5.399 symmetric_gcc

	DESCRIPTION	LINKS	GRAPH
Origin	Derived from global_card	linality by W. Kocjan	l.
Constraint	<pre>symmetric_gcc(VARS, VALS)</pre>		
Synonym	sgcc.		
Arguments	VARS : collection(: VALS : collection(:		
Restrictions	$\begin{array}{l} \textbf{required}(\texttt{VARS}, [\texttt{idvar}, \texttt{var}, \texttt{nocc}]) \\ \texttt{VARS} \geq 1 \\ \texttt{VARS}.\texttt{idvar} \geq 1 \\ \texttt{VARS}.\texttt{idvar} \leq \texttt{VARS} \\ \texttt{distinct}(\texttt{VARS}, \texttt{idvar}) \\ \texttt{VARS}.\texttt{nocc} \geq 0 \\ \texttt{VARS}.\texttt{nocc} \leq \texttt{VALS} \\ \texttt{required}(\texttt{VALS}, [\texttt{idval}, \texttt{val}, \texttt{nocc}]) \\ \texttt{VALS} \geq 1 \\ \texttt{VALS}.\texttt{idval} \geq 1 \\ \texttt{VALS}.\texttt{idval} \leq \texttt{VALS} \\ \texttt{distinct}(\texttt{VALS}, \texttt{idval}) \\ \texttt{VALS}.\texttt{nocc} \geq 0 \\ \texttt{VALS}.\texttt{nocc} \leq \texttt{VARS} \\ \end{array}$		
Purpose		associated. In addition, e	t gives the corresponding elements of enforce a cardinality constraint on the
Example	$\left(\begin{array}{c} \mathrm{idvar} - 1 & \mathrm{var} \\ \mathrm{idvar} - 2 & \mathrm{var} \\ \mathrm{idvar} - 3 & \mathrm{var} \\ \mathrm{idvar} - 4 & \mathrm{var} \\ \mathrm{idval} - 1 & \mathrm{var} \\ \mathrm{idval} - 2 & \mathrm{var} \\ \mathrm{idval} - 2 & \mathrm{var} \\ \mathrm{idval} - 3 & \mathrm{var} \\ \mathrm{idval} - 4 & \mathrm{var} \end{array}\right)$	$\begin{array}{c} c = \{3\} & \text{nocc} = 1, \\ c = \{1\} & \text{nocc} = 1, \\ c = \{1, 2\} & \text{nocc} = 2, \\ c = \{1, 3\} & \text{nocc} = 2 \\ c = \{2, 3, 4\} & \text{nocc} = 1 \\ c = \{3\} & \text{nocc} = 1 \\ c = \{1, 4\} & \text{nocc} = 1 \\ c = \emptyset & \text{nocc} = 1 \\ c = \emptyset & \text{nocc} = 1 \\ c = 0 \\ c$	$\begin{pmatrix} 3, \\ 1, \\ 2, \end{pmatrix}$
	The symmetric_gcc constra	aint holds since:	
	• $3 \in VARS[1]$.var $\Leftrightarrow 1$ • $1 \in VARS[2]$.var $\Leftrightarrow 2$ • $1 \in VARS[3]$.var $\Leftrightarrow 3$ • $2 \in VARS[3]$.var $\Leftrightarrow 3$	$\mathbf{c} \in \mathtt{VALS}[1].\mathtt{val},$ $\mathbf{c} \in \mathtt{VALS}[1].\mathtt{val},$	

2298

	• $1 \in \text{VARS}[4].\text{var} \Leftrightarrow 4 \in \text{VALS}[1].\text{val},$		
	• $3 \in \text{VARS}[4].\text{var} \Leftrightarrow 4 \in \text{VALS}[3].\text{val},$		
	• The number of elements of VARS $[1]$.var = $\{3\}$ is equal to 1,		
	• The number of elements of VARS $[2]$.var = $\{1\}$ is equal to 1,		
	• The number of elements of VARS[3].var = $\{1, 2\}$ is equal to 2,		
	• The number of elements of VARS[4].var = $\{1,3\}$ is equal to 2,		
	• The number of elements of $VALS[1]$.val = $\{2, 3, 4\}$ is equal to 3,		
	• The number of elements of $VALS[2]$.val = {3} is equal to 1,		
	• The number of elements of VALS[3].val = $\{1, 4\}$ is equal to 2,		
	• The number of elements of $VALS[4]$.val = \emptyset is equal to 0.		
Typical	$\begin{split} \texttt{VARS} &> 1 \\ \texttt{VALS} &> 1 \end{split}$		
Symmetries	• Items of VARS are permutable.		
	• Items of VALS are permutable.		
Usage	The most simple example of applying symmetric_gcc is a variant of personnel assignment problem, where one person can be assigned to perform between n and m ($n \le m$) jobs, and every job requires between p and q ($p \le q$) persons. In addition every job requires different kind of skills. The previous problem can be modelled as follows:		
	• For each person we create an item of the VARS collection,		
	• For each job we create an item of the VALS collection,		
	• There is an arc between a person and the particular job if this person is qualified to perform it.		
Remark	The symmetric_gcc constraint generalises the global_cardinality constraint by al- lowing a variable to take more than one value. It corresponds to a variant of the symmetric_cardinality constraint described in [241] where the occurrence variables of the VARS and VALS collections are replaced by fixed intervals.		
See also	common keyword: link_set_to_booleans (constraint involving set variables).		
	root concept: global_cardinality.		
	specialisation: symmetric_cardinality (variable <i>replaced by</i> fixed interval).		
	used in graph description: in_set.		
Keywords	application area: assignment.		
	combinatorial object: relation.		
	constraint arguments: constraint involving set variables.		
	constraint type: decomposition, timetabling constraint.		
	filtering: flow.		

on(vars,vals)	
 in_set(vars.idvar,vals.val) ⇔in_set(vals.idval,vars.var) vars.nocc = card_set(vars.var) vals.nocc = card_set(vals.val) 	
(

The graph model used for the symmetric_gcc is similar to the one used in the domain_constraint or in the link_set_to_booleans constraints: we use an equivalence in the arc constraint and ask all arc constraints to hold.

Parts (A) and (B) of Figure 5.757 respectively show the initial and final graph. Since we use the **NARC** graph property, all the arcs of the final graph are stressed in bold.

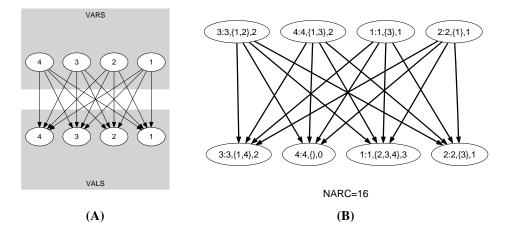


Figure 5.757: Initial and final graph of the symmetric_gcc constraint

Signature

Graph model

Since we use the *PRODUCT* arc generator on the collections VARS and VALS, the number of arcs of the initial graph is equal to $|VARS| \cdot |VALS|$. Therefore the maximum number of arcs of the final graph is also equal to $|VARS| \cdot |VALS|$ and we can rewrite **NARC** = $|VARS| \cdot |VALS|$ to **NARC** $\geq |VARS| \cdot |VALS|$. So we can simplify **<u>NARC</u>** to **<u>NARC</u>**.

2300