
2380 AUTOMATON

5.417 valley

DESCRIPTION LINKS AUTOMATON

Origin Derived from inflexion.

Constraint valley(N, VARIABLES)

Arguments N : dvar

VARIABLES : collection(var−dvar)

Restrictions N ≥ 0
2 ∗ N ≤ max(|VARIABLES| − 1, 0)
required(VARIABLES, var)

Purpose

A variable Vv (1 < v < m) of the sequence of variables VARIABLES = V1, . . . , Vm

is a valley if and only if there exists an i (with 1 < i ≤ v) such that Vi−1 > Vi and

Vi = Vi+1 = · · · = Vv and Vv < Vv+1. N is the total number of valleys of the sequence

of variables VARIABLES.

Example (1, 〈1, 1, 4, 8, 8, 2, 7, 1〉)
(0, 〈1, 1, 4, 5, 8, 8, 4, 1〉)
(4, 〈1, 0, 4, 0, 8, 2, 4, 1, 2〉)

The first valley constraint holds since the sequence 1 1 4 8 8 2 7 1 contains one

valley that corresponds to the variable that is assigned to value 2.

unique
valley

V1 V2 V3 V4 V5 V6 V7 V8

1

2

3

4

5

6

7

8

1 1

4

8 8

2

7

1

variables

v
al

u
es

Figure 5.790: Illustration of the first example of the Example slot: a sequence of eight

variables V1, V2, V3, V4, V5, V6, V7, V8 respectively fixed to values 1, 1, 4, 8, 8, 2, 7, 1
and its corresponding unique valley (N = 1)

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20040530 2381

All solutions Figure 5.791 gives all solutions to the following non ground instance of the valley

constraint: N ∈ [1, 2], V1 ∈ [0, 1], V2 ∈ [0, 2], V3 ∈ [0, 2], V4 ∈ [0, 1],
valley(N, 〈V1, V2, V3, V4〉).

¬ (1, 〈0, 1, 0, 1〉)
­ (1, 〈0, 2, 0, 1〉)
® (1, 〈1,0,0, 1〉)
¯ (1, 〈1,0, 1, 0〉)
° (1, 〈1,0, 1, 1〉)
± (1, 〈1,0, 2, 0〉)
² (1, 〈1,0, 2, 1〉)
³ (1, 〈1, 1, 0, 1〉)
´ (1, 〈1, 2, 0, 1〉)

Figure 5.791: All solutions corresponding to the non ground example of the valley

constraint of the All solutions slot where each valley is coloured in orange

Typical |VARIABLES| > 2
range(VARIABLES.var) > 1

Symmetries • Items of VARIABLES can be reversed.

• One and the same constant can be added to the var attribute of all items of

VARIABLES.

Arg. properties
• Functional dependency: N determined by VARIABLES.

• Contractible wrt. VARIABLES when N = 0.

Usage Useful for constraining the number of valleys of a sequence of domain variables.

Remark Since the arity of the arc constraint is not fixed, the valley constraint cannot be currently

described with the graph-based representation. However, this would not hold anymore if

we were introducing a slot that specifies how to merge adjacent vertices of the final graph.

Counting

Length (n) 2 3 4 5 6 7 8

Solutions 9 64 625 7776 117649 2097152 43046721

Number of solutions for valley: domains 0..n

All solutions
Example of all solutions for a non ground instance of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

Counting
Information on the solution density.

2382 AUTOMATON

2 3 4 5 6 7 8

10−0.4

10−0.2

100

100.2

100.4

Length

O
b
se

rv
ed

d
en

si
ty

Solution density for valley

2 3 4 5 6 7 8

0.9

1

1.1

1.2

Length

O
b
se

rv
ed

d
en

si
ty

Solution density for valley

20040530 2383

Length (n) 2 3 4 5 6 7 8

Total 9 64 625 7776 117649 2097152 43046721

Parameter

value

0 9 50 295 1792 11088 69498 439791

1 - 14 330 5313 73528 944430 11654622

2 - - - 671 33033 1010922 24895038

3 - - - - - 72302 6057270

Solution count for valley: domains 0..n

0 0.1 0.2 0.3 0.4

10−2

10−1

Parameter value as fraction of length

O
b
se

rv
ed

d
en

si
ty

Solution density for valley

size 6

size 7

size 8

2384 AUTOMATON

0 0.1 0.2 0.3 0.4

0

0.1

0.2

0.3

0.4

0.5

0.6

Parameter value as fraction of length

O
b
se

rv
ed

d
en

si
ty

Solution density for valley

size 6

size 7

size 8

See also common keyword: deepest valley, inflexion, min dist between inflexion,

min width valley (sequence).

comparison swapped: peak.

generalisation: big valley (a tolerance parameter is added for counting only big val-

leys).

related: all equal valley, all equal valley min, decreasing valley,

increasing valley, no peak.

specialisation: no valley (the variable counting the number of valleys is set to 0 and

removed).

