

MODELING FOR SOLVING

A mathematical optimization model is
an abstract representation of the problem solutions, not explicitly as a list, a dataset, but implicitly as
relationships between unknowns (real-valued) functions over (real-valued) variables

SOLUTIONS: THEORY VS PRACTICE

feasibility ? • models are approximate (e.g., abstract routes)

- data are uncertain (e.g., forecast travel times)
- data are truncated (floating-point numerical errors)
optimality? . finite time complexity \neq reachable (e.g. 2^{90} operations)
- provable within a gap tolerance $(f(x) \leq f(y)+\epsilon, \forall y)$

$$
\begin{aligned}
& \min z=\sum_{i=1}^{n} \sum_{\substack{j=1 \\
i \neq j}}^{n} d_{i j} x_{i j} \\
& \sum_{\substack{j=1 \\
j \neq i}}^{n} x_{i j}=1, \quad \forall i \in N \\
& \sum_{\substack{i=1 \\
i \neq j}}^{n} x_{i j}=1, \quad \forall j \in N
\end{aligned}
$$

- provable locally vs globally $(f(x) \leq f(y), \forall y \in V(x))$

$$
\min \left\{f(x) \mid g(x) \leq 0, x \in \mathbb{R}^{n}\right\}
$$

with $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ in the objective: the function to minimize and $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ in the constraints: the relations to satisfy.

SOLVING METHODS

DIFFERENT TECHNIQUES FOR DIFFERENT CLASSES OF MODELS
analytical methods come from a provable theory, e.g.:

- $\min x^{2}-4 x+3, x \in[0,5]$
(Fermat, derivative)
- shortest path in a graph
(Dijkstra, Bellman)
numerical methods evaluate $f\left(x_{k}\right)$ iteratively at trial points $\left(x_{k}\right)$
1st- or 2 nd-order methods if driven by $f^{\prime}\left(x_{k-1}\right)$ or $f^{\prime \prime}\left(x_{k-1}\right)$
derivative-free otherwise

- with or without constraints
- single or multiple objectives
- fixed or uncertain data
- analytic or logic or graphic models
- linear or convex or nonconvex functions
- smooth or nonsmooth functions
- continuous or discrete decisions

MATHEMATICAL PROGRAMMING

programming = planning (military/industrial) operations

$$
\begin{aligned}
& \operatorname{minimize} f(x) \\
& \text { subject to } g(x) \geq 0 \\
& \qquad x \in \mathbb{R}^{n}
\end{aligned}
$$

- x : the decision variables
- $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$: the objective function. Note: maximize $f \equiv-\operatorname{minimize}(-f)$
- $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$: the constraints. Note: $g(x) \leq 0 \equiv-g(x) \geq 0$
solution/assignment $\quad X \in \mathbb{R}^{n}$
feasible solution $\quad X \in g^{-1}\left(\mathbb{R}_{+}^{m}\right)$
optimal solution $\quad X \in \arg \min \left\{f(x): g(x) \geq 0, x \in \mathbb{R}^{n}\right\}$

LINEAR PROGRAM

a mathematical program $\min \left\{f(x) \mid g(x) \geq 0, x \in \mathbb{R}^{n}\right\}$ with linear functions in constraints and objective: $\min \left\{c^{T} x \mid A x+b \geq 0, x \in \mathbb{R}^{n}\right\}, c \in \mathbb{R}^{n}, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$

$$
\begin{aligned}
& \text { Example: } n=3, m=2, \\
& x=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right), c=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), A=\left(\begin{array}{ccc}
5 & 3 & -2 \\
1 & 1 & 1
\end{array}\right), b=\binom{-4}{1} \\
& \begin{array}{l}
\min x_{1} \\
\text { s.t. } 5 x_{1}+3 x_{2}-2 x_{3} \geq 4 \\
\\
x_{1}+x_{2}+x_{3} \geq-1 \\
\\
x_{1}, x_{2}, x_{3} \in \mathbb{R}
\end{array}
\end{aligned}
$$

- This is the "and": feasible solutions (x_{1}, x_{2}, x_{3}) satisfy all constraints - $x \mapsto 5 x^{2},(x, y) \mapsto 3 x y$ are not linear (but quadratic)

- broad applicability:

format for practical decision problems, approximation for convex problems, basis for nonconvex/logic problems (with discrete variables)

- easy to solve:
polynomial-time algorithms, efficient practical algorithms
(e.g. restart, partial model),
nice properties: strong duality

EX 1: NUCLEAR WASTE MANAGEMENT

A company eliminates nuclear wastes of 2 types A and B, by applying a sequence of 3 processes I, II and III in any order. The processes I, II, III, have limited availability, respectively: $450 \mathrm{~h}, 350 \mathrm{~h}$, and 200h per month. The unit processing times depend on the process and waste type, as reported in the following table:

process	I	II	III
waste A	1 h	2 h	1 h
waste B	3 h	1 h	1 h

The profit for the company is 4000 euros to eliminate one unit of waste A and 8000 euros to eliminate one unit of waste B.
Objective: maximize the profit.

1. decision variables: what a solution is made of ?
2. constraints: what is a feasible solution ?
3. objective: what is an optimal solution ?
4. check the units or convert
5. check LP format (linear, continuous, non-strict inequalities) or reformulate

EX 1: NUCLEAR WASTE MANAGEMENT - LP MODEL

- decision variables?
- x_{A}, x_{B} the fraction of units of waste of type A or B to process each month
- constraints and objective?
- definition domain of the variables (nonnegative)
- limited availability (in $\mathrm{h} / \mathrm{month}$) for each process
- maximize revenue (in keuros)

$$
\begin{array}{cl}
\max & 4 x_{A}+8 x_{B} \\
\text { s.t. } & x_{A}+3 x_{B} \leq 450 \\
& 2 x_{A}+x_{B} \leq 350 \\
& x_{A}+x_{B} \leq 200 \\
& x_{A}, x_{B} \geq 0
\end{array}
$$

HOW TO MODEL?

EX 2: PETROLEUM DISTILLATION

The two crude petroleum problem [Ralphs]

A petroleum company distills crude imported from Kuwait (9000 barrels available at $20 €$ each) and from Venezuela (6000 barrels available at $15 €$ each), to produce gasoline (2000 barrels), jet fuel (1500 barrels), and lubricant (500 barrels) in the following proportions:

	gasoline	jet fuel	lubricant
Kuwait	0.3	0.4	0.2
Venezuela	0.4	0.2	0.3

(first column reads: producing 1 unit of gasoline requires 0.3 units of crude from Kuwait and 0.4 from Venezuela)

Objective: minimize the production cost.

EX 2: PETROLEUM DISTILLATION - LP MODEL

Note On modelling

- decision variables?
- x_{K}, x_{V} the quantity (in thousands of barrels) to import from Kuwait or from Venezuela
- constraints and objective ?
- availability for each crude, distillation balance for each product, production costs

$$
\begin{array}{ll}
\min & 20 x_{K}+15 x_{V} \\
\text { s.t. } & 0.3 x_{K}+0.4 x_{V} \geq 2 \\
& 0.4 x_{K}+0.2 x_{V} \geq 1.5 \\
& 0.2 x_{K}+0.3 x_{V} \geq 0.5 \\
& 0 \leq x_{K} \leq 9 \\
& 0 \leq x_{V} \leq 6
\end{array}
$$

LINEAR PROGRAM IN STANDARD FORM

equality constraints and nonnegative variables:

$\min c^{T} x$	$\min \sum_{j=1}^{n} c_{j} x_{j}$	
S.t. $A x=b$	s.t. $\sum_{j=1}^{n} a_{i j} x_{j}=b_{i}$,	$\forall i=1, \ldots, m$
$x \geq 0$	$x_{j} \geq 0$	$\forall j=1, \ldots, n$

$\begin{array}{ll}\text { s.t. } \sum_{j=1}^{n} a_{i j} x_{j}=b_{i}, & \forall i=1, \ldots, m \\ x_{j} \geq 0 & \forall j=1, \ldots, n\end{array}$
linearly equivalent formulations:

$$
\begin{array}{ll}
\max f & -\min (-f) \\
a x \leq b & -a x \geq-b \\
a x=b & a x \geq b \text { and } a x \leq b \\
a x \leq b & a x+s=b \text { and } s \geq 0 \\
x \in \mathbb{R} & x=y-z, y \geq 0, z \geq 0
\end{array}
$$

REDUCTION TO STANDARD FORM

Every linear program

$$
\min \left\{c^{T} x \mid A x \geq b, x \in \mathbb{R}^{n}\right\}
$$

can be transformed into an equivalent problem in standard form

$$
\min \left\{d^{T} y \mid E y=f, y \in \mathbb{R}_{+}^{p}\right\}
$$

$$
\begin{array}{l|l}
\min x_{1} & \min \left(x_{1}^{+}-x_{1}^{-}\right) \\
\text {s.t. } & 5 x_{1}-3 x_{2} \geq 4 \\
& x_{1}+x_{2} \geq-1 \\
\quad x_{1}, x_{2} \in \mathbb{R} & \text { s.t. } 5\left(x_{1}^{+}-x_{1}^{-}\right)-3\left(x_{2}^{+}-x_{2}^{-}\right)-z_{1}=4 \\
& \left(x_{1}^{+}-x_{1}^{-}\right)+\left(x_{2}^{+}-x_{2}^{-}\right)-z_{2}=-1 \\
& x_{1}^{+}, x_{1}^{-}, x_{2}^{+}, x_{2}^{-}, z_{1}, z_{2} \geq 0
\end{array}
$$

REDUCTION TO STANDARD FORM (RECIPE)

Ex: NUCLEAR WASTE MANAGEMENT - LP STANDARD FORM

replace by

negative variable	$x \leq 0$	$x=-z, z \geq 0$
free variable	y free	$y=y^{+}-y^{-}, y^{+}, y^{-} \geq 0$
slack constraint	$A x \geq b$	$A x-s=b, s \geq 0$
slack constraint	$E y \leq f$	$E y+u=f, u \geq 0$
maximization	$\max c x$	$-\min (-c) x$

$$
\begin{array}{cl}
\max & c^{T} x+d^{T} y \\
\text { s.t. } & A x \geq b \\
& E y \leq f \\
& x \leq 0, y \text { free }
\end{array}
$$

$$
\begin{array}{cl}
\min & (-c)^{T}(-z)+(-d)^{T}\left(y^{+}-y^{-}\right) \\
\text {s.t. } & A(-z)-s=b \\
& E\left(y^{+}-y^{-}\right)+u=f \\
& z, y^{+}, y^{-}, s, u \geq 0
\end{array}
$$

$$
\begin{aligned}
\max & 4 x_{A}+8 x_{B} \\
\text { s.t. } & x_{A}+3 x_{B} \leq 450 \\
& 2 x_{A}+x_{B} \leq 350 \\
& x_{A}+x_{B} \leq 200 \\
& x_{A}, x_{B} \geq 0
\end{aligned}
$$

$$
\begin{aligned}
-\min & -4 x_{A}-8 x_{B} \\
\text { s.t. } & x_{A}+3 x_{B}+s_{1}=450 \\
& 2 x_{A}+x_{B}+s_{2}=350 \\
& x_{A}+x_{B}+s_{3}=200 \\
& x_{A}, x_{B}, s_{1}, s_{2}, s_{3} \geq 0
\end{aligned}
$$

