
1958 AUTOMATON

5.317 pattern

DESCRIPTION LINKS AUTOMATON

Origin [83]

Constraint pattern(VARIABLES, PATTERNS)

Type PATTERN : collection(var−int)

Arguments VARIABLES : collection(var−dvar)
PATTERNS : collection(pat− PATTERN)

Restrictions required(PATTERN, var)
PATTERN.var ≥ 0
change(0, PATTERN,=)
|PATTERN| > 1
required(VARIABLES, var)
required(PATTERNS, pat)
|PATTERNS| > 0
same size(PATTERNS, pat)

Purpose

We quote the definition from the original article [83, page 157] introducing the pattern

constraint:

“We call a k-pattern (k > 1) any sequence of k elements such that

no two successive elements have the same value. Consider a set V =
{v1, v2, . . . , vm} and a sequence s = s1 s2 . . . sn of elements of V . In

this context, a stretch is a maximum subsequence of variables of s which

all have the same value. Consider now the sequence vi1 vi2 . . . vil of

the types of the successive stretches that appear in s. Let P be a set of

k-patterns. s satisfies P if and only if every subsequence of k elements in

vi1 vi2 . . . , vil belongs to P .”

Example

(

〈1, 1, 2, 2, 2, 1, 3, 3〉 ,
〈pat− 〈1, 2, 1〉 , pat− 〈1, 2, 3〉 , pat− 〈2, 1, 3〉〉

)

The pattern constraint holds since, as depicted by Figure 5.641, all its sequences

of three consecutive stretches correspond to one of the 3-patterns given in the PATTERNS

collection.

Typical |VARIABLES| > 2
range(VARIABLES.var) > 1

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

20031008 1959

1 1 2 2 2 1 3 3

1 1 2 2 2 1

2 2 2 1 3 3

1 2 1

1 2 3

2 1 3

VARIABLES

PATTERNS

3-pattern PATTERNS[1]:

3-pattern PATTERNS[2]:

3-pattern PATTERNS[3]:

decomposition of the sequence

in terms of overlapping 3-patterns

︷ ︸︸ ︷
st
re

tc
h

of
1

︷ ︸︸ ︷
st
re

tc
h

of
2

︷︸︸︷
st
re

tc
h

of
1

︷ ︸︸ ︷
st
re

tc
h

of
3

Figure 5.641: The sequence of the Example slot, its four stretches and the correspond-

ing two 3-patterns 1 2 1 and 2 1 3

Symmetries • Items of PATTERNS are permutable.

• Items of VARIABLES and PATTERNS.pat are simultaneously reversable.

• All occurrences of two distinct tuples of values in VARIABLES.var or

PATTERNS.pat.var can be swapped; all occurrences of a tuple of values in

VARIABLES.var or PATTERNS.pat.var can be renamed to any unused tuple of

values.

Arg. properties
• Prefix-contractible wrt. VARIABLES.

• Suffix-contractible wrt. VARIABLES.

Usage The pattern constraint was originally introduced within the context of staff scheduling.

In this context, the value of the ith variable of the VARIABLES collection corresponds to

the type of shift performed by a person on the ith day. A stretch is a maximum sequence

of consecutive variables that are all assigned to the same value. The pattern constraint

imposes that each sequence of k consecutive stretches belongs to a given list of patterns.

Remark A generalisation of the pattern constraint to the regular constraint enforcing the fact

that a sequence of variables corresponds to a regular expression is presented in [306].

See also common keyword: group (timetabling constraint),

sliding distribution (sliding sequence constraint),

stretch circuit, stretch path (sliding sequence constraint,timetabling constraint),

stretch path partition (sliding sequence constraint).

Keywords characteristic of a constraint: automaton, automaton without counters,

reified automaton constraint.

constraint network structure: Berge-acyclic constraint network.

constraint type: timetabling constraint, sliding sequence constraint.

filtering: arc-consistency.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1960 AUTOMATON

Automaton Taking advantage that all k-patterns have the same length k, it is straightforward to con-

struct an automaton that only accepts solutions of the pattern constraint. Figure 5.642

depicts the automaton associated with the pattern constraint of the Example slot. The

construction can be done in three steps:

• First, build a prefix tree of all the k-patterns. In the context of our example, this gives

all arcs of Figure 5.642, except self loops and the arc from s3 to s7.

• Second, find out the transitions that exit a leave of the tree. For this purpose we

remove the first symbol of the corresponding k-pattern, add at the end of the re-

maining k-pattern a symbol corresponding to a stretch value, and check whether the

new pattern belongs or not to the set of k-patterns of the pattern constraint. When

the new pattern belongs to the set of k-patterns we add a corresponding transition.

For instance, in the context of our example, consider the leave s3 that is associated

with the 3-pattern 1, 2, 1. We remove the first symbol 1 and get 2, 1. We then try to

successively add the stretch values 1, 2 and 3 to the end of 2, 1 and check if the cor-

responding patterns 2, 1, 1, 2, 1, 2 and 2, 1, 3 belong or not to our set of 3-patterns.

Since only 2, 1, 3 is a 3-pattern we add a new transition between the corresponding

leaves of the prefix tree (i.e., a transition from s3 to s7).

• Third, in order to take into account that each value of a k-pattern corresponds in

fact to a given stretch value (i.e., several consecutive values that are assigned the

same value), we add a self loop to all non-source states with a transition label that

corresponds to the transition label of their entering arc.

s0

s5 s1

s6 s2

s7 s4 s3

2 1

2

1

1

2

1

3

2

3

3 3 1

3

1

Figure 5.642: Automaton of the pattern constraint of the Example slot

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20031008 1961