Keywords characteristic of a constraint: automaton, automaton with counters,

automaton with same input symbol.

combinatorial object: sequence.

constraint arguments: reverse of a constraint, pure functional dependency.

constraint network structure: sliding cyclic(1) constraint network(2).

filtering: glue matrix.

modelling: functional dependency.

Cond. implications • valley(N, VARIABLES)
with N > 0

implies atleast nvalue(NVAL, VARIABLES)
when NVAL = 2.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

Cond. implications
Conditional implications.

20040530 2385

• valley(N, VARIABLES)
implies inflexion(N, VARIABLES)

when N =peak(VARIABLES.var) + valley(VARIABLES.var).

2386 AUTOMATON

Automaton Figure 5.792 depicts the automaton associated with the valley constraint. To each pair of

consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds a signature

variable Si. The following signature constraint links VARi, VARi+1 and Si: (VARi <

VARi+1 ⇔ Si = 0) ∧ (VARi = VARi+1 ⇔ Si = 1) ∧ (VARi > VARi+1 ⇔ Si = 2).

s : stationary/increasing mode ({< | =}∗)
u : decreasing mode (> {> | =}∗)

STATES SEMANTICS

N = Cs{C ← 0} u

VARi = VARi+1

VARi < VARi+1

VARi > VARi+1

VARi = VARi+1

VARi > VARi+1

VARi < VARi+1,

{C ← C + 1}

Figure 5.792: Automaton of the valley constraint

C0 = 0

Q0 = s

C1

Q1

S1

C2

Q2

S2 S3

Cn−1 = N

Qn−1

Sn−1

VAR1 VAR2 VAR3 VARn−1 VARn

Figure 5.793: Hypergraph of the reformulation corresponding to the automaton of the

valley constraint (since all states of the automaton are accepting there is no restriction

on the last variable Qn−1)

Glue matrix where
−→
C and

←−
C resp. represent the counter value C at

the end of a prefix and at the end of the corresponding reverse suffix

that partitions the sequence VARIABLES.

s ({< | =}∗) u (> {> | =}∗)

s ({< | =}∗)
−→
C +

←−
C

−→
C +

←−
C

u (> {> | =}∗)

−→
C +

←−
C

−→
C + 1 +

←−
C

Figure 5.794: Glue matrix of the valley constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20040530 2387

1 1 4 8 8 2
= < < = >

i

−→
Qi

−→
Ci

−→
Ni

0

s

0

0

1

s

0

0

2

s

0

0

3

s

0

0

4

s

0

0

5

u

0

0

.

.

.

.

.

.

.

.

.

.

.

.

172
<>

i

←−
Qi

←−
Ci

←−
Ni

0

s

0

0

1

s

0

0

2

u

0

0

.

.

.

.

.

.

.

.

.

.

.

.

valley(N = 1, 〈1, 1, 4, 8, 8, 2, 7, 1〉)

valley

(−→
N5 = 0,

〈1, 1, 4, 8, 8, 2〉

)

valley

(←−
N2 = 0,
〈1, 7, 2〉

)

glue matrix entry associated with the state pair (u, u):

N =
−→
C5 + 1 +

←−
C2 = 0 + 1 + 0 = 1

Figure 5.795: Illustrating the use of the state pair (u, u) of the glue matrix for linking

N with the counters variables obtained after reading the prefix 1, 1, 4, 8, 8, 2 and corre-

sponding suffix 2, 7, 1 of the sequence 1, 1, 4, 8, 8, 2, 7, 1; note that the suffix 2, 7, 1 (in

pink) is proceed in reverse order; the left (resp. right) table shows the initialisation (for

i = 0) and the evolution (for i > 0) of the state of the automaton and its counter C

upon reading the prefix 1, 1, 4, 8, 8, 2 (resp. the reverse suffix 1, 7, 2).