Ex: PETROLEUM DISTILLATION - LP STANDARD FORM

\min	$20 x_{K}+15 x_{V}$
s.t.	$0.3 x_{K}+0.4 x_{V} \geq 2$
$0.4 x_{K}+0.2 x_{V} \geq 1.5$	$\min 20 x_{K}+15 x_{V}$
$0.2 x_{K}+0.3 x_{V} \geq 0.5$	s.t. $0.3 x_{K}+0.4 x_{V}-s_{G}=2$
$0 \leq x_{K} \leq 9$	$0.4 x_{K}+0.2 x_{V}-s_{J}=1.5$
$0 \leq x_{V} \leq 6$	$0.2 x_{K}+0.3 x_{V}-s_{L}=0.5$
	$x_{K}+s_{K}=9$
	$x_{V}+s_{V}=6$
	$x_{k}, x_{V}, s_{G}, s_{J}, s_{L}, s_{K}, s_{V} \geq 0$

$\min 20 x_{K}+15 x_{V}$
$0.3 x_{K}+0.4 x_{V} \geq 2$
$0.2 x_{K}+0.2 x_{V} \geq 1.5$
$0 \leq x_{K} \leq 9$
$0 \leq x_{V} \leq 6$
$\min 20 x_{K}+15 x_{V}$
$0.3 x_{K}+0.4 x_{V}-s_{G}=2$
$0.2 x_{K}+0.3 x_{V}-s_{L}=0.5$
$x_{K}+s_{K}=9$
$x_{k}, x_{V}, s_{G}, s_{J}, s_{L}, s_{K}, s_{V} \geq 0$

LINEAR ALGEBRA REVIEW AND NOTATION (1)

matrix $A \in \mathbb{R}^{m \times n}$ with entry $a_{i j}$ in row $1 \leq i \leq m$, column $1 \leq j \leq n$ transpose $A^{T} \in \mathbb{R}^{n \times m}$ with $a_{j i}^{T}=a_{i j}$
(column) vector $a \in \mathbb{R}^{n} \equiv \mathbb{R}^{n \times 1}$
scalar product $a, b \in \mathbb{R}^{n},\langle a, b\rangle=a^{T} b=b^{T} a=\sum_{j=1}^{n} a_{j} b_{j}$
matrix product $A \in \mathbb{R}^{m \times p}, B \in \mathbb{R}^{p \times n}, C=A B \in \mathbb{R}^{m \times n}$ with $c_{i j}=\sum_{k=1}^{p} a_{i k} b_{k j}$. matrix product is associative $(A B) C=A(B C)$ and $(A B)^{T}=B^{T} A^{T}$


```
linear combination }\mp@subsup{\sum}{i=1}{p}\mp@subsup{\lambda}{i}{}\mp@subsup{x}{}{i}\in\mp@subsup{\mathbb{R}}{}{n
    of vectors }\mp@subsup{x}{}{1},\ldots,\mp@subsup{x}{}{p}\in\mp@subsup{\mathbb{R}}{}{n}\mathrm{ with scalars }\mp@subsup{\lambda}{1}{},\ldots,\mp@subsup{\lambda}{p}{}\in\mathbb{R
linearly independence }\mp@subsup{\sum}{i=1}{p}\mp@subsup{\lambda}{i}{}\mp@subsup{x}{}{i}=0=>\mp@subsup{\lambda}{1}{}=\cdots=\mp@subsup{\lambda}{p}{}=
vector-space span }V={\mp@subsup{\sum}{i=1}{p}\mp@subsup{\lambda}{i}{}\mp@subsup{x}{}{i}|\mp@subsup{\lambda}{1}{},\ldots,\mp@subsup{\lambda}{p}{}\in\mathbb{R}}\subseteq\mp@subsup{\mathbb{R}}{}{n
dimension }\operatorname{dim}(V)=p\mathrm{ if }\mp@subsup{x}{}{1},\ldots,\mp@subsup{x}{}{p}\mathrm{ are linearly independent, i.e. form a basis for }
row space of }A\in\mp@subsup{\mathbb{R}}{}{m\timesn}\mathrm{ span of the rows rs }A={\mp@subsup{\lambda}{}{T}A,\lambda\in\mp@subsup{\mathbb{R}}{}{m}}\subseteq\mp@subsup{\mathbb{R}}{}{n
column space of }A\in\mp@subsup{\mathbb{R}}{}{m\timesn}\mathrm{ span of the columns cs }A={A\lambda,\lambda\in\mp@subsup{\mathbb{R}}{}{n}}\subseteq\mp@subsup{\mathbb{R}}{}{m
    rank of A\in\mp@subsup{\mathbb{R}}{}{m\timesn}:r\mp@subsup{k}{A}{}=\operatorname{dim}(r\mp@subsup{s}{A}{})=\operatorname{dim}(cs}A)\leq\operatorname{min}(m,n
```


to go further:

read [Bertsimas-Tsitsiklis]:
Section 1.1

for the next class:

read [Bertsimas-Tsitsiklis]:
Section 1.5: Linear algebra background

AlGEBRA OF LINEAR PROGRAMMING

A LP in standard form with $c \in \mathbb{R}^{n}, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$ has $m+n$ constraints:

```
\(\min c^{T} x\)
s.t. \(A x=b\)
    ( \(m\) )
        \(x \geq 0\)
        (n)
```

A feasible solution \equiv non-negative coefficients forming b as a linear combination of the columns of A :

$$
x_{1}\left(\begin{array}{c}
a_{11} \\
\vdots \\
a_{m 1}
\end{array}\right)+x_{2}\left(\begin{array}{c}
a_{12} \\
\vdots \\
a_{m 2}
\end{array}\right)+\cdots+x_{n}\left(\begin{array}{c}
a_{1 n} \\
\vdots \\
a_{m n}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{m}
\end{array}\right)
$$

HOW TO MODEL?

1. decision variables: what a solution is made of ?
2. constraints: what is a feasible solution ?
3. objective: what is an optimal solution ?
4. check the units or convert
5. check LP format (linear, continuous, non-strict inequalities) or reformulate

EX 3: GRAPH MODEL

- find a flow on a capacitated directed graph
- flow conservation at each node: $I N=O U T$

EX 3: NETWORK FLOW

network flow

A company delivers retail stores in 9 cities in Europe from its unique factory USINE.
How to manage production and transportation in order to:

- meet the demand of each store,
- not exceed the production limit,
- not exceed the line capacities,
- minimize the transportation costs ?

EX 3: LP MODEL

- x_{ℓ} the quantity of products transported on line $\ell=(i, j) \in$ LINES
- TRANSITS $=\{$ LILLE, NICE, BREST $\}$
$\min \sum_{\ell \in \mathrm{INES}} \operatorname{cosT}_{\ell} x_{\ell}$
s.t. $\quad \sum_{i \in T A S T} x_{(\text {USINE }, i)} \leq \operatorname{MAXPROD}$ ${ }_{i \in \text { TRANSITS }}$ $\sum_{i \in \text { TRANSTTS }} x_{(i, j)} \geq$ DEMAND $_{j}, \quad \forall j \in$ STORES
$i \in$ TRANSITS
$x_{(\text {USIN }, i)}=\sum_{j \in \text { STORES }} x_{(i, j)}, \quad \forall i \in$ TRANSITS
$0 \leq x_{\ell} \leq$ CAPACITY $_{\ell}$,
$\forall \ell \in$ Lines.

EX 4: MINIMUM DISTANCE

ex 4: LP models min $\|x\|_{1}=\min \sum_{j}\left|x_{j}\right|$

minimize L^{1} and L^{∞} norms

Find a solution $x \in \mathbb{R}^{n}$ of the system of equation $A x=b, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$ of minimum

$$
\quad\|x\|_{1}=\sum_{j=1, \ldots, n}\left|x_{j}\right|
$$

L^{∞} norm:

$$
\|x\|_{\infty}=\max _{j=1, \ldots, n}\left|x_{j}\right|
$$

EX 4: LP MODEL $\min \|x\|_{\infty}=\min \max _{j}\left|x_{j}\right|$

$$
\begin{aligned}
& \text { • } y \geq\left|x_{j}\right| \Longleftrightarrow y \geq x_{j} \wedge y \geq-x_{j} \\
& \text { • } y \geq \max _{j}\left|x_{j}\right| \Longleftrightarrow y \geq x_{j} \wedge y \geq-x_{j}(\forall j)
\end{aligned}
$$

$\min y$
s.t. $A x=b$,
$y \geq x_{j}$,
$\forall j$
$y \geq-x_{j}$,
$\forall j$
how to model $|x|, x \in \mathbb{R}$?
variable splitting:
$|x|=\min \left\{x^{+}+x^{-} \mid x=x^{+}-x^{-}, x^{+}, x^{-} \geq 0\right\}$

$$
\min \sum_{j=1}^{n}\left(x_{j}^{+}+x_{j}^{-}\right)
$$

supporting plane model:

$$
|x|=\max \{x,-x\}=\min \{y \mid y \geq x, y \geq-x\}
$$

$$
\min \sum_{j=1}^{n} y_{j}
$$

$$
\text { s.t. } A x=b,
$$

s.t. $A x=b$,

$$
x_{j}=x_{j}^{+}-x_{j}^{-}, \quad \forall j
$$

$$
x_{j}^{+}, x_{j}^{-} \geq 0, \quad \forall j
$$

Note that $\min \sum\left|x_{j}\right|=\sum \min \left|x_{j}\right|$ because $\left|x_{j}\right| \geq 0$

