5.318 peak

	DESCRIPTION	LINKS	AUTOMATON
Origin	Derived from inflexion.		
Constraint	${\tt peak}({\tt N}, {\tt VARIABLES})$		
Arguments	N : dvar VARIABLES : collection	(var-dvar)	
Restrictions	$N \ge 0$ 2 * N ≤ max(VARIABLES - 1 required(VARIABLES, var)	1,0)	
Purpose	is a <i>peak</i> if and only if there e	xists an i (with $1 < i$	the variables $VARIABLES = V_1, \dots, V_m$ $\leq k$) such that $V_{i-1} < V_i$ and number of peaks of the sequence
Example	$\begin{array}{c}(2,\langle 1,1,4,8,6,2,7,1\rangle)\\(0,\langle 1,1,4,4,4,6,7,7\rangle)\\(4,\langle 1,5,4,9,4,6,2,7,6\rangle)\end{array}$		

The first peak constraint holds since the sequence 1 1 4 8 6 2 7 1 contains two peaks that respectively correspond to the variables that are assigned to values 8 and 7.

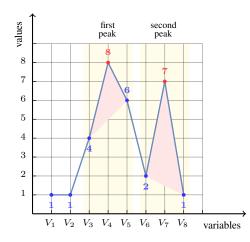
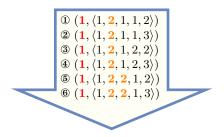
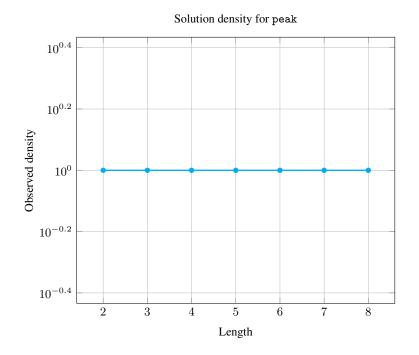


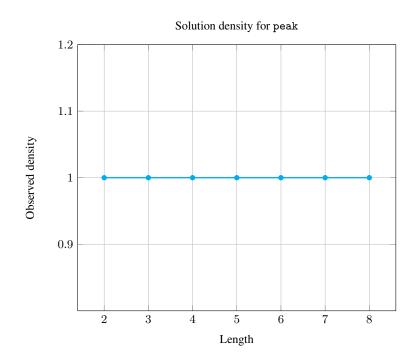
Figure 5.643: Illustration of the first example of the **Example** slot: a sequence of eight variables V_1 , V_2 , V_3 , V_4 , V_5 , V_6 , V_7 , V_8 respectively fixed to values 1, 1, 4, 8, 6, 2, 7, 1 and its corresponding two peaks ($\mathbb{N} = 2$)

All solutions

Figure 5.644 gives all solutions to the following non ground instance of the peak constraint: $\mathbb{N} \in [1,2], V_1 \in [1,2], V_2 = 2, V_3 \in [1,2], V_4 \in [1,2], V_5 \in [2,3],$ $\mathtt{peak}(\mathtt{N}, \langle V_1, V_2, V_3, V_4, V_5 \rangle).$

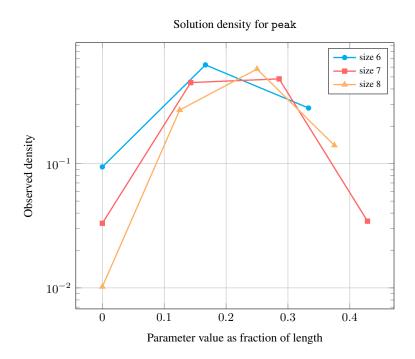


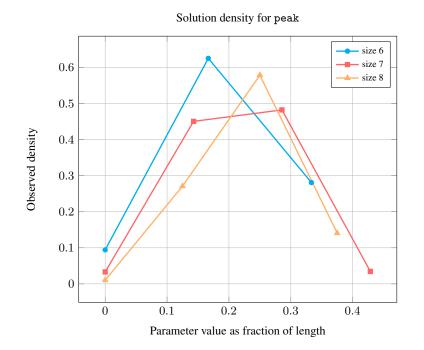

Figure 5.644: All solutions corresponding to the non ground example of the peak constraint of the All solutions slot where each peak is coloured in orange


Typical	VARIABLES > 2 range(VARIABLES.var) > 1
Symmetries	• Items of VARIABLES can be reversed.
	• One and the same constant can be added to the var attribute of all items of VARIABLES.
. <i></i>	
Arg. properties	• Functional dependency: N determined by VARIABLES.
	• Contractible wrt. VARIABLES when $N = 0$.
Usage	Useful for constraining the number of <i>peaks</i> of a sequence of domain variables.
Remark	Since the arity of the arc constraint is not fixed, the peak constraint cannot be currently described with the graph-based representation. However, this would not hold anymore if we were introducing a slot that specifies how to merge adjacent vertices of the final graph.
Counting	

