5.417 valley

	DESCRIPTION	LINKS	AUTOMATON
Origin	Derived from inflexion.		
Constraint	${\tt valley}({\tt N}, {\tt VARIABLES})$		
Arguments	N : dvar VARIABLES : collection	(var-dvar)	
Restrictions	$\texttt{N} \geq 0$ $2 * \texttt{N} \leq \texttt{max}(\texttt{VARIABLES} - 1$ required(VARIABLES, var)	1,0)	
Purpose	is a valley if and only if there of	exists an i (with $1 < i$	ables VARIABLES = V_1, \ldots, V_m $1 \le v$) such that $V_{i-1} > V_i$ and number of valleys of the sequence
Example	$\begin{array}{c}(1,\langle 1,1,4,8,8,2,7,1\rangle)\\(0,\langle 1,1,4,5,8,8,4,1\rangle)\\(4,\langle 1,0,4,0,8,2,4,1,2\rangle)\end{array}$]	

The first valley constraint holds since the sequence $1\ 1\ 4\ 8\ 8\ 2\ 7\ 1$ contains one valley that corresponds to the variable that is assigned to value 2.

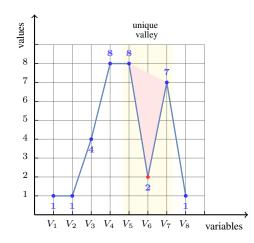
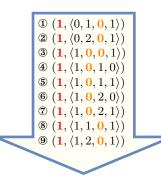
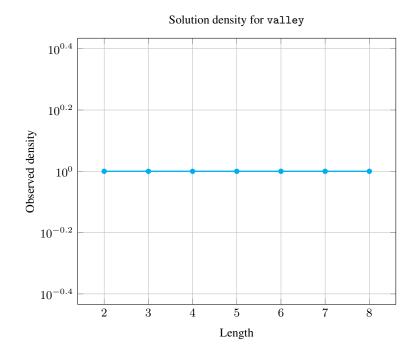


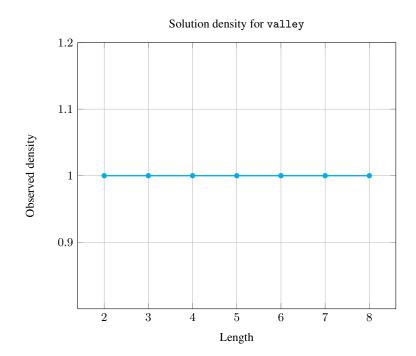
Figure 5.790: Illustration of the first example of the **Example** slot: a sequence of eight variables V_1 , V_2 , V_3 , V_4 , V_5 , V_6 , V_7 , V_8 respectively fixed to values 1, 1, 4, 8, 8, 2, 7, 1 and its corresponding unique valley ($\mathbb{N} = 1$)

20040530

All solutions

Figure 5.791 gives all solutions to the following non ground instance of the valley constraint: $\mathbb{N} \in [1, 2], V_1 \in [0, 1], V_2 \in [0, 2], V_3 \in [0, 2], V_4 \in [0, 1],$ valley($\mathbb{N}, \langle V_1, V_2, V_3, V_4 \rangle$).

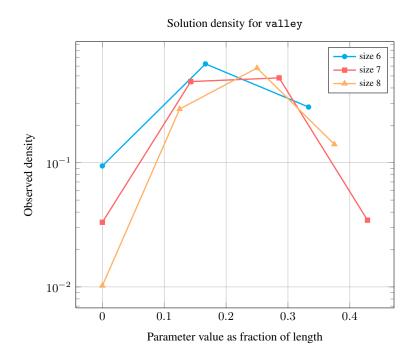



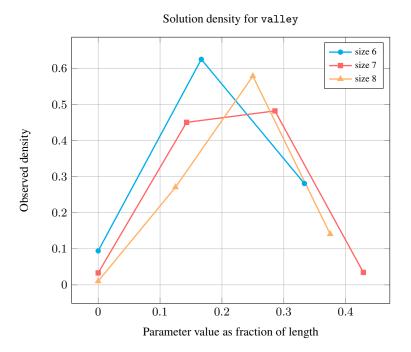

Figure 5.791: All solutions corresponding to the non ground example of the valley constraint of the **All solutions** slot where each valley is coloured in orange