$y_{j} \geq x_{j}$,	$\forall j$
$y_{j} \geq-x_{j}$,	$\forall j$

EX 4: DATA FITTING

data fitting [Bertsimas-Tsitsiklis]
Given m observations - data points $a_{i} \in \mathbb{R}^{n}$ and associate values $b_{i} \in \mathbb{R}, i=1$..m predict the value of any point $a \in \mathbb{R}^{n}$ according to a linear regression model ?
a best linear fit is a function :

$$
b(a)=a^{T} x+y, \text { for chosen } x \in \mathbb{R}^{n}, y \in \mathbb{R}
$$

minimizing the residual/prediction error $\left|b\left(a_{i}\right)-b_{i}\right|$, globally over the dataset $i=1$.. m, e.g:

Least Absolute Deviation or L_{1}-regression:

$$
\min \sum_{i}\left|b\left(a_{i}\right)-b_{i}\right|
$$

EX 4: DATA FITTING - LAD REGRESSION (2)

```
variable splitting
    \(\min \sum_{i} d_{i}^{+}+d_{i}^{-}\)
    s.t. \(d_{i}^{+}-d_{i}^{-}=\sum_{j} a_{i j} x_{j}+y-b_{i}, \quad \forall i\)
        \(d_{i}^{+}, d_{i}^{-} \geq 0, \quad \forall i\)
\[
x \in \mathbb{R}^{n}, y \in \mathbb{R}
\]
    \(x \in \mathbb{R}^{n}, y \in \mathbb{R}\)
都
■
```

dual model (see later)

$$
\begin{array}{ll}
\max & \sum_{i} b_{i} z_{i} \\
\text { s.t. } & \sum_{i} a_{i j} z_{i}=0, \quad \forall j \\
& \sum_{i} z_{i}=0, \\
& z_{i} \in[-1,1], \quad \forall i
\end{array}
$$

Both models are equivalent by strong duality (see later) but the second one has much fewer variables and non-bound constraints. The best algorithms for LAD regression (Barrodale-Roberts) are special purpose simplex methods (see later) for dense matrices and absolute values.

EX 4: DATA FITTING - LAD REGRESSION (1)

supporting planes

$$
\begin{aligned}
\min & \sum_{i} d_{i} \\
\text { s.t. } d_{i} & \geq \sum_{j} a_{i j} x_{j}+y-b_{i}, \quad \forall i \\
\quad d_{i} & \geq-\left(\sum_{j} a_{i j} x_{j}+y-b_{i}\right), \quad \forall i \\
\quad d & \in \mathbb{R}^{m}, x \in \mathbb{R}^{n}, y \in \mathbb{R}
\end{aligned}
$$

sparse supporting planes

$$
\begin{array}{ll}
\min \sum_{i} d_{i} & \\
\text { s.t. } & r_{i}=\sum_{j} a_{i j} x_{j}+y-b_{i}, \\
& \forall i \\
d_{i} \geq r_{i}, & \forall i \\
d_{i} \geq-r_{i}, & \forall i \\
& r, d \in \mathbb{R}^{m}, x \in \mathbb{R}^{n}, y \in \mathbb{R}
\end{array}
$$

Second model is better for many algorithms: larger (more variables and constraints) but its constraint matrix is less dense (more zeros)

Reading:

to go further:
read [Bertsimas-Tsitsiklis]:
Sections 1.2, 1.3, 1.4
for the next class:
read [Bertsimas-Tsitsiklis]:
Section 2.1: Polyhedra and convex sets

GEOMETRY AND ALGEBRA

EX 5: LP DOORS \& WINDOWS

- decision variables ?
- x_{D}, x_{W} (fractional) number of doors and windows produced a day
- constraints and objective?
- availability of each workshop (in hours/day), nonnegativity of the variables
- maximize revenue (in keuros)

$$
\begin{aligned}
\max & 3 x_{D}+5 x_{W} \\
\text { s.t. } & x_{D} \leq 4 \\
& 2 x_{W} \leq 12 \\
& 3 x_{D}+2 x_{W} \leq 18 \\
& x_{D}, x_{W} \geq 0
\end{aligned}
$$

A factory made of 3 workshops produces doors and windows. The workshops A, B, C are open 4,12 and 18 hours a week, respectively. Assembling one door occupies workshop A for 1 hour and workshop C for 3 hours and the door is sold 3000 euros. Assembling one window occupies workshops B and C for 2 hours each and a window is sold 5000 euros. How to maximize the revenue ?

GRAPHICAL REPRESENTATION (EX: DOORS \& WINDOWS)

$$
\begin{array}{cl}
\max & 3 x_{D}+5 x_{W} \\
\text { s.t. } & x_{D} \leq 4 \\
& 2 x_{W} \leq 12 \\
& 3 x_{D}+2 x_{W} \leq 18 \\
& x_{D}, x_{W} \geq 0
\end{array}
$$

- solution space \mathbb{R}^{2}
- linear constraint \equiv halfspace, ex: $\left\{x \in \mathbb{R}^{2} \mid 3 x_{D}+2 x_{W} \leq 18\right\}$
- feasible region \equiv intersection of a finite number of halfspaces \triangleq polyhedron
- objective: $z=3 x_{D}+5 x_{W}$, optimum: move the line up $z \nearrow$ until unfeasible
- optimum solution: $2 x_{W}^{*}=12$ and $3 x_{D}^{*}+2 x_{V}^{*}=18 \Rightarrow x_{W}^{*}=6, x_{D}^{*}=2, z^{*}=36$

GRAPHICAL REPRESENTATION (EX: PETROLEUM DISTILLATION)

GRAPHICAL REPRESENTATION (EX: NUCLEAR WASTE)

$$
\begin{array}{ll}
\min & 20 x_{K}+15 x_{V} \\
\text { s.t. } & 3 x_{K}+4 x_{V} \geq 20 \\
& 4 x_{K}+2 x_{V} \geq 15 \\
& 2 x_{K}+3 x_{V} \geq 5 \\
& 0 \leq x_{K} \leq 9 \\
& 0 \leq x_{V} \leq 6
\end{array}
$$

- constraint $2 x_{K}+3 x_{V} \geq 5$ is redundant
- constraints $3 x_{K}+4 x_{V} \geq 20$ and $4 x_{K}+2 x_{V} \geq 15$ are active/binding at the optimum $(2,3.5)$ but not constraints $x_{K} \geq 0$ or $x_{V} \leq 6$

$$
\begin{aligned}
\max & 4 x_{A}+8 x_{B} \\
\text { s.t. } & x_{A}+3 x_{B} \leq 450 \\
& 2 x_{A}+x_{B} \leq 350 \\
& x_{A}+x_{B} \leq 200 \\
& x_{A}, x_{B} \geq 0
\end{aligned}
$$

GEOMETRY OF LINEAR PROGRAMMING

- the feasible region is defined as a polyhedron
- thus it is convex (intersection of convex regions)

where are the optimal solutions?

intuition: the optimum of a linear function on a polyhedron is reached at a "corner point"
(under conditions of existence)

idea: solving an LP = evaluate the corner points progressively

CHARACTERIZING THE CORNER POINTS

Theorem [BT 2.3]
A nonempty polyhedron $\mathcal{P}=\left\{x \in \mathbb{R}^{n} \mid A x \geq b\right\}, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$ and a feasible
solution $\hat{x} \in \mathcal{P}$, then these are equivalent: \hat{x} is a
vertex

$\exists c \in \mathbb{R}^{n}, \forall x \in \mathcal{P} \backslash\{\hat{x}\}$,
$c^{T} \hat{x}<c^{T} x$

| $\hat{x}=\lambda x+(1-\lambda) y$, |
| ---: | :--- |
| $x, y \in \mathcal{P} \Rightarrow \lambda=0$ |

extreme point

vertices and extreme points are model-independent; their number $\leq\binom{ m}{n}$ is
finite but large and not known priori finite but large and not known a priori

CHARACTERIZING THE CORNER POINTS (PROOF)

Theorem [BT 2.3]
$\hat{x} \in \mathcal{P}=\left\{x \in \mathbb{R}^{n} \mid A x \geq b\right\}, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$ is either none or all together:
vertex extreme point basic feasible solution
$\exists c \in \mathbb{R}^{n}, \forall x \in \mathcal{P} \backslash\{\hat{x}\}, \quad \hat{x}=\lambda x+(1-\lambda) y, \quad \exists n$ linearly independent rows
$c^{T} \hat{x}<c^{T} x$
$x, y \in \mathcal{P} \Rightarrow \lambda=0$ a_{i} in A s.t. $a_{i} x=b_{i}$

Proof:
\hat{x} vertex \Rightarrow xpoint: $\exists c, \forall x, y \in \mathcal{P} \backslash\{\hat{x}\}, c^{T} \hat{x}<c^{T} x$ and $c^{T} \hat{x}<c^{T} y$ then $c^{T} \hat{x}<\lambda c^{T} x+(1-\lambda) c^{T} y, \forall 0 \leq \lambda \leq 1$, then $\hat{x} \neq \lambda x+(1-\lambda) y$
\hat{x} not basic \Rightarrow not xpoint: let $I=\left\{i \mid a_{i} \hat{x}=b_{i}\right\}$ then $r k\left(a_{I}^{T}\right)<n$ then $\exists d \in \mathbb{R}^{n}, a_{I}^{T} d=0$. Let $x=\hat{x}+\epsilon . d$ and $y=\hat{x}-\epsilon . d$ then $\hat{x}=\frac{x+y}{2}$ and $x, y \in \mathcal{P}: a_{i}^{T} x=a_{i}^{T} y=b_{i}$ if $i \in I$, otherwise $a_{i}^{T} \hat{x}>b_{i}$ then $a_{i}^{T} x>b_{i}$ and $a_{i}^{T} y>b_{i}$ for ϵ small enough.
\hat{x} basic feasible \Rightarrow vertex: let $c=\sum_{i \in I} a_{i}$ then $c^{T} \hat{x}=\sum_{i \in I} b_{i} \leq c^{T} x \forall x \in \mathcal{P}$, and equality holds only for \hat{x} the unique solution of system $a_{I}^{T} x=b_{I}$.

