5.315 path

	DESCRIPTION	LINKS	GRAPH
Origin	Derived from binary_tree.		
Constraint	$\mathtt{path}(\mathtt{NPATH}, \mathtt{NODES})$		
Arguments	NPATH : dvar NODES : collection(index-	-int, succ-dvar)	
Restrictions	$\begin{array}{l} \text{NPATH} \geq 1 \\ \text{NPATH} \leq \text{NODES} \\ \textbf{required}(\text{NODES}, [\texttt{index}, \texttt{succ}] \\ \text{NODES} > 0 \\ \text{NODES.index} \geq 1 \\ \text{NODES.index} \leq \text{NODES} \\ \textbf{distinct}(\text{NODES}, \texttt{index}) \\ \text{NODES.succ} \geq 1 \\ \text{NODES.succ} \leq \text{NODES} \end{array}$)	
Purpose	Cover the digraph G described by that each vertex of G belongs to explanate the formula of G belongs to explanate the f	the NODES collection w actly one path.	ith NPATH paths in such a way
Example	$\left(\begin{array}{c} {\rm index} - 1 & {\rm succ} - 3 \\ {\rm index} - 2 & {\rm succ} - 3 \\ {\rm index} - 3 & {\rm succ} - 3 \\ {\rm index} - 3 & {\rm succ} - 3 \\ {\rm index} - 4 & {\rm succ} - 3 \\ {\rm index} - 5 & {\rm succ} - 3 \\ {\rm index} - 6 & {\rm succ} - 6 \\ {\rm index} - 7 & {\rm succ} - 3 \\ {\rm index} - 8 & {\rm succ} - 6 \\ {\rm index} - 1 & {\rm succ} - 3 \\ {\rm index} - 1 & {\rm succ} - 3 \\ {\rm index} - 2 & {\rm succ} - 3 \\ {\rm index} - 3 & {\rm succ} - 6 \\ {\rm index} - 5 & {\rm succ} - 3 \\ {\rm index} - 6 & {\rm succ} - 4 \\ {\rm index} - 7 & {\rm succ} - 3 \\ {\rm index} - 8 & {\rm succ} - 3 \\ {\rm index} - 8 & {\rm succ} - 3 \\ {\rm index} - 1 & {\rm succ} - 3 \\ {\rm index} - 8 & {\rm succ} - 3 \\ {\rm index} - 3 & {\rm succ} - 3 \\ {\rm index} - 3 & {\rm succ} - 3 \\ {\rm index} - 4 & {\rm succ} - 3 \\ {\rm index} - 5 & {\rm succ} - 3 \\ {\rm index} - 6 & {\rm succ} - 3 \\ {\rm index} - 6 & {\rm succ} - 3 \\ {\rm index} - 6 & {\rm succ} - 3 \\ {\rm index} - 7 & {\rm succ} - 3 \\ {\rm index} - 8 & {\rm index} - 8 \\ {\rm index} - 8 & {\rm index} - 8 \\ {\rm index} - 8 & {\rm i$	$ \begin{array}{c} 1, \\ 3, \\ 5, \\ 7, \\ 1, \\ 6, \\ 7, \\ 6 \\ 8, \\ 7, \\ 6, \\ 5, \\ 4, \\ 2 \\ 1, \\ 2, \\ 3, \\ 4, \\ 5, \\ 8 \\ \end{array} \right) $	

1946

The first path constraint holds since its second argument corresponds to the 3 (i.e., the first argument of the path constraint) paths depicted by Figure 5.638.

Figure 5.638: The three paths corresponding to the first example of the **Example** slot; each vertex contains the information index|succ where succ is the index of its successor in the path (by convention one of the extremities of a path points to itself).