Typical	VARIABLES > 2 range(VARIABLES.var) > 1
Symmetries	• Items of VARIABLES can be reversed.
	• One and the same constant can be added to the var attribute of all items of VARIABLES.
Arg. properties	• Functional dependency: N determined by VARIABLES.
	• Contractible wrt. VARIABLES when $N = 0$.
Usage	Useful for constraining the number of <i>valleys</i> of a sequence of domain variables.
Remark	Since the arity of the arc constraint is not fixed, the valley constraint cannot be currently described with the graph-based representation. However, this would not hold anymore if we were introducing a slot that specifies how to merge adjacent vertices of the final graph.
Counting	

Length (n)	2	3	4	5	6	7	8
Solutions	9	64	625	7776	117649	2097152	43046721
Number of solutions for wollow domains 0 m							

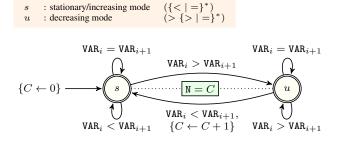
Number of solutions for valley: domains 0..n

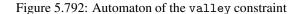




Length (n)		2	3	4	5	6	7	8
Total		9	64	625	7776	117649	2097152	43046721
	0	9	50	295	1792	11088	69498	439791
Parameter	1	-	14	330	5313	73528	944430	11654622
value	2	-	-	-	671	33033	1010922	24895038
	3	-	-	-	-	-	72302	6057270

Solution count	for valley:	domains	0n
----------------	-------------	---------	----


See also	<pre>common keyword: deepest_valley, inflexion, min_dist_between_inflexion, min_width_valley(sequence).</pre>
	comparison swapped: peak.
	generalisation: big_valley (a tolerance parameter is added for counting only big valleys).
	related: all_equal_valley, all_equal_valley_min, decreasing_valley, increasing_valley, no_peak.
	specialisation: no_valley (the variable counting the number of valleys is set to 0 and removed).
Keywords	characteristic of a constraint: automaton, automaton with counters, automaton with same input symbol.
	combinatorial object: sequence.
	constraint arguments: reverse of a constraint, pure functional dependency.
	constraint network structure: sliding cyclic(1) constraint network(2).
	filtering: glue matrix.
	modelling: functional dependency.
Cond. implications	 valley(N, VARIABLES) with N > 0 implies atleast_nvalue(NVAL, VARIABLES) when NVAL = 2.


```
    valley(N, VARIABLES)
        implies inflexion(N, VARIABLES)
        when N =peak(VARIABLES.var) + valley(VARIABLES.var).
```

Automaton

Figure 5.792 depicts the automaton associated with the valley constraint. To each pair of consecutive variables (VAR_i, VAR_{i+1}) of the collection VARIABLES corresponds a signature variable S_i . The following signature constraint links VAR_i, VAR_{i+1} and S_i : (VAR_i < VAR_{i+1} $\Leftrightarrow S_i = 0$) \land (VAR_i = VAR_{i+1} $\Leftrightarrow S_i = 1$) \land (VAR_i > VAR_{i+1} $\Leftrightarrow S_i = 2$).

STATES SEMANTICS

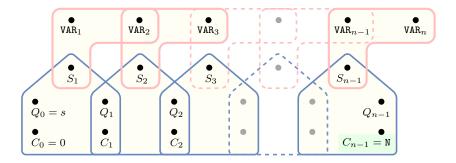
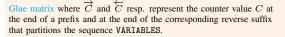



Figure 5.793: Hypergraph of the reformulation corresponding to the automaton of the valley constraint (since all states of the automaton are accepting there is no restriction on the last variable Q_{n-1})

	$s(\{< =\}^*)$	$u (> \{> =\}^*)$
$s(\{< =\}^*)$	$\overrightarrow{C} + \overleftarrow{C}$	$\overrightarrow{C} + \overleftarrow{C}$
$u (> \{> =\}^*)$		\overrightarrow{C} + 1 + \overleftarrow{C}

Figure 5.794: Glue matrix of the valley constraint

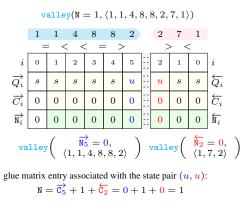


Figure 5.795: Illustrating the use of the state pair (u, u) of the glue matrix for linking N with the counters variables obtained after reading the prefix 1, 1, 4, 8, 8, 2 and corresponding suffix 2, 7, 1 of the sequence 1, 1, 4, 8, 8, 2, 7, 1; note that the suffix 2, 7, 1 (in pink) is proceed in reverse order; the left (resp. right) table shows the initialisation (for i = 0) and the evolution (for i > 0) of the state of the automaton and its counter C upon reading the prefix 1, 1, 4, 8, 8, 2 (resp. the reverse suffix 1, 7, 2).