EXISTENCE OF OPTIMA AND EXTREME POINTS

Theorem: existence of an extreme point [BT 2.6]

nonempty $\mathcal{P}=\left\{x \in \mathbb{R}^{n} \mid A x \geq b\right\}, A \in \mathbb{R}^{m \times n}$ has at least one extreme point \Longleftrightarrow it has no line: $\forall x \in \mathcal{P}, d \in \mathbb{R}^{n},\{x+\theta d \mid \theta \in \mathbb{R}\} \nsubseteq \mathcal{P}$
$\Longleftrightarrow A$ has n linearly independent rows
Theorem: existence of an optimal solution [BT 2.8]
Minimizing a linear function over \mathcal{P} having at least one extreme point, then: either optimal cost is $-\infty$, or an extreme point is optimal.

unbounded
∞ optima / o vertex
∞ optima including 1 vertex

EXISTENCE OF EXTREME POINTS (PROOF)

Theorem: existence of an extreme point [BT 2.6]

nonempty $\mathcal{P}=\left\{x \in \mathbb{R}^{n} \mid A x \geq b\right\}, A \in \mathbb{R}^{m \times n}$ has at least one extreme point
\Longleftrightarrow it has no line: $\forall x \in \mathcal{P}, d \in \mathbb{R}^{n},\{x+\theta d \mid \theta \in \mathbb{R}\} \nsubseteq \mathcal{P}$
$\Longleftrightarrow A$ has n linearly independent rows
Proof:
no line \Rightarrow xpoint: let $x \in \mathcal{P}$ "of rank k ", i.e. $I=\left\{i \mid a_{i} x=b_{i}\right\}$ has k lin. indep. rows, if not basic then $k<n$ and $\exists d, a_{I}^{T} d=0$. The line (x, d) satisfies $a_{I}^{T}(x+\theta d)=b_{i}$ and it intersects the border of \mathcal{P}, i.e. $\exists \hat{\theta}, j \notin I$ s.t. $a_{j}^{T}(x+\hat{\theta} d)=b_{j}$, then $a_{j}^{T} d \neq 0$, then $x^{\prime}=x+\hat{\theta} d \in \mathcal{P}$ is of rank $k+1$. Repeat until reaching n.
$\left(a_{i}\right)_{i \in I}$ linearly independent \Rightarrow no line: if \mathcal{P} contains a line $x+\theta d$ with $d \neq 0$ then $a_{i}(x+\theta d)>b_{i} \forall \theta$ then $a_{i} d=0 \forall i \in I$ then $d=0$.

EXISTENCE OF OPTIMA (PROOF)

Theorem: existence of an optimal solution [BT 2.8]

Minimizing a linear function over \mathcal{P} having at least one extreme point, then: either optimal cost is $-\infty$, or an extreme point is optimal.

Proof

let $x \in \mathcal{P}$ of rank $k<n$, then $\exists d, a_{I}^{T} d=0, \forall i \in I=\left\{i \mid a_{i} x=b_{i}\right\}$. Assume $c^{T} d \leq 0$ (or use $-d$) then line (x, d) intersects the border of \mathcal{P} at some $x^{\prime}=x+\theta d \in \mathcal{P}$ of rank $k+1$ (see previous proof). If $c^{T} d=0$ then $c^{T} x^{\prime}=c^{T} x$. If $c^{T} d \leq 0$ then assume $\theta>0$ (or optimal cost $=-\infty$), then $c^{T} x^{\prime}<c^{T} x$. Repeat until reaching rank n, i.e. a basic feasible solution let x^{*} be a basic feasible solution of \mathcal{P} of minimum cost, then $c^{T} x^{*} \leq c^{T} x \forall x \in \mathcal{P}$

OPTIMA AND EXTREME POINTS (EXERCISE)

show that:

- $\mathcal{P}=\left\{(x, y) \in \mathbb{R}^{2} \mid x+y=0\right\}$ is nonempty and has no extreme point
- $(x, y) \mapsto 5(x+y)$ has a finite optimum on \mathcal{P}
$\cdot \min \{5(x+y) \mid(x, y) \in \mathcal{P}\}$ has an optimal solution which is an extreme point (not of \mathcal{P})
answer: put in standard form
$\min \left\{5\left(x^{+}-x^{-}+y^{+}-y^{-}\right) \mid x^{+}-x^{-}+y^{+}-y^{-}=0, x^{+}, x^{-}, y^{+}, y^{-} \geq 0\right\}$ reaches its optimum at $(0,0,0,0)$

BASIC SOLUTION FOR STANDARD FORM (PROOF)

Theorem: basic solution for standard form [BT 2.4]

A nonempty polyhedron in standard form $\mathcal{P}=\left\{x \in \mathbb{R}^{n} \mid A x=b, x \geq 0\right\}$ with m linear independent rows $A \in \mathbb{R}^{m \times n}: x \in \mathbb{R}^{n}$ is a basic solution iff $A x=b$ and there exists m linear independent columns $A_{j}, j \in \beta \subset\{1, \ldots, n\}$ s.t. $x_{j}=0, \forall j \notin \beta$.

Proof:

$\Leftarrow:$ let $x \in \mathbb{R}^{n}$ and β as in the statement, then $\left.A_{\mid \beta} x\right|_{\mid \beta}=A x=b$ and $x_{\mid \beta}=A_{\mid \beta}^{-1} b$ is uniquely determined, then $\operatorname{span}\left(A_{\mid \beta}\right)=\mathbb{R}^{n}$ (otherwise $\exists d, A_{\mid \beta} d=0$ and $A_{\mid \beta} y=b$ would have many solutions $x_{\mid \beta}+\theta d$)
\Rightarrow : let x basic and $I=\left\{i \mid x_{i} \neq 0\right\}$, then the active constraints ($A x=b$ and $x_{i}=0 \forall i \notin I$) forms a system with an unique solution (otherwise for two solutions x^{1} and x^{2} then $d=x^{1}-x^{2}$ would be orthogonal, i.e. not in the span $=\mathbb{R}^{n}$) then $\left.A_{\mid I} x\right|_{I I}=b$ has a unique solution and then $A_{\mid I}$ has lin. ind. columns. Since A has m lin. ind. rows then there exist $m-|I|$ columns lin. ind. with $A_{\mid I}$ and, by def of $I, x_{i}=0$ for any other column i.

CONSTRUCTING A BASIC SOLUTION

Theorem: basic solution for standard form [BT 2.4]

A nonempty polyhedron in standard form $\mathcal{P}=\left\{x \in \mathbb{R}^{n} \mid A x=b, x \geq 0\right\}$ with m linear independent rows $A \in \mathbb{R}^{m \times n}: x \in \mathbb{R}^{n}$ is a basic solution iff $A x=b$ and there exists m linear independent columns $A_{j}, j \in \beta \subset\{1, \ldots, n\}$ s.t. $x_{j}=0, \forall j \notin \beta$.

The columns $A_{j}, j \in \beta$ is a basis of \mathbb{R}^{m} and form an invertible basis matrix $A_{\mid \beta} \in \mathbb{R}^{m \times m} ; x_{j}, j \in \beta$ are the basic variables

Algorithm: find a basic solution

1. pick m linear independent columns $A_{j}, j \in \beta \subset\{1, \ldots, n\}$
2. fix $x_{j}=0, \forall j \notin \beta$
3. solve the system of m equations in $\mathbb{R}^{m}: A_{\mid \beta} x_{\mid \beta}=b$
4. the resulting basic solution x is feasible iff $x_{\mid \beta}=A_{\mid \beta}^{-1} b \geq 0$

BASIC SOLUTIONS (EX: LP DOORS \& WINDOWS)

$$
\begin{aligned}
& \max 3 x_{D}+5 x_{W} \\
& \text { s.t. } x_{D}+s_{1}=4 \\
& 2 x_{W}+s_{2}=12 \\
& 3 x_{D}+2 x_{W}+s_{3}=18 \\
& x_{D}, x_{W}, s_{1}, s_{2}, s_{3} \geq 0 \\
& x_{D} \\
& A=\left(\begin{array}{lllll}
1 & 0 & 1 & 0 & 0 \\
0 & 2 & 0 & 1 & 0 \\
3 & 2 & 0 & 0 & 1
\end{array}\right) \\
& \beta_{1}=(3,4,5), \beta_{2}=(1,2,5), \beta_{3}=(1,4,5), \beta_{4}=(1,2,3)
\end{aligned}
$$

DEGENERACY

EX 6: CAPACITY PLANNING

one basis defines one unique basic solution
but one basic solution may correspond to different bases, when it is
degenerate \Longleftrightarrow more than n active constraints
\Longleftrightarrow some basic variables are set to 0 .

basic nonfeasible degenerate?
basic feasible nondegenerate?
basic feasible degenerate?

D
B and E
A and C

capacity planning [Bertsimas-Tsitsiklis]

find a least cost electric power capacity expansion plan:

- planning horizon: the next $T \in \mathbb{N}$ years
- forecast demand (in MW): $d_{t} \geq 0$ for each year $t=1, \ldots, T$
- existing capacity (oil-fired plants, in MW): $e_{t} \geq 0$ available for each year t
- options for expanding capacities: (1) coal-fired plant and (2) nuclear plant
- lifetime (in years): $l_{j} \in \mathbb{N}$, for each option $j=1,2$
- capital cost (in euros/MW): $c_{j t}$ to install capacity j operable from year t
- political/safety measure: share of nuclear should never exceed 20% of available capacity

EX 6: LP MODEL

- decision variables, $x_{j t}$: installed capacity (in MW) of type $j=1,2$ starting at year $t=1, \ldots, T$
- constraints, each year: total capacity meets the demand + nuclear share
- implied variables, $y_{j t}$ available capacity (in MW) $j=1,2$ for year t

$$
\begin{array}{llr}
\min \sum_{t=1}^{T} \sum_{j=1}^{2} c_{j t} x_{j t} & \\
\text { s.t. } y_{j t}-\sum_{s=\max \left\{1, t-l_{j}+1\right\}}^{t} x_{j s} & =0, & \forall j=1,2, t=1, \ldots, T \\
y_{1 t}+y_{2 t}-u_{t} & =d_{t}-e_{t}, & \forall t=1, \ldots, T \\
8 y_{2 t}-2 y_{1 t}+v_{t} & =2 e_{t}, & \forall t=1, \ldots, T \\
x_{j t} \geq 0, y_{j t} \geq 0, u_{t} \geq 0, v_{t} \geq 0 & & \forall j=1,2, t=1, \ldots, T
\end{array}
$$

EX: BASIC SOLUTION (CAPACITY PLANNING)

$$
\begin{aligned}
& \min \sum_{t=1}^{T} \sum_{j=1}^{2} c_{j t} x_{j t} \\
& \text { s.t. } y_{j t}-\sum_{s=\max \left\{1, t-l_{j}+1\right\}}^{t} x_{j s} \\
& y_{1 t}+y_{2 t}-u_{t} \\
& 8 y_{2 t}-2 y_{1 t}+v_{t} \\
& x_{j t} \geq 0, y_{j t} \geq 0, u_{t} \geq 0, v_{t} \geq 0
\end{aligned}
$$

$$
\begin{array}{lr}
=0, & \forall j=1,2, t=1, \ldots, T \\
=d_{t}-e_{t}, & \forall t=1, \ldots, T \\
=2 e_{t}, & \forall t=1, \ldots, T \\
& \forall j=1,2, t=1, \ldots, T
\end{array}
$$

$$
\left(\begin{array}{cccccc}
L & 0 & I & 0 & 0 & 0 \\
0 & L & 0 & I & 0 & 0 \\
0 & 0 & I & I & -I & 0 \\
0 & 0 & -2 I & 8 I & 0 & I
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
y_{1} \\
y_{2} \\
u \\
v
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
d-e \\
2 e
\end{array}\right)
$$

