6 succ − 6

index − 7 succ − 7

index − 8 succ − 6

NODES

Figure 5.638: The three paths corresponding to the first example of the Example slot;

each vertex contains the information index|succ where succ is the index of its suc-

cessor in the path (by convention one of the extremities of a path points to itself).

Typical NPATH < |NODES|
|NODES| > 1

Symmetry Items of NODES are permutable.

Arg. properties
Functional dependency: NPATH determined by NODES.

Reformulation The path constraint can be expressed in term of (1) a set of |NODES|2 reified constraints

for avoiding circuit between more than one node and of (2) |NODES| reified constraints and

of one sum constraint for counting the paths and of (3) a set of |NODES|2 reified constraints

and of |NODES| inequalities constraints for enforcing the fact that each vertex has at most

two children.

1. For each vertex NODES[i] (i ∈ [1, |NODES|]) of the NODES collection we create a

variable Ri that takes its value within interval [1, |NODES|]. This variable represents

the rank of vertex NODES[i] within a solution. It is used to prevent the creation of

circuit involving more than one vertex as explained now. For each pair of vertices

NODES[i], NODES[j] (i, j ∈ [1, |NODES|]) of the NODES collection we create a reified

constraint of the form NODES[i].succ = NODES[j].index ∧ i 6= j ⇒ Ri < Rj .

The purpose of this constraint is to express the fact that, if there is an arc from vertex

NODES[i] to another vertex NODES[j], then Ri should be strictly less than Rj .

2. For each vertex NODES[i] (i ∈ [1, |NODES|]) of the NODES collection we cre-

ate a 0-1 variable Bi and state the following reified constraint NODES[i].succ =
NODES[i].index ⇔ Bi in order to force variable Bi to be set to value 1 if and

only if there is a loop on vertex NODES[i]. Finally we create a constraint NPATH =
B1 +B2 + · · ·+B|NODES| for stating the fact that the number of paths is equal to the

number of loops of the graph.

3. For each pair of vertices NODES[i], NODES[j] (i, j ∈ [1, |NODES|]) of the NODES

collection we create a 0-1 variable Bij and state the following reified constraint

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

1948 MAX ID,MAX NSCC,NCC,CLIQUE

NODES[i].succ = NODES[j].index ∧ i 6= j ⇔ Bij . Variable Bij is set to value 1 if

and only if there is an arc from NODES[i] to NODES[j]. Then for each vertex NODES[j]
(j ∈ [1, |NODES|]) we create a constraint of the form B1j+B2j+· · ·+B|NODES|j ≤ 1.

Counting

Length (n) 2 3 4 5 6 7 8

Solutions 3 13 73 501 4051 37633 394353

Number of solutions for path: domains 0..n

2 3 4 5 6 7 8

10−2

10−1

Length

O
b
se

rv
ed

d
en

si
ty

Solution density for path

Counting
Information on the solution density.

20090101 1949

2 3 4 5 6 7 8

0

0.1

0.2

0.3

Length

O
b
se

rv
ed

d
en

si
ty

Solution density for path

Length (n) 2 3 4 5 6 7 8

Total 3 13 73 501 4051 37633 394353

Parameter

value

1 2 6 24 120 720 5040 40320

2 1 6 36 240 1800 15120 141120

3 - 1 12 120 1200 12600 141120

4 - - 1 20 300 4200 58800

5 - - - 1 30 630 11760

6 - - - - 1 42 1176

7 - - - - - 1 56

8 - - - - - - 1

Solution count for path: domains 0..n

1950 MAX ID,MAX NSCC,NCC,CLIQUE

0.2 0.4 0.6 0.8 1

10−8

10−7

10−6

10−5

10−4

10−3

10−2

Parameter value as fraction of length

O
b
se

rv
ed

d
en

si
ty

Solution density for path

size 6

size 7

size 8

0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

·10−2

Parameter value as fraction of length

O
b
se

rv
ed

d
en

si
ty

Solution density for path

size 6

size 7

size 8

See also common keyword: circuit (graph partitioning constraint, one succ),

dom reachability (path), path from to (path, select an induced subgraph

so that there is a path from a given vertex to an other given vertex),

See also
Related constraints grouped by semantics links.

20090101 1951

proper circuit (graph partitioning constraint, one succ).

generalisation: binary tree (at most one child replaced by at most two children),

temporal path (vertices are located in time, and to each arc corresponds a precedence

constraint), tree (at most one child replaced by no limit on the number of children).

implies: binary tree.

related: balance path (counting number of paths versus controlling how balanced the

paths are).

Keywords combinatorial object: path.

constraint type: graph constraint, graph partitioning constraint.

filtering: DFS-bottleneck.

final graph structure: connected component, tree, one succ.

modelling: functional dependency.

Keywords
Related keywords grouped by meta-keywords.

1952 MAX ID,MAX NSCC,NCC,CLIQUE

Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) nodes1.succ = nodes2.index

Graph property(ies) • MAX NSCC≤ 1
• NCC= NPATH

• MAX ID≤ 1

Graph class ONE SUCC

Graph model We use the same graph constraint as for the binary tree constraint, except that we replace

the graph property MAX ID≤ 2, which constraints the maximum in-degree of the final

graph to not exceed 2 by MAX ID≤ 1. MAX ID does not consider loops: This is why

we do not have any problem with the final node of each path.

Parts (A) and (B) of Figure 5.639 respectively show the initial and final graph associated

with the first example of the Example slot. Since we use the NCC graph property, we

display the three connected components of the final graph. Each of them corresponds to

a path. Since we use the MAX ID graph property, we also show with a double circle a

vertex that has a maximum number of predecessors.

The path constraint holds since all strongly connected components of the final graph have

no more than one vertex, since NPATH =NCC= 3 and since MAX ID= 1.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20090101 1953

NODES

1

2

3

4

5

6

7

8
MAX_NSCC=1, NCC=3

MAX_ID=1

CC#1 CC#2 CC#3

1:1,1

2:2,3

3:3,5

5:5,1

4:4,7

7:7,7 6:6,6

8:8,6

(A) (B)

Figure 5.639: Initial and final graph of the path constraint

