2338

5.407 two_layer_edge_crossing

	DESCRIPTION	LINKS	GRAPH
Origin	Inspired by [201].		
Constraint	two_layer_edge_cros	sing (NCROSS, VERTICES_LAYER: VERTICES_LAYER: EDGES	$\left(\begin{array}{c} 1,\\ 2,\end{array} \right)$
Arguments	NCROSS : VERTICES_LAYER1 : VERTICES_LAYER2 : EDGES :	<pre>dvar collection(id-int,p collection(id-int,p collection(id-int,v</pre>	os-dvar) os-dvar) ertex1-int,vertex2-int)
Restrictions	$\begin{split} & \text{NCROSS} \geq 0 \\ & \textbf{required}(\text{VERTICES}, \\ & \text{VERTICES}_\text{LAYER1.id} \\ & \text{VERTICES}_\text{LAYER1.id} \\ & \textbf{distinct}(\text{VERTICES}, \\ & \textbf{distinct}(\text{VERTICES}, \\ & \textbf{distinct}(\text{VERTICES}, \\ & \textbf{VERTICES}_\text{LAYER2.id} \\ & \textbf{distinct}(\text{VERTICES}, \\ & \textbf{distinct}(\text{VERTICES}, \\ & \textbf{distinct}(\text{VERTICES}, \\ & \textbf{distinct}(\text{VERTICES}, \\ & \textbf{distinct}(\text{EDGES}, \\ & \textbf{id} \\ & \text{EDGES.id} \geq 1 \\ & \text{EDGES.vertex1} \geq 1 \\ & \text{EDGES}_\text{vertex1} \geq 1 \\ & \text{EDGES}_\text{vertex2} \geq 1 \\ & \text{EDGES}_\text{vertex2} \leq \text{VERTICES}, \\ & \textbf{vertex2} \leq \text{VERTICES}, \\ & \textbf{vertex} = \text{VERTICES}, \\ & \textbf{vertex} = \text{VERTICES}, \\ & \textbf{vertex} = \textbf{vertex} = \text{VERTICES}, \\ & \textbf{vertex} = \textbf{vertex} = $	LAYER1, [id, pos]) $l \ge 1$ $l \le VERTICES_LAYER1 $ LAYER1, id) LAYER2, [id, pos]) $l \ge 1$ $l \le VERTICES_LAYER2 $ LAYER2, id) LAYER2, pos) l, vertex1, vertex2]) ertiCES_LAYER1 ERTICES_LAYER2	
Purpose	NCROSS is the number of	of line segments intersection	S.
Example	$\left(\begin{array}{c} 2, \langle id - 1 \text{ pos } - 3 \\ \langle id - 1 \text{ pos } - 3 \\ \langle id - 1 \text{ ver} \\ id - 2 \text{ ver} \\ id - 3 \text{ ver} \end{array}\right)$ Figure 5.770 provides	(1, id - 2 pos - 2), , id - 2 pos - 1, id - 3 p tex1 - 2 vertex2 - 2, tex1 - 2 vertex2 - 3, tex1 - 1 vertex2 - 1 a picture of the example	$\left \begin{array}{c} \left $

segments intersections. Each line segment of Figure 5.770 is labelled with its identifier and corresponds to an item of the EDGES collection. The two vertices on top of Figure 5.770

20030820

correspond to the items of the VERTICES_LAYER1 collection, while the three other vertices are associated with the items of VERTICES_LAYER2.

Figure 5.770: Intersection between line joinsegments ing two layers of the Example slot for the constraint two_layer_edge_crossing(NCROSS, VERTICES_LAYER1, VERTICES_LAYER2, EDGES)

Typical	$\begin{split} \texttt{VERTICES_LAYER1} &> 1 \\ \texttt{VERTICES_LAYER2} &> 1 \\ \texttt{EDGES} &\geq \texttt{VERTICES_LAYER1} \\ \texttt{EDGES} &\geq \texttt{VERTICES_LAYER2} \end{split}$				
Symmetries	• Arguments are permutable w.r.t. permutation (NCROSS) (VERTICES_LAYER1, VERTICES_LAYER2) (EDGES).				
	• Items of VERTICES_LAYER1 are permutable.				
	• Items of VERTICES_LAYER2 are permutable.				
A					
Arg. properties	Functional dependency: NCROSS determined by VERTICES_LAYER1, VERTICES_LAYER2 and EDGES.				
Remark	The two-layer edge crossing minimisation problem was proved to be NP-hard in [184].				
See also	common keyword: crossing, graph_crossing (line segments intersection).				
Keywords	characteristic of a constraint: derived collection.				
	constraint arguments: pure functional dependency.				
	geometry: geometrical constraint, line segments intersection.				
	miscellaneous: obscure.				
	modelling: functional dependency.				

Derived Collection	
	col $\begin{pmatrix} \mbox{EDGES_EXTREMITIES-collection}(layer1-dvar, layer2-dvar), \\ \mbox{item} \begin{pmatrix} \mbox{layer1} - \mbox{EDGES.vertex1}(\mbox{VERTICES_LAYER1}, \mbox{pos}, \mbox{id}), \\ \mbox{layer2} - \mbox{EDGES.vertex2}(\mbox{VERTICES_LAYER2}, \mbox{pos}, \mbox{id}) \end{pmatrix} \end{pmatrix} \end{pmatrix}$
Arc input(s)	EDGES_EXTREMITIES
Arc generator	$CLIQUE(<) \mapsto \texttt{collection}(\texttt{edges_extremities1}, \texttt{edges_extremities2})$
Arc arity	2
Arc constraint(s)	$ \bigvee \left(\begin{array}{c} \land \left(\begin{array}{c} {\rm edges_extremities1.layer1} < {\rm edges_extremities2.layer1}, \\ {\rm edges_extremities1.layer2} > {\rm edges_extremities2.layer2} \\ \land \left(\begin{array}{c} {\rm edges_extremities1.layer1} > {\rm edges_extremities2.layer1}, \\ {\rm edges_extremities1.layer2} < {\rm edges_extremities2.layer2} \end{array} \right), \end{array} \right) $
Graph property(ies)	NARC= NCROSS
Graph model	As usual for the two-layer edge crossing problem [201], [22], positions of the vertice:

As usual for the two-layer edge crossing problem [201], [22], positions of the vertices on each layer are represented as a permutation of the vertices. We generate a derived collection that, for each edge, contains the position of its extremities on both layers. In the arc generator we use the restriction < in order to generate a single arc for each pair of segments. This is required, since otherwise we would count more than once a line segments intersection.

Parts (A) and (B) of Figure 5.771 respectively show the initial and final graph associated with the **Example** slot. Since we use the **NARC** graph property, the arcs of the final graph are stressed in bold.

Figure 5.771: Initial and final graph of the two_layer_edge_crossing constraint

2340