
2092 CLIQUE , SUCC

5.352 sliding time window

DESCRIPTION LINKS GRAPH

Origin N. Beldiceanu

Constraint sliding time window(WINDOW SIZE, LIMIT, TASKS)

Arguments WINDOW SIZE : int

LIMIT : int

TASKS : collection(origin−dvar, duration−dvar)

Restrictions WINDOW SIZE > 0
LIMIT ≥ 0
required(TASKS, [origin, duration])
TASKS.duration ≥ 0

Purpose
For any time window of size WINDOW SIZE, the intersection of all the tasks of the col-

lection TASKS with this time window is less than or equal to a given limit LIMIT.

Example

9, 6,

〈

origin− 10 duration − 3,
origin− 5 duration − 1,
origin− 6 duration − 2,
origin− 14 duration − 2,
origin− 2 duration − 2

〉

The lower part of Figure 5.688 indicates the different tasks on the time axis. Each

task is drawn as a rectangle with its corresponding identifier in the middle. Finally

the upper part of Figure 5.688 shows the different time windows and the respective

contribution of the tasks in these time windows. Note that we only need to focus on those

time windows starting at the start of one of the tasks. A line with two arrows depicts each

time window. The two arrows indicate the start and the end of the time window. At the left

of each time window we give its occupation. Since this occupation is always less than or

equal to the limit 6, the sliding time window constraint holds.

Typical WINDOW SIZE > 1
LIMIT > 0
LIMIT <sum(TASKS.duration)
|TASKS| > 1
TASKS.duration > 0

Symmetries • WINDOW SIZE can be decreased.

• LIMIT can be increased.

• Items of TASKS are permutable.

• One and the same constant can be added to the origin attribute of all items of

TASKS.

• TASKS.duration can be decreased to any value ≥ 0.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

20030820 2093

° ® ¬ ¯

2≤ LIMIT = 6

WINDOW SIZE = 9

3 + 2≤ LIMIT = 6

WINDOW SIZE = 9

2 + 3 + 1≤ LIMIT = 6

WINDOW SIZE = 9

1 + 2 + 3≤ LIMIT = 6

WINDOW SIZE = 9

2 + 1 + 2 + 1≤ LIMIT = 6

WINDOW SIZE = 9

0 1 3 4 7 8 92 5 6 11 12 13 15 16 17 18 19 20 21 22 2310 14

¬ origin − 10 duration − 3 ¯ origin − 14 duration − 2

 origin − 5 duration − 1 ° origin − 2 duration − 2

® origin − 6 duration − 2

TASKS

Figure 5.688: Time windows and their use for the five tasks of the Example slot

Arg. properties
Contractible wrt. TASKS.

Usage The sliding time window constraint is useful for timetabling problems in order to put

an upper limit on the total work over sliding time windows.

Reformulation The sliding time window constraint can be expressed in term of a set of |TASKS|2 reified

constraints and of |TASKS| linear inequalities constraints:

1. For each pair of tasks TASKS[i], TASKS[j] (i, j ∈ [1, |TASKS|]) of the TASKS collec-

tion we create a variable Inter ij which is set to the intersection of TASKS[j] with the

time window Wi of size WINDOW SIZE that starts at instant TASKS[i].origin:

• If i = j (i.e., TASKS[i] and TASKS[j] coincide):

– Inter ij = min(TASKS[i].duration, WINDOW SIZE).

• If i 6= j and TASKS[j].origin + TASKS[j].duration < TASKS[i].origin
(i.e., TASKS[j] for sure ends before the time window Wi):

– Inter ij = 0.

• If i 6= j and TASKS[j].origin > TASKS[i].origin + WINDOW SIZE − 1
(i.e., TASKS[j] for sure starts after the time window Wi):

– Inter ij = 0.

• Otherwise (i.e., TASKS[j] can potentially overlap the time window Wi):

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

2094 CLIQUE , SUCC

– Inter ij = max(0,min(TASKS[i].origin +
WINDOW SIZE, TASKS[j].origin + TASKS[j].duration) −
max(TASKS[i].origin, TASKS[j].origin)).

2. For each task TASKS[i] (i ∈ [1, |TASKS|]) we create a linear inequality constraint

Inter i1 + Inter i2 + · · ·+ Inter i|TASKS| ≤ LIMIT.

See also common keyword: shift (temporal constraint).

related: sliding time window sum (sum of intersections of tasks with sliding time win-

dow replaced by sum of the points of intersecting tasks with sliding time window).

used in graph description: sliding time window from start.

Keywords constraint type: sliding sequence constraint, temporal constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20030820 2095

Arc input(s) TASKS

Arc generator CLIQUE 7→collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s) • tasks1.origin ≤ tasks2.origin

• tasks2.origin − tasks1.origin < WINDOW SIZE

Sets SUCC 7→ [source, tasks]

Constraint(s) on sets sliding time window from start

WINDOW SIZE,

LIMIT,

tasks,

source.origin

Graph model We generate an arc from a task t1 to a task t2 if task t2 does not start before task t1 and

if task t2 intersects the time window that starts at the origin of task t1. Each set generated

by SUCC corresponds to all tasks that intersect in time the time window that starts at the

origin of a given task.

Parts (A) and (B) of Figure 5.689 respectively show the initial and final graph associated

with the Example slot. In the final graph, the successors of a given task t correspond to the

set of tasks that do not start before task t and intersect the time window that starts at the

origin of task t.

TASKS

1

2

3

4

5

1:10,3

4:14,2

2:5,1

3:6,2

5:2,2

(A) (B)

Figure 5.689: Initial and final graph of the sliding time window constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