Counting

Length (n)	2	3	4	5	6	7	8
Solutions	9	64	625	7776	117649	2097152	43046721
Number of solutions for peak: domains 0 n							


Number of solutions for peak: domains 0..n



Length (n)		2	3	4	5	6	7	8
Total		9	64	625	7776	117649	2097152	43046721
	0	9	50	295	1792	11088	69498	439791
Parameter	1	-	14	330	5313	73528	944430	11654622
value	2	-	-	-	671	33033	1010922	24895038
	3	-	-	-	-	-	72302	6057270

Solution	count for	peak:	domains	0n
----------	-----------	-------	---------	----

See also	<pre>common keyword: hig min_width_peak(sequen</pre>		inflexion,	min_dist_be	tween_inflexion,
	comparison swapped: va	alley.			
	generalisation: big_peal	k (a tolerance p	arameter is ada	led for countir	ng only big peaks).
	related: all_equal increasing_peak, no_va	-	ll_equal_pea	k_max,	decreasing_peak,
	<pre>specialisation: no_peak(moved).</pre>	(the variable co	ounting the nur	nber of peaks	is set to 0 and re-
Keywords	characteristic of a constr automaton with same input		automaton,	autor	naton with counters,
	combinatorial object: se	quence.			
	constraint arguments: re	everse of a const	traint, pure fund	ctional depend	ency.
	constraint network strue	cture: sliding cy	yclic(1) constra	int network(2)	
	filtering: glue matrix.				
	modelling: functional dep	pendency.			
Cond. implications	 peak(N, VARIABLES) with N > 0 implies atleast_nval when NVAL = 2. 	ue(NVAL, VARI	ABLES)		
	• peak(N, VARIABLES) implies inflexion(N, when N = peak(VAR		valley(VARIA	BLES.var).	

Automaton

Figure 5.645 depicts the automaton associated with the peak constraint. To each pair of consecutive variables (VAR_i, VAR_{i+1}) of the collection VARIABLES corresponds a signature variable S_i . The following signature constraint links VAR_i, VAR_{i+1} and S_i : (VAR_i < VAR_{i+1} $\Leftrightarrow S_i = 0$) \land (VAR_i = VAR_{i+1} $\Leftrightarrow S_i = 1$) \land (VAR_i > VAR_{i+1} $\Leftrightarrow S_i = 2$).

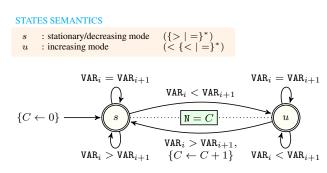


Figure 5.645: Automaton of the peak constraint

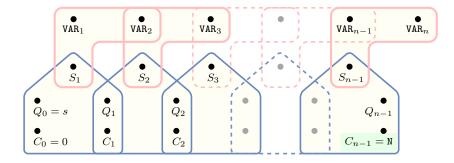
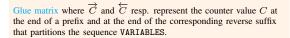



Figure 5.646: Hypergraph of the reformulation corresponding to the automaton of the peak constraint (since all states of the automaton are accepting there is no restriction on the last variable Q_{n-1})

	$s\left(\{> =\}^*\right)$	$u \ (< \{< =\}^*)$
$s\left(\{> =\}^*\right)$	$\overrightarrow{C} + \overleftarrow{C}$	\overrightarrow{C} + \overleftarrow{C}
$u \ (< \{< =\}^*)$		$\vec{C} + 1 + \vec{C}$

Figure 5.647: Glue matrix of the peak constraint

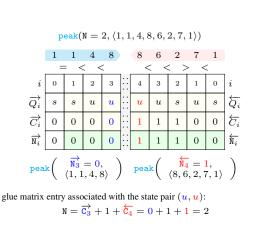


Figure 5.648: Illustrating the use of the state pair (u, u) of the glue matrix for linking N with the counters variables obtained after reading the prefix 1, 1, 4, 8 and corresponding suffix 8, 6, 2, 7, 1 of the sequence 1, 1, 4, 8, 6, 2, 7, 1; note that the suffix 8, 6, 2, 7, 1 (in pink) is proceed in reverse order; the left (resp. right) table shows the initialisation (for i = 0) and the evolution (for i > 0) of the state of the automaton and of its counter C upon reading the prefix 1, 1, 4, 8 (resp. the suffix 1, 7, 2, 6, 8).