$n=6 T$ variables, $m=4 T, A$ has linearly independent rows;
I : identity matrix, L : lower triangular matrix of 1 s and os basic solution
$(0,0,0,0, e-d, 2 e)$ is feasible iff $e_{t} \geq d_{t}, \forall t$,
degenerate ($4 T>n-m$ zeros), other basis e.g (x_{1}, x_{2}, u, v)

EX: BASIC SOLUTION AND DEGENERACY (CAPACITY PLANNING)

Exercise: reformulate by dropping the redundant variables y_{1} and y_{2}, find a basic solution, and give conditions of degeneracy

$$
=2 e_{t}, \quad \forall t=1, \ldots, T
$$

basic solution ($0,0, e-d, 2 e$) is feasible iff $e_{t} \geq d_{t}, \forall t$, degenerate iff $\exists t, e_{t}=0$ or $e_{t}=d_{t}$

SUMMARY

- the feasible set of an LP is a polyhedron \mathcal{P}

- if \mathcal{P} is nonempty and bounded, then (i) there exists an optimal solution which is an extreme point
- if \mathcal{P} is unbounded, then either (i), or (ii) there exists an optimal solution but no extreme point (not in standard form), or (iii) the optimal cost is infinite
- if (i) then the LP can be solved in a finite (probably exponential) number of steps by evaluating all extreme points

Instead of complete enumeration: the simplex algorithm moves along the edges of \mathcal{P} while improving the objective

$$
\begin{aligned}
& \min \sum_{t=1}^{T} \sum_{j=1}^{2} c_{j t} x_{j t} \\
& 8 \sum^{t} x_{2 s}-2 \sum_{\sum_{1 s}}^{t} x_{1 s} \\
& \left(\begin{array}{cccc}
L & L & -I & 0 \\
-2 L & 8 L & 0 & I
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
u \\
v
\end{array}\right)=\binom{d-e}{2 e}
\end{aligned}
$$

MOVING TO ANOTHER BASIC SOLUTION

Adjacency

- two basic solutions x and y are adjacent if there exists $n-1$ linearly independent constraints active at x and y
- the line segment between 2 adjacent basic feasible solutions is an edge of \mathcal{P}
- (nondegenerate) adjacent basic feasible solutions correspond to adjacent
bases (in standard form), i.e. that share $m-1$ columns

READING:

to go further:

read [Bertsimas-Tsitsiklis]:
Sections 2.2, 2.3, 2.4, 2.5, 2.6

for the next class:

read [Bertsimas-Tsitsiklis]:
Section 1.6: Algorithms and operation count

REVIEW

THE SIMPLEX METHODS

FEASIBLE IMPROVING DIRECTION

following a feasible improving direction d with a step $\theta>0$ leads to a feasible solution $x^{\prime}=x+\theta d \in \mathcal{P}$ of better $\operatorname{cost} c^{T} x^{\prime}=c^{T} x+\theta . c^{T} d<c x$

- min $c x$ over $\mathcal{P}=\{A x=b, x \geq 0\}, A \in \mathbb{R}^{m \times n}, r k(A)=m$ reaches its optimum at a basic feasible solution
- a basis $\beta \subseteq\{1, \ldots, n\}$ is made of m linearly independent columns of A and the associated basic solution is: $x_{\beta}=A_{\beta}^{-1} b, x_{\neg \beta}=0$
- adjacent basic solutions share $m-1$ basic variables: $\beta^{\prime}=\beta \cup\left\{j^{\prime}\right\} \backslash\left\{j^{\prime \prime}\right\}$
- adjacent basic solutions may coincide if degenerate (if $x_{j^{\prime}}=x_{j^{\prime \prime}}=0$)
the simplex method goes from a basic feasible solution to an adjacent one as the cost decreases

FEASIBLE IMPROVING BASIC DIRECTION

Let x be a basic feasible solution of basis β, and $j^{\prime} \notin \beta$:

```
the j'th basic direction
d\in\mp@subsup{\mathbb{R}}{}{n}:\mp@subsup{d}{\mp@subsup{j}{}{\prime}}{}=1,\mp@subsup{d}{j}{}=0,\forallj\not\in\beta\cup{\mp@subsup{j}{}{\prime}},\mathrm{ and }Ad=0(i.e. }\mp@subsup{d}{\beta}{}=-\mp@subsup{A}{\beta}{-1}\mp@subsup{A}{\mp@subsup{j}{}{\prime}}{}\mathrm{ )
```


is a feasible direction if x nondegenerate

$$
\begin{aligned}
& \cdot x_{\beta}>0 \Rightarrow \exists \theta>0, x_{\beta}+\theta d_{\beta} \geq 0 \Rightarrow x+\theta d \geq 0 \\
& \text { • } A d=A_{\beta} d_{\beta}+A_{j^{\prime}}=0 \Rightarrow \forall \theta>0, A(x+\theta d)=A x=b
\end{aligned}
$$

reduced cost of nonbasic variable x_{j}

$\bar{c}_{j^{\prime}}=c^{T} d=c_{j^{\prime}}-c_{\beta}^{T} A_{\beta}^{-1} A_{j^{\prime}}$

- $\bar{c}_{j^{\prime}}=c^{T} d=c^{T} x^{\prime}-c^{T} x$ is the cost deviation when $\theta=1$ and $x^{\prime}=x+d$
- d is an improving direction iff $\bar{c}_{j^{\prime}}<0$
- the reduced cost of a basic variable $j \in \beta$ is always $0: \bar{c}_{j}=c_{j}-c_{\beta}^{T} A_{\beta}^{-1} A_{j}=c_{j}-c_{\beta}^{T} e_{j}=0$

EXAMPLE: BASIC IMPROVING DIRECTION

$$
\begin{array}{rl}
\min _{x \geq 0} & 2 x_{1}+x_{2}+x_{3}+x_{4} \\
\text { s.t. } & x_{1}+x_{2}+x_{3}+x_{4}=2 \\
& 2 x_{1}+3 x_{3}+4 x_{4}=2
\end{array}
$$

- $m=2, n=4, r k(A)=2$
- $\beta=\{1,2\}$ is a basis
- $x=(1,1,0,0)$ feasible nondegenerate $\left(x_{j}>0 \forall j \in \beta\right)$
- basic direction $j=3$: $d_{3}=1, d_{4}=0, A d=\binom{d_{1}+d_{2}+1}{2 d_{1}+3}=0 \Rightarrow d_{\beta}=\binom{d_{1}}{d_{2}}=\binom{-3 / 2}{1 / 2}$
- improving direction: $\bar{c}=c^{T} d=2(-3 / 2)+(1 / 2)+1=-3 / 2<0$

STEP LENGTH θ

β basis of x feasible nondegenerate, d feasible direction to $j^{\prime} \notin \beta$ s.t. $c^{T} d=\bar{c}_{j^{\prime}}<0$

Theorem [BT 3.2]

if $d \geq 0$ then the LP is unbounded, otherwise
if $j^{\prime \prime} \in \operatorname{argmin}\left\{-x_{j} / d_{j}, j \in \beta, d_{j}<0\right\}$ and $\theta=-x_{j^{\prime \prime}} / d_{j^{\prime \prime}}$ then $x^{\prime}=x+\theta d$ is a basic feasible solution of basis $\beta^{\prime}=\beta \cup\left\{j^{\prime}\right\} \backslash\left\{j^{\prime \prime}\right\}: j^{\prime}$ enters the basis, $j^{\prime \prime}$ exits the basis.
θ is the highest value s.t. $x^{\prime} \in \mathcal{P}$, i.e. s.t. one (or more) new active constraint $x_{j^{\prime \prime}}^{\prime} \geq 0$ Proof:
by construction, $A x^{\prime}=A x+\theta A d=A x=b$ then
$x^{\prime} \in \mathcal{P} \Longleftrightarrow x_{j}+\theta d_{j} \geq 0 \forall j \Longleftrightarrow x_{j}+\theta d_{j} \geq 0 \forall j \in \beta: d_{j}<0$.
$\theta>0$ since x nondegenerate ($x_{\beta}>0$)
if $d \geq 0$ then $x+\theta d \in \mathcal{P} \forall \theta>0$ and $c(x+\theta d) \searrow$ when θ Ø
$A_{\beta}^{-1} A_{j}=e_{j}, \forall j \in \beta \backslash\left\{j^{\prime \prime}\right\}$, and $A_{\beta}^{-1} A_{j^{\prime}}=-d_{\beta}$ has a nonzero $j^{\prime \prime}$ component $\Rightarrow\left\{A_{j}, j \in \beta^{\prime}\right\} \quad 65$
are linear independent $\Rightarrow \beta^{\prime}$ is a basis are linear independent $\Rightarrow \beta^{\prime}$ is a basis

EXAMPLE: BASIC IMPROVING DIRECTION (CONT.)

$\min _{x \geq 0} 2 x_{1}+x_{2}+x_{3}+x_{4}$
s.t. $x_{1}+x_{2}+x_{3}+x_{4}=2$
$2 x_{1}+3 x_{3}+4 x_{4}=2$

- $\beta=\{1,2\}$ is a basis: $x=(1,1,0,0)$ feasible nondegenerate
- basic feasible improving direction $j=3$: $d=(-3 / 2,1 / 2,1,0), \bar{c}_{3}=c^{T} d=-3 / 2$
- $x^{\prime}=x+\theta d \geq 0 \Rightarrow x_{1}^{\prime}=1-(3 / 2) \theta \geq 0 \Rightarrow \theta \leq 2 / 3$
- $x^{\prime}=(0,4 / 3,2 / 3,0)$ basic feasible solution $\beta^{\prime}=\{2,3\}, c x^{\prime}=c x+\theta \bar{c}_{3}=c x-1$

OPTIMALITY CONDITION

Theorem [BT 3.1]

Let x be a basic feasible solution of basis β and $\bar{c} \in \mathbb{R}^{n}$ the vector of reduced costs.

$$
\text { - if } \bar{c}_{j} \geq 0 \forall j \notin \beta \text { then } x \text { is optimal }
$$

- if x is optimal and nondegenerate then $\bar{c} \geq 0$

Proof:

(\Rightarrow) for any $y \in \mathcal{P}$, let $d=y-x$ and $c_{-\beta} \geq 0$:
$A_{\beta} d_{\beta}+A_{-\beta} y_{\neg \beta}=A d=A y-A x=b-b=0 \Rightarrow d_{\beta}=-A_{\beta}^{-1} A_{-\beta} y_{\neg \beta} \Rightarrow$
$c^{T} y-c^{T} x=c_{\beta}^{T} d_{\beta}+c_{\neg \beta}^{T} y_{\neg \beta}=\left(c_{\neg \beta}^{T}-c_{\beta}^{T} A_{\beta}^{-1} A_{\neg \beta}\right) y_{\neg \beta}=\bar{c}_{\neg \beta} y_{\neg \beta} \geq 0$
(\Leftrightarrow) if x nondegenerate and $\bar{c}_{j}<0$, then j is nonbasic and of feasible improving direction, then x nonoptimal

EXAMPLE: BASIC IMPROVING DIRECTION (CONT.)

