5.383 sum

	DESCRIPTION	LINKS	GRAPH
Origin	[444].		
Constraint	sum(INDEX,SETS,CONSTANTS,S)		
Synonym	sum_pred.		
Arguments	INDEX : dvar SETS : collection(in CONSTANTS : collection(cs S : dvar	nd-int,set-sint) st-int)	
Restrictions	$\begin{split} \texttt{SETS} &\geq 1 \\ \texttt{required}(\texttt{SETS}, [\texttt{ind}, \texttt{set}]) \\ \texttt{distinct}(\texttt{SETS}, \texttt{ind}) \\ \texttt{CONSTANTS} &\geq 1 \\ \texttt{required}(\texttt{CONSTANTS}, \texttt{cst}) \end{split}$		
Purpose	S is equal to the sum of the consta of the SETS collection.	nts of CONSTANTS corr	esponding to the INDEX th set
Example	$ \begin{pmatrix} \text{ind} - 8 \text{set} - \{2, 3\}, \\ \text{ind} - 1 \text{set} - \{3\}, \\ \text{ind} - 3 \text{set} - \{1, 4, 5\}, \\ \text{ind} - 6 \text{set} - \{2, 4\} \\ \langle 4, 9, 1, 3, 1\rangle, 10 \end{pmatrix} $ The sum constraint holds since its last argument S = 10 is equal to the sum of the 2 th and 3 th items of the collection $\langle 4, 9, 1, 3, 1\rangle$. As illustrated by Figure 5.744, this stems from the fact that its first argument INDEX = 8 corresponds to the value of the ind attribute of the first item of the SETS collection. Consequently the corresponding set $\{2, 3\}$ is used for summing the 2 th and 3 th items of the CONSTANTS collection.		
Typical	$\begin{split} \texttt{SETS} > 1 \\ \texttt{CONSTANTS} > \texttt{SETS} \\ \texttt{range}(\texttt{CONSTANTS.cst}) > 1 \end{split}$		
Symmetry	Items of SETS are permutable.		
Arg. properties	Functional dependency: S determin	ed by INDEX, SETS and	CONSTANTS.
Usage	In his article introducing the sum con dent Cumulative Cost Problem as th	straint, Tallys H. Yunes e subproblem that origi	mentions the <i>Sequence Depen</i> - nally motivates this constraint.

2244

Figure 5.744: Illustration of the correspondence between the arguments of the sum(INDEX, SETS, CONSTANTS, S) constraint in the context of the **Example** slot (from right to left, S = 10 is equal to the sum of the constants 9 and 1 corresponding to the indices 2 and 3 of the set for which the ind attribute is equal to INDEX = 8)

Remark	The sum constraint is called sum_pred in MiniZinc (http://www.minizinc.org/).		
Algorithm	The article [444] gives the convex hull relaxation of the sum constraint.		
Systems	sum_pred in MiniZinc.		
See also	<pre>common keyword: element (data constraint), sum_ctr, sum_set (sum). used in graph description: in_set.</pre>		
Keywords	 characteristic of a constraint: convex hull relaxation, sum. constraint type: data constraint. filtering: linear programming. modelling: functional dependency. 		

Arc input(s)	SETS CONSTANTS
Arc generator	$PRODUCT \mapsto \texttt{collection}(\texttt{sets},\texttt{constants})$
Arc arity	2
Arc constraint(s)	<pre>• INDEX = sets.ind • in_set(constants.key, sets.set)</pre>
Graph property(ies)	$\mathbf{SUM}(\text{CONSTANTS}, \texttt{cst}) = \texttt{S}$

According to the value assigned to INDEX the arc constraint selects for the final graph:

- The INDEXth item of the SETS collection,
- The items of the CONSTANTS collection for which the key correspond to the indices of the INDEXth set of the SETS collection.

Finally, since we use the **SUM** graph property on the cst attribute of the CONSTANTS collection, the last argument S of the sum constraint is equal to the sum of the constants associated with the vertices of the final graph.

Parts (A) and (B) of Figure 5.745 respectively show the initial and final graph associated with the **Example** slot. Since we use the **SUM** graph property we show the vertices from which we compute S in a box.

Figure 5.745: Initial and final graph of the sum constraint

2246

Graph model