Typical	$\begin{array}{l} \texttt{NPATH} < \texttt{NODES} \\ \texttt{NODES} > 1 \end{array}$
Symmetry	Items of NODES are permutable.
Arg. properties	Functional dependency: NPATH determined by NODES.
Reformulation	The path constraint can be expressed in term of (1) a set of $ NODES ^2$ reified constraints for avoiding circuit between more than one node and of (2) $ NODES $ reified constraints and of one sum constraint for counting the paths and of (3) a set of $ NODES ^2$ reified constraints and of $ NODES $ inequalities constraints for enforcing the fact that each vertex has at most two children.
	1. For each vertex NODES[i] ($i \in [1, \text{NODES}]$) of the NODES collection we create a variable R_i that takes its value within interval $[1, \text{NODES}]$. This variable represents the rank of vertex NODES[i] within a solution. It is used to prevent the creation of circuit involving more than one vertex as explained now. For each pair of vertices $\text{NODES}[i], \text{NODES}[j]$ ($i, j \in [1, \text{NODES}]$) of the NODES collection we create a reified constraint of the form $\text{NODES}[i].\text{succ} = \text{NODES}[j].\text{index } \land i \neq j \Rightarrow R_i < R_j$. The purpose of this constraint is to express the fact that, if there is an arc from vertex $\text{NODES}[i]$ to another vertex $\text{NODES}[j]$, then R_i should be strictly less than R_j .
	2. For each vertex NODES[i] $(i \in [1, \text{NODES}])$ of the NODES collection we create a 0-1 variable B_i and state the following reified constraint NODES[i].succ = NODES[i].index $\Leftrightarrow B_i$ in order to force variable B_i to be set to value 1 if and only if there is a loop on vertex NODES[i]. Finally we create a constraint NPATH = $B_1 + B_2 + \cdots + B_{ \text{NODES} }$ for stating the fact that the number of paths is equal to the number of loops of the graph.
	3. For each pair of vertices $NODES[i]$, $NODES[j]$ $(i, j \in [1, NODES])$ of the NODES collection we create a 0-1 variable B_{ij} and state the following reified constraint

$$\begin{split} & \texttt{NODES}[i].\texttt{succ} = \texttt{NODES}[j].\texttt{index} \land i \neq j \Leftrightarrow B_{ij}. \texttt{Variable} \ B_{ij} \texttt{ is set to value 1 if} \\ & \texttt{and only if there is an arc from \texttt{NODES}[i] to \texttt{NODES}[j]. \texttt{Then for each vertex } \texttt{NODES}[j] \\ & (j \in [1, |\texttt{NODES}|]) \texttt{ we create a constraint of the form} \ B_{1j} + B_{2j} + \dots + B_{|\texttt{NODES}|j} \leq 1. \end{split}$$

Counting

Length (n)	2	3	4	5	6	7	8
Solutions	3	13	73	501	4051	37633	394353
Number of solutions for path: domains $0n$							

Solution density for path

Length (n)		2	3	4	5	6	7	8
Total		3	13	73	501	4051	37633	394353
	1	2	6	24	120	720	5040	40320
Parameter value	2	1	6	36	240	1800	15120	141120
	3	-	1	12	120	1200	12600	141120
	4	-	-	1	20	300	4200	58800
	5	-	-	-	1	30	630	11760
	6	-	-	-	-	1	42	1176
	7	-	-	-	-	-	1	56
	8	-	-	-	-	-	-	1

Solution count for path: domains 0..n

one_succ), so that there is a path from a given vertex to an other given vertex),

See also

20090101

proper_circuit (graph partitioning constraint, one_succ).

generalisation: binary_tree(at most one child replaced by at most two children), temporal_path(vertices are located in time, and to each arc corresponds a precedence constraint), tree(at most one child replaced by no limit on the number of children).

implies: binary_tree.

related: balance_path(counting number of paths versus controlling how balanced the paths are).

 Keywords
 combinatorial object: path.

 constraint type: graph constraint, graph partitioning constraint.

 filtering: DFS-bottleneck.

 final graph structure: connected component, tree, one_succ.

 modelling: functional dependency.

Arc input(s)	NODES
Arc generator	$CLIQUE \mapsto \texttt{collection}(\texttt{nodes1}, \texttt{nodes2})$
Arc arity	2
Arc constraint(s)	nodes1.succ = nodes2.index
Graph property(ies)	• MAX_NSCC ≤ 1 • NCC= NPATH • MAX_ID ≤ 1
Graph class	ONE_SUCC
Graph model	We use the same graph constraint as for the binary_tree constraint, except that we replace the graph property MAX_ID ≤ 2 , which constraints the maximum in-degree of the final graph to not exceed 2 by MAX_ID ≤ 1 . MAX_ID does not consider loops: This is why we do not have any problem with the final node of each path.

Parts (A) and (B) of Figure 5.639 respectively show the initial and final graph associated with the first example of the **Example** slot. Since we use the **NCC** graph property, we display the three connected components of the final graph. Each of them corresponds to a path. Since we use the **MAX_ID** graph property, we also show with a double circle a vertex that has a maximum number of predecessors.

The path constraint holds since all strongly connected components of the final graph have no more than one vertex, since NPATH = NCC= 3 and since MAX_ID = 1.

1952

Figure 5.639: Initial and final graph of the path constraint