The simplex method (simple case)

$$
\begin{array}{rl}
\min _{x \geq 0} & 2 x_{1}+x_{2}+x_{3}+x_{4} \\
\text { s.t. } & x_{1}+x_{2}+x_{3}+x_{4}=2 \\
& 2 x_{1}+3 x_{3}+4 x_{4}=2
\end{array}
$$

- note that optimum ≥ 2 since $c x=x_{1}+2, \forall x$ feasible
- $\beta=\{2,3\}$ is a basis with $x=(0,4 / 3,2 / 3,0)$ nondegenerate
- basic directions are not improving:

$$
\cdot j=1: d=(1,-1 / 3,-2 / 3,0) \text { and } \bar{c}_{1}=c d=1 \geq 0
$$

$$
\cdot j=4: d=(0,1 / 3,-4 / 3,1) \text { and } \bar{c}_{4}=c d=0 \geq 0
$$

- then x is optimal

THE SIMPLEX METHOD

convergence [BT 3.3]

if $\mathcal{P} \neq \emptyset$ and every basic feasible solution is nondegenerate then the simplex method terminates after a finite number of iterations with either an optimal basis β or with some direction $d \geq 0, A d=0, c^{T} d<0$, and the optimal cost is $-\infty$

Proof:

- $c x$ decreases at each iteration, all x are basic feasible solutions, the number of basic feasible solutions is finite
- choice of the entering column $j^{\prime} \notin \beta$ s.t. $\bar{c}_{j^{\prime}}<0$, e.g.:
- largest cost decrease per unit change: $\min \bar{c}_{j}$
- largest cost decrease: $\min \theta \bar{c}_{j}$
- smallest subscript: $\min j$
- choice of the exiting column $j^{\prime \prime} \in \operatorname{argmin}\left\{-x_{j} / d_{j} \mid j \in \beta, d_{j}<0\right\}$
- trade-off between computation burden and efficiency, e.g. compute a subset of reduced costs
- if x is degenerate with $x_{j}=0$ and $d_{j}<0$ for some $j \in \beta$, then $\theta=0$: the basis changes but not the basic feasible solution
- a sequence of basis changes may lead to a cost reducing feasible direction or it may cycle
- to avoid cycles and ensure convergence: select the smallest subscript pivoting rules for both entering and exiting columns (see [Bertsimas-Tsitsiklis] Section 3.4 for details)
- if $\mathcal{P}=\{A x \leq b, x \geq 0\}$, then we directly get a basis from the slack variables: $\mathcal{P}=\{A x+I s=b, x \geq 0, s \geq 0\}$
- if the problem is already in standard form $\min \{c x, A x=b, x \geq 0\}$, then we can first solve the auxiliary LP:

$$
\min \{1 . y, A x+I y=b, x \geq 0, y \geq 0\}
$$

if optimum is 0 then we get a feasible basic solution for the original LP, otherwise it is unfeasible (see [Bertsimas-Tsitsiklis] Section 3.5 for details)

IMPLEMENTATIONS

- each iteration involves costly arithmetic operations:
- computing $u^{T}=c_{\beta}^{T} A_{\beta}^{-1}$ or $A_{\beta}^{-1} A_{j}$ takes $O\left(m^{3}\right)$ operations
- computing $\bar{c}_{j}=c_{j}-u^{T} A_{j}$ for all $j \notin \beta$ takes $O(m n)$ operations
- revised simplex: update matrix $A_{\beta \cup\left\{j^{\prime \prime}\right\} \backslash\left\{j^{\prime}\right\}}^{-1}$ from A_{β}^{-1} in $O(m n)$
- full tableau: maintain and update the $m \times(n+1)$ matrix $A_{\beta^{-1}}(b \mid A)$
- specific data structures for sparse (many 0 entries in A) vs. dense matrices
- in theory, complexity is exponential in the worst case: the LP may have 2^{n} extreme points and the simplex method visits them all
- in practice, sophisticated implementations of the simplex method perform often better than polynomial-time algorithms (interior point/barrier, ellipsoid) and have additional features (duality, restart)
(see [Bertsimas-Tsitsiklis]Section 3.3 for details)

EX: SIMPLEX ALGORITHM (LP DOORS \& WINDOWS)

$$
\min -3 x_{D}-5 x_{W}
$$

$$
\begin{array}{ll}
\text { s.t. } & x_{D}+s_{1}=4 \\
& 2 x_{W}+s_{2}=12 \\
& 3 x_{D}+2 x_{W}+s_{3}=18 \\
& x_{D}, x_{W}, s_{1}, s_{2}, s_{3} \geq 0
\end{array}
$$

- start at $\beta_{1}=(3,4,5): x_{\beta_{1}}=(0,0,4,12,18)$ (feasible nondegenerate)
- $d_{1}=(1,0,-1,0,-3), \bar{c}_{1}=-3$, and $d_{2}=(0,1,0,-2,-2), \bar{c}_{2}=-5$ both improving
- choose $j^{\prime}=1$: $\theta=\min (4 / 1,18 / 3)=4, j^{\prime \prime}=3, \beta_{2}=(1,4,5), x_{\beta_{2}}=(4,0,0,12,6)$
- or choose $j^{\prime}=2$: $\theta=\min (12 / 2,18 / 2)=6, j^{\prime \prime}=4, \beta_{3}=(2,3,5), x_{\beta_{3}}=(0,6,4,0,6)$

DUALITY: MOTIVATION

DUALITY

$$
P: z=\min \left\{x^{2}+y^{2} \mid x+y=1\right\} \quad \text { (not linear, still convex) }
$$

- unconstrained smooth convex optimization is easy: zero of the derivative
- penalization methods: $P_{u}: z_{u}=\min x^{2}+y^{2}+u(1-x-y)$ relax the constraints and penalize the violations with price/multiplier $u \in \mathbb{R}$
- provides a lower bound $z_{u} \leq z$:
(x, y) feasible for $P \Rightarrow$ feasible for P_{u} and $z_{u} \leq x^{2}+y^{2}+u(1-x-y)=x^{2}+y^{2}$
- P_{u} is a relaxation of P
- the optimal solution of P_{u} is $(u / 2, u / 2): \nabla c(x, y)=0$ iff $(2 x-u, 2 y-u)=0$
- for $u=1$: $(1 / 2,1 / 2)$ is both optimal for P_{1} and feasible for P, thus it is optimal for $P: 1 / 2=z_{1} \leq z \leq(1 / 2)^{2}+(1 / 2)^{2}=1 / 2$

THIS CLASS: PROPERTIES OF LP DUALITY

$$
\begin{aligned}
P: z= & \min c^{T} x \\
& \text { s.t. } A x=b \\
& x \geq 0
\end{aligned}
$$

$$
\begin{gathered}
P_{u}: z_{u}=\min c^{T} x+u^{T}(b-A x) \\
\text { s.t. } x \geq 0 \\
\text { with multipliers } u \in \mathbb{R}^{m}
\end{gathered}
$$

- lagrangian problems $P_{u}, u \in \mathbb{R}^{m}$ provide lower bounds $z_{u} \leq z$
- dual problem: find the tightest (greater) lower bound

$$
D: d=\max _{u \in \mathbb{R}^{m}} z_{u}
$$

- if x is optimal for some P_{u} and satisfies $A x=b$ then x is optimal for P and $d=z$
- if P is an LP then D is also an LP and $z=d$ when finite (strong duality)
- the dual of D is P and the constraints of P correspond to the variables of D (and vice versa)
- the primal simplex algorithm also computes solutions in the dual space and stops when the basis is dual feasible
- the dual simplex algorithm also computes solutions in the primal space and stops when the basis is primal feasible
- sensitive analysis / restart when problem changes: check how to recover feasibility in the primal or in the dual space

DUAL LINEAR PROGRAM

HOW TO BUILD THE DUAL?

Theorem

- the dual of a linear program is a linear program:
$(P): \min c^{T} x$
(D) : $\max u^{T} b$
s.t. $u^{T} A \leq c^{T}$
- the dual of D is the primal P
- equivalent forms of P give equivalent forms of D

Proof:

$$
\begin{aligned}
& \cdot z_{u}=\min _{x \geq 0} c^{T} x+u^{T}(b-A x)=u^{T} b+\min _{x \geq 0}\left(c^{T}-u^{T} A\right) x \\
& \cdot z_{u}= \begin{cases}u^{T} b & \text { if }\left(c^{T}-u^{T} A\right) \geq 0 \\
-\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

primal/dual correspondence

$$
\begin{aligned}
\min & \text { max } \\
\text { cost vector } c & \text { RHS vector } b \\
\text { matrix } A & \text { matrix } A^{T} \\
\text { constraint } a_{i} x=b_{i} & \text { free variable } u_{i} \in \mathbb{R} \\
\text { constraint } a_{i} x \geq b_{i} & \text { nonnegative variable } u_{i} \geq 0 \\
\text { free variable } x_{j} \in \mathbb{R} & \text { constraint } u^{T} A_{j}=c_{j} \\
\text { nonnegative variable } x_{j} \geq 0 & \text { constraint } u^{T} A_{j} \leq c_{j}
\end{aligned}
$$

$P: \min c^{T} x+d^{T} y$

$$
\begin{array}{ll}
\text { s.t. } & A x=b \\
& D x+E y \geq f \\
& x \geq 0
\end{array}
$$

$D: \max u^{T} b+v^{T} f$
$\begin{array}{ll}\text { s.t. } A^{T} u+D^{T} v \leq c \\ E^{T} v=d & (x) \\ & (y)\end{array}$
$v \geq 0$

EX 7: STEEL FACTORY

steel factory

A factory can produce steel in coils (bobines), tapes (rubans), and sheets (tôles) every week up to 6000 tons, 4000 tons and 3500 tons, respectively. The selling prices are 25,30 , and 2 euros, respectively, per ton of product. Production involves two stages, heating (réchauffe) and rolling (laminage). These two mills are available up to 35 hours and 40 hours a week, respectively. The following table gives the number of tons of products that each mill can process in 1 hour:

	heating	rolling
coils	200	200
tapes	200	140
sheets	200	160

The factory wants to maximize its profit.

EX 7: LP MODEL

- decision variables ?
- x_{C}, x_{T}, x_{S} the quantity (in tons) of weekly produced coils, tapes and sheets
- constraints ?
- mill occupation
- maximum production
$P: \max 25 x_{C}+30 x_{T}+2 x_{S}$
s.t.

$\frac{x_{C}}{200}+\frac{x_{T}}{200}+\frac{x_{S}}{200} \leq 35$	(heating)
$\frac{x_{C}}{200}+\frac{x_{T}}{140}+\frac{x_{S}}{160} \leq 40$	(rolling)
$0 \leq x_{C} \leq 6000$	$($ coils)
$0 \leq x_{T} \leq 4000$	(tapes)
$0 \leq x_{S} \leq 3500$	(sheets)

EX: DUAL MODEL (STEEL FACTORY)

WEAK DUALITY

$D: \min 35 u_{H}+40 u_{R}+6000 u_{C}+4000 u_{T}+3500 u_{S}$

s.t.

$\frac{u_{H}}{200}+\frac{u_{R}}{200}+u_{C} \geq 25$	(coils)
$\frac{u_{H}}{200}+\frac{u_{R}}{140}+u_{T} \geq 30$	(tapes)
$\frac{u_{H}}{200}+\frac{u_{R}}{160}+u_{S} \geq 2$	(sheets)
$u \geq 0$	

Theorem [BT 4.3]

- if x is feasible for P (min) and u is feasible for D (max) then: $u^{T} b \leq c x$
- if the optimal cost of P is $-\infty$ then D is unfeasible
- if the optimal cost of D is $+\infty$ then P is unfeasible
- if $u^{T} b=c x$ then x is optimal for P and u is optimal for D

Proof:

. if P in standard form: $A x=b, x \geq 0$ and $u^{T} A \leq c^{T}$, then $u^{T} b=u^{T} A x \leq c x$.
in any form: if (x, u) primal-dual feasible then by construction $u^{T}(A x-b) \geq 0$ and $\left(c^{T}-u^{T} A\right) x \geq 0$, then $u^{T} b \leq u^{T} A x \leq c x$.

STRONG DUALITY

Theorem [BT 4.4]

if a linear programming problem has an optimal solution, so does its dual and their respective optima are equal: $u^{T} b=c x$

Proof:

- let x an optimal solution of $P=\min \left\{c^{T} x \mid A x=b, x \geq 0\right\}$ of basis β
- x optimal then the reduced costs are all nonnegative $\bar{c}^{T}=c^{T}-c_{\beta}^{T} A_{\beta}^{-1} A \geq 0$
- let $u^{T}=c_{\beta}^{T} A_{\beta}^{-1}$ then u is feasible for $D=\max \left\{u^{T} b \mid u^{T} A \leq c^{T}\right\}$
- $u^{T} b=c_{\beta}^{T} A_{\beta}^{-1} b=c_{\beta}^{T} x_{\beta}=c^{T} x$ then u is optimal for D

At optimality: the primal reduced $\operatorname{costs} \bar{c}^{T}$ are the dual slacks $c^{T}-u^{T} A$

COMPLEMENTARY SLACKNESS

Theorem [BT 4.5]

let x feasible for P and u feasible for D then they are optimal iff

$$
\begin{aligned}
u_{i}\left(a_{i}^{T} x-b_{i}\right) & =0 \\
\left(c_{j}-u^{T} A_{j}\right) x_{j} & =0
\end{aligned} \quad \forall j \text { row of } P \text { row of } D .
$$

Proof:

- $(x, u) \operatorname{primal}(m i n)$-dual(max) feasible then $u_{i}\left(a_{i} x-b_{i}\right) \geq 0$ and $\left(c_{j}-u^{T} A_{j}\right) x_{j} \geq 0$
- $c^{T} x-u^{T} b=\sum_{j}\left(c_{j}-u^{T} A_{j}\right) x_{j}+\sum_{i} u_{i}\left(a_{i} x-b_{i}\right)$ sum of nonnegative terms is zero iff all terms are zero

Either a constraint is binding at the optimum or the dual variable is zero

EXERCISE: OPTIMALITY WITHOUT SIMPLEX

$$
\begin{aligned}
P: \min & 13 x_{1}+10 x_{2}+6 x_{3} \\
\text { s.t. } & 5 x_{1}+x_{2}+3 x_{3}=8 \\
& 3 x_{1}+x_{2}=3 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

show that the basic solution of P of basis $\beta=\{1,3\}$ is feasible nondegenerate and optimal using the complementary slackness theorem

EXERCISE: OPTIMALITY WITHOUT SIMPLEX

$$
\begin{aligned}
P: & \min \\
& 13 x_{1}+10 x_{2}+6 x_{3} \\
\text { s.t. } & 5 x_{1}+x_{2}+3 x_{3}=8 \\
& 3 x_{1}+x_{2}=3
\end{aligned}
$$

$x_{1}, x_{2}, x_{3} \geq 0$
D: $\max 8 u_{1}+3 u_{2}$
s.t. $5 u_{1}+3 u_{2} \leq 13$

$$
u_{1}+u_{2} \leq 10
$$

$3 u_{1} \leq 6$

- $\beta=\{1,3\} \Rightarrow x_{2}=0, x_{1}=3 / 3=1, x_{3}=(8-5) / 3=1$
- $x=(1,0,1), x \geq 0 \Rightarrow$ feasible, $x_{j}>0, \forall j \in \beta \Rightarrow$ nondegenerate
- P in standard form \Rightarrow first C.S. is always condition satisfied
- let u satisfying second C.S. condition, i.e. $5 u_{1}+3 u_{2}=13$ and $3 u_{1}=6$
- $u=(2,1)$ is feasible for D since $u_{1}+u_{2}=3 \leq 10$
-C.S. theorem $\Rightarrow x$ and u are optimal with cost 19
- $u=c_{\beta}^{\top} A_{\beta}^{-1}$ basic dual solution: feasible $\Longleftrightarrow \bar{c}_{2}=c_{2}^{T}-u^{T} A_{2} \geq 0$ (reduced cost)

OPTIMALITY CONDITIONS

Theorem

x is optimal for $P=\min \left\{c^{T} x \mid A x=b, x \geq 0\right\}$ if exists $u \in \mathbb{R}^{m}$ s.t. (x, u) satisfies:

1. primal feasibility: $A x=b$
2. primal feasibility: $x \geq 0$
3. dual feasibility: $u^{T} A \leq c^{T}$
4. complementary slackness: $x_{j}>0 \Rightarrow u^{T} A_{j}=c_{j}$

- basic feasible solutions always satisfy 1,2 and 4 with $u^{T}=c_{\beta}^{T} A_{\beta}^{-1}$ $\left(x_{j}>0 \Rightarrow j \in \beta\right.$ and $\left.\bar{c}_{j}=c_{j}^{T}-u^{T} A_{j}=0\right)$.
- Condition 3 is the halting condition $\bar{c} \geq 0$ of the simplex algorithm
- if x is degenerate then solutions u of condition 4 may not be unique
- these are the KKT necessary and sufficient conditions on
$l(x, u, v)=c^{T} x+u^{T}(b-A x)-v x$: exists $(u, v) \in \mathbb{R}^{m \times n}$ s.t. $A x=b$ (primal), $x \geq 0$ (primal), $\nabla l_{u, v}(x)=c-\left(u^{\top} A+v\right)=0$ (stationarity), $v \geq 0$ (dual), $x^{\top} v=0$ (CS)

DUAL SIMPLEX

for $P=\min \{c x \mid A x=b, x \geq 0\}$ and $D=\max \left\{u^{T} b \mid u^{T} A \leq c\right\}$

- a basis β determines basic solutions for P and $D: x_{\beta}=A_{\beta}^{-1} b$ and $u^{T}=c_{\beta}^{T} A_{\beta}^{-1}$
- if both are feasible, then both are optimal (according to C.S. since $u^{T}(A x-b)=0$ and $\left.\left(c^{T}-u^{T} A\right) x=\left(c_{\beta}^{T}-u^{T} A_{\beta}\right) x_{\beta}=0\right)$
- simplex algorithm maintains primal feasibility $\left(x_{\beta} \geq 0\right)$ while trying to achieve dual feasibility ($\bar{c}^{T}=c^{T}-u^{T} A \geq 0$)
- dual simplex algorithm maintains dual feasibility ($\bar{c} \geq 0$) while trying to achieve primal feasibility ($x_{\beta} \geq 0$)
- examples of usage: after modifying b or adding a new constraint to P, run the dual simplex starting from the feasible dual solution $c_{\beta}^{T} A_{\beta}^{-1}$

FARKA'S LEMMA AND UNFEASIBILITY

INTERIOR-POINT METHODS (APPLIED TO LP)

```
theorem
A\in\mp@subsup{\mathbb{R}}{}{m\timesn},b\in\mp@subsup{\mathbb{R}}{}{m}\mathrm{ . Exactly one of the following holds:}
1. \existsx\in\mp@subsup{\mathbb{R}}{}{n},x\geq0,Ax=b(\mathcal{P}=\mp@subsup{\operatorname{min}}{x>0}{}{cx:Ax=b} is feasible)
2. \existsu\in\mp@subsup{\mathbb{R}}{}{m},\mp@subsup{u}{}{T}A\geq0\mathrm{ and }\mp@subsup{u}{}{T}b<0\mathrm{ (xor }b\mathrm{ can be separated from {Ax,x \0} by a}
    plane)
```


Proof:

$(1 \Rightarrow \neg 2)$ if $x \in \mathcal{P}$ and $u^{T} A \geq 0$ then $u^{T} b=u^{T} A x \geq 0$
$(\neg 1 \Rightarrow 2)$ if $P: \max \{0 \mid A x=b, x \geq 0\}$ is unfeasible then $D: \min \left\{u^{T} b \mid u^{T} A \geq 0\right\}$ is either unbounded or unfeasible. Since $u=0$ is feasible for D, then (2) holds.
if b is not in the cone $\{A x, x \geq 0\}$ spanned by the columns of A then a separating hyperplane $\{x \in$ $\left.\mathbb{R}^{m} \mid u^{T} x=0\right\}$ exists

