5.375 stretch_circuit

	DESCRIPTION	LINKS	GRAPH	
Origin	[305]			
Constraint	stretch_circuit(VARIABLES,VALU	JES)		
Usual name	stretch			
Arguments	VARIABLES : collection(var- VALUES : collection(val-	-dvar) -int,lmin-int,lma	x-int)	
Restrictions	<pre> VARIABLES > 0 required(VARIABLES,var) VALUES > 0 required(VALUES,[val,lmin,lmadistinct(VALUES,val) VALUES.lmin ≤ VALUES.lmax VALUES.lmin ≤ VARIABLES sum(VALUES.lmin) ≤ VARIABLES </pre>	ux])		
	In order to define the meaning of the stretch_path constraint, we first introduce the notions of <i>stretch</i> and <i>span</i> . Let n be the number of variables of the collection VARIABLES and let $i, j \ (0 \le i < n, 0 \le j < n)$ be two positions within the collection of variables VARIABLES such that the following conditions apply:			
	 If i ≤ j then all variables X_i,, X_j take a same value from the set of values of the val attribute. If i > j then all variables X_i,, X_{n-1}, X₀,, X_j take a same value from the set of values of the val attribute. 			
	 X_{(i-1) mod n} is different from 			
	• $X_{(j+1) \mod n}$ is different from			
Purpose	We call such a set of variables a $1 + (j - i) \mod n$, while the value enforced by the stretch_circuit constraints of the	of the stretch is X_i . W		
	Each item $(val - v, lmin - s, lmax - t)$ of the VALUES collection enforces the minimum value s as well as the maximum value t for the span of a stretch of value v.			
	Note that:			
	1. Having an item $(val - v, lmix)$ not mean that value v should VARIABLES. It rather means t must have a span that belong to	be assigned to one of hat, when value v is u	the variables of collection	
	2. A variable of the collection VI fined in the VALUES collection	•	gned a value that is not de-	

2208

20030820

Exampl	e
L'Aump	•

/ (6,	6, 3, 1, 1,	$1, 6, 6 \rangle$,		
			lmax - 4,	
	$\mathtt{val}-2$	$\mathtt{lmin}-2$	lmax - 3,	
	val-3	$\verb"lmin-1"$	lmax - 6, /	
()	val-6	$\mathtt{lmin}-2$	lmax-4)
The stret	ch circu	it constrain	t holds since th	e sea

The stretch_circuit constraint holds since the sequence 6 6 3 1 1 1 6 6 contains three stretches 6 6 6 6, 3, and 1 1 1 respectively verifying the following conditions:

- The span of the first stretch 6 6 6 6 is located within interval [2, 4] (i.e., the limit associated with value 6).
- The span of the second stretch 3 is located within interval [1, 6] (i.e., the limit associated with value 3).
- The span of the third stretch 1 1 1 is located within interval [2,4] (i.e., the limit associated with value 1).

```
\label{eq:constraint} \begin{array}{ll} |\texttt{VARIABLES}| > 1 \\ & \texttt{range}(\texttt{VARIABLES}.\texttt{var}) > 1 \\ |\texttt{VARIABLES}| > |\texttt{VALUES}| \\ |\texttt{VALUES}| > 1 \\ & \texttt{VALUES}.\texttt{lmax} \leq |\texttt{VARIABLES}| \end{array}
```

Symmetries

• Items of VARIABLES can be shifted.

- Items of VALUES are permutable.
- All occurrences of two distinct values in VARIABLES.var or VALUES.val can be swapped; all occurrences of a value in VARIABLES.var or VALUES.val can be renamed to any unused value.
- Usage The article [305], which originally introduced the stretch constraint, quotes rostering problems as typical examples of use of this constraint.
- RemarkWe split the origin stretch constraint into the stretch_circuit and the stretch_path
constraints that respectively use the PATH LOOP and CIRCUIT LOOP arc generators.
We also reorganise the parameters: the VALUES collection describes the attributes of each
value that can be assigned to the variables of the stretch_circuit constraint. Finally we
skipped the pattern constraint that tells what values can follow a given value.
- Algorithm A first filtering algorithm was described in the original article of G. Pesant [305]. An algorithm that also generates explanations is given in [360]. The first filtering algorithm achieving arc-consistency is depicted in [208, 209]. This algorithm is based on dynamic programming and handles the fact that some values can be followed by only a given subset of values.
- **Reformulation** The stretch_circuit constraint can be reformulated in term of a stretch_path constraint. Let LMAX denote the maximum value taken by the lmax attribute within the items of the collection VALUES, let n be the number of variables of the collection VARIABLES, and let $\delta = \min(LMAX, n)$. The first and second arguments of the stretch_path constraint are created in the following way:

	• We pass to the stretch_path the variables of the collection VARIABLES to which we add the δ first variables of the collection VARIABLES.
	• We pass to the stretch_path the values of the collection VALUES with the following modification: to each value v for which the corresponding lmax attribute is greater than or equal to n we reset its value to $n + \delta$.
	Even if stretch_path can achieve arc-consistency this reformulation may not achieve arc-consistency since it duplicates variables.
	Using this reformulation, the example
	$stretch_circuit(\langle 6, 6, 3, 1, 1, 1, 6, 6 \rangle,$
	$egin{array}{llllllllllllllllllllllllllllllllllll$
	of the Example slot is reformulated as:
	stretch_path($(6, 6, 3, 1, 1, 1, 6, 6, 6, 6, 3, 1, 1, 1)$),
	$\langle \texttt{val}-1 \texttt{lmin}-2 \texttt{lmax}-4, \texttt{ val}-2 \texttt{lmin}-2 \texttt{lmax}-3,$
	$\mathtt{val}-3 \mathtt{lmin}-1 \mathtt{lmax}-6, \mathtt{val}-6 \mathtt{lmin}-2 \mathtt{lmax}-4 angle)$
	In the reformulation δ was equal to 6, and the VALUES collection was left unchanged since no lmax attribute was equal to the number of variables of the VARIABLES collection (i.e., 8).
See also	common keyword: group (timetabling constraint),
	pattern (sliding sequence constraint, timetabling constraint),
	sliding_distribution (sliding sequence constraint),
	<pre>stretch_path(sliding sequence constraint,timetabling constraint).</pre>
	used in reformulation: stretch_path.

 Keywords
 characteristic of a constraint: cyclic.

 constraint type: timetabling constraint, sliding sequence constraint.

filtering: dynamic programming, arc-consistency, duplicated variables.

2210

20030820

For all items of VALUES:

Arc input(s)	VARIABLES
Arc generator	CIRCUIT → collection(variables1, variables2) LOOP → collection(variables1, variables2)
Arc arity	2
Arc constraint(s)	 variables1.var = VALUES.val variables2.var = VALUES.val
Graph property(ies)	• $not_in(MIN_NCC, 1, VALUES.lmin - 1)$ • $MAX_NCC \leq VALUES.lmax$

Graph model

Part (A) of Figure 5.733 shows the initial graphs associated with values 1, 2, 3 and 6 of the **Example** slot. Part (B) of Figure 5.733 shows the corresponding final graphs associated with values 1, 3 and 6. Since value 2 is not assigned to any variable of the VARIABLES collection the final graph associated with value 2 is empty. The stretch_circuit constraint holds since:

- For value 1 we have one connected component for which the number of vertices is greater than or equal to 2 and less than or equal to 4,
- For value 2 we do not have any connected component,
- For value 3 we have one connected component for which the number of vertices is greater than or equal to 1 and less than or equal to 6,
- For value 6 we have one connected component for which the number of vertices is greater than or equal to 2 and less than or equal to 4.

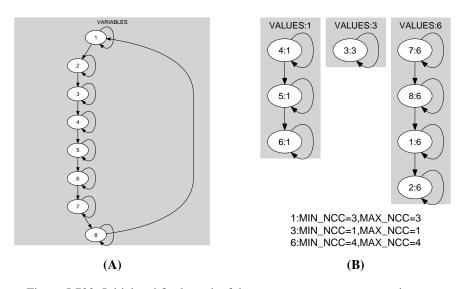


Figure 5.733: Initial and final graph of the stretch_circuit constraint