- idea: iterate on primal and dual feasible solutions until achieving complementary slackness
- disturbed KKT conditions: x is optimal for $P=\min \left\{c^{T} x \mid A x=b, x \geq 0\right\}$ if exists $(u, v) \in \mathbb{R}^{m \times n}$ s.t. $A x=b$ (primal), $x \geq 0$ (primal), $A u+v=c$ (stationarity), $v \geq 0$ (dual), $x^{\top} v=1 / t$ (quasi-CS)
- this are the KKT conditions for the centered problem $P_{t}=\min \left\{t c^{T} x+\phi(x) \mid A x=b\right\}$ where the barrier function $\phi(x)=-\sum_{j} \log \left(x_{j}\right)$ is a smooth approximation of the indicator function for $x \geq 0$
- barrier method: solve P_{t} with the Newton method for increasing t (fix $\left.v=x^{-1} / t\right)$
- primal-dual interior-point method: update (x, u, v) at each iteration

READING:

to go further:
read [Bertsimas-Tsitsiklis]:
Sections 4.1, 4.2, $4.5,4.6,4.7$
for the next class:
read [Bertsimas-Tsitsiklis]:
Section 4.4: Optimal dual variables as marginal costs

Section 4.4: Optimal dual variables as marginal costs

EX: SIMPLEX ALGORITHM (LP DOORS \& WINDOWS)

$$
\min -3 x_{D}-5 x_{W}
$$

$$
\text { s.t. } x_{D}+s_{1}=4
$$

$$
2 x_{W}+s_{2}=12
$$

$$
3 x_{D}+2 x_{W}+s_{3}=18
$$

$$
x_{D}, x_{W}, s_{1}, s_{2}, s_{3} \geq 0
$$

- $\beta_{1}=(3,4,5)$:

SENSITIVE ANALYSIS

THE CORE IDEA

- let P in standard form $P: \min \{c x \mid A x=b, x \geq 0\}$
- when the simplex method stops with an optimal solution, it returns an optimal basis β and feasible primal and dual solutions x and u such that:

$$
\begin{array}{ll}
x=\left(x_{\beta}, x_{\neg \beta}\right)=\left(A_{\beta}^{-1} b, 0\right) & \\
x_{\beta} \geq 0 & \text { primal feasibility } \\
u^{T}=c_{\beta}^{T} A_{\beta}^{-1} & \\
\bar{c}^{T}=c^{T}-u^{T} A \geq 0 & \text { dual feasibility }
\end{array}
$$

- when the problem changes, check how these conditions are affected

models of real-world decision problems are often approximated:

- they rely on forecast/inaccurate data: a model is more reliable if its solutions are less sensitive to changes in the data
- they have incomplete knowledge of the problem: a model is more robust if its solutions are less sensitive to additions of variables/constraints
how to evaluate the sensitivity of an optimal solution of $P: \min \{c x \mid A x=b, x \geq 0\}$ to one local change in A, b or c without having to simulate every possible changes by solving from scratch the LP again and again ?

ADDING A NEW VARIABLE/COLUMN

new variable x_{n+1} and column $\left(c_{n+1}, A_{n+1}\right)$: like assuming $n+1 \notin \beta$ (with $x_{n+1}=0$)

- β remains a basis and $x_{\beta}=A_{\beta}^{-1} b, x_{\neg \beta \cup\{n+1\}}=0$ is primal feasible
- it remains optimal if $u^{T}=c_{\beta}^{T} A_{\beta}^{-1}$ is dual feasible, i.e.:

$$
\bar{c}_{n+1}=c_{n+1}-c_{\beta}^{T} A_{\beta}^{-1} A_{n+1} \geq 0
$$

and the optimal value $c_{\beta} x_{\beta}$ does not change

- otherwise the $n+1$-th direction is improving and we must run additional iterations of the primal simplex algorithm from β to reach an optimal basis

EXAMPLE: ADDING A VARIABLE

CHANGING THE RIGHT HAND SIDE VECTOR

$\beta=\{1,3\}$ optimal basis $x^{T}=(1,0,1), u^{T}=(2,1)$ primal-dual feasible, opt $=19$

$$
\begin{aligned}
P: \min & 13 x_{1}+10 x_{2}+6 x_{3}+\delta x_{4} \\
\text { s.t. } & 5 x_{1}+x_{2}+3 x_{3}+x_{4}=8 \\
& 3 x_{1}+x_{2}+x_{4}=3 \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{aligned}
$$

D: $\max 8 u_{1}+3 u_{2}$
s.t. $5 u_{1}+3 u_{2} \leq 13$
$u_{1}+u_{2} \leq 10$
$3 u_{1} \leq 6$
$u_{1}+u_{2} \leq \delta$

- β remains a basis, $x^{T}=(1,0,1,0)$ primal feasible
- $u^{T}=(2,1)$ remains feasible iff the new constraint is satisfied $u_{1}+u_{2}=3 \leq \delta$
- optimal solutions and values do not change when $\delta \geq 3$
- let $b_{k}^{\prime}=b_{k}+\delta$, i.e. $b^{\prime}=b+\delta e_{k}$ for some $k=1, \ldots, m$
- β remains a basis and $u^{T}=c_{\beta}^{T} A_{\beta}^{-1}$ remains dual feasible ($c^{T}-u^{T} A \geq 0$)
- β remains optimal if primal feasibility holds:

$$
A_{\beta}^{-1} b^{\prime}=A_{\beta}^{-1}\left(b+\delta e_{k}\right)=x_{\beta}+\delta h \geq 0
$$

where $h=A_{\beta}^{-1} e_{k}$ is the k-th column of A_{β}^{-1} and the optimal cost varies by $\delta u_{k}=u^{T}\left(b+\delta e_{k}\right)-u^{T} b$

- dual value u_{k} is the marginal cost (or shadow price) per unit increase of b_{k}
- otherwise we must run additional iterations of the dual simplex algorithm from β to reach an optimal basis

EXAMPLE: CHANGING b

$\beta=\{1,3\}$ optimal basis $x^{T}=(1,0,1), u^{T}=(2,1)$ primal-dual feasible, opt $=19$
$P: \min 13 x_{1}+10 x_{2}+6 x_{3}$

$$
D: \max (8+\delta) u_{1}+3 u_{2}
$$ s.t. $5 x_{1}+x_{2}+3 x_{3}=8+\delta$

$$
\text { s.t. } 5 u_{1}+3 u_{2} \leq 13
$$

$$
\begin{aligned}
& 3 x_{1}+x_{2}=3 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

$$
u_{1}+u_{2} \leq 10
$$

$3 u_{1} \leq 6$

- β remains a basis, u^{T} remains dual feasible
- $x^{T}=\left(1,0,1+\frac{\delta}{3}\right)$ is feasible iff $1+\frac{\delta}{3} \geq 0$
- $\left(1,0,1+\frac{\delta}{3}\right)$ is optimal while $\delta \geq-3$ and the optimum value is $19+2 \delta$
- increasing b_{1} by $\delta=1$ unit leads to a marginal cost $u_{1}=2$

CHANGING THE COST OF A NON-BASIC VARIABLE

- let $c_{j}^{\prime}=c_{j}+\delta$ for some non-basic $j \notin \beta$
- β remains a basis and $x_{\beta}=A_{\beta}^{-1} b \geq 0$ is primal feasible
- β remains optimal if $u^{T}=c_{\beta}^{T} A_{\beta}^{-1}$ is dual feasible:

$$
\bar{c}_{j}^{\prime}=\left(c_{j}+\delta\right)-u^{T} A_{j}=\bar{c}_{j}+\delta \geq 0
$$

and the optimal value $c_{\beta} x_{\beta}$ does not change

- reduced cost \bar{c}_{j} is the cost reduction value from which j becomes improving
- otherwise j is an improving direction and we must run additional iterations of the primal simplex algorithm from β to reach an optimal basis

EXAMPLE: CHANGING c (NON-BASIC)

$\beta=\{1,3\}$ optimal basis $x^{T}=(1,0,1), u^{T}=(2,1)$ primal-dual feasible, opt $=19$
$P: \min 13 x_{1}+(10+\delta) x_{2}+6 x_{3}$
s.t. $5 x_{1}+x_{2}+3 x_{3}=8$
$3 x_{1}+x_{2}=3$
$x_{1}, x_{2}, x_{3} \geq 0$

$D: \max 8 u_{1}+3 u_{2}$

s.t. $5 u_{1}+3 u_{2} \leq 13$ $u_{1}+u_{2} \leq 10+\delta$ $3 u_{1} \leq 6$

- β remains a basis, x^{T} remains primal feasible
- u^{T} remains feasible iff $u_{1}+u_{2}=3 \leq 10+\delta$
- optimal solutions and values do not change while $\delta \geq-7=-\bar{c}_{2}$
- x_{2} is profitable if c_{2} is below $10-\bar{c}_{2}=3$

EXAMPLE: CHANGING c (BASIC)

$\beta=\{1,3\}$ optimal basis $x^{T}=(1,0,1), u^{T}=(2,1)$ primal-dual feasible, opt $=19$
$P: \min (13+\delta) x_{1}+10 x_{2}+6 x_{3}$ s.t. $5 x_{1}+x_{2}+3 x_{3}=8$
$3 x_{1}+x_{2}=3$
$x_{1}, x_{2}, x_{3} \geq 0$
$D: \max 8 u_{1}+3 u_{2}$
s.t. $5 u_{1}+3 u_{2} \leq 13+\delta$
$u_{1}+u_{2} \leq 10$
$3 u_{1} \leq 6$

- β remains a basis, x^{T} remains primal feasible
- $u^{T}=\left(2,1+\frac{\delta}{3}\right)$ is feasible iff $u_{1}+u_{2}=2+1+\frac{\delta}{3} \leq 10$, i.e. $\delta \leq 21$
- and the optimum value increases by $x_{1} \delta=\delta$
- x_{1} is less profitable than x_{2} if c_{1} is above $10+21=31$
- let $c_{j}^{\prime}=c_{j}+\delta$ for some basic $j \in \beta$ and j is the l-th element of β i.e. $c_{\beta}^{\prime}=c_{\beta}+\delta e_{l}$
- β remains a basis and $x_{\beta}=A_{\beta}^{-1} b \geq 0$ is primal feasible
- β remains optimal if $u^{\prime T}=c_{\beta}^{\prime T} A_{\beta}^{-1}$ is dual feasible:

$$
\begin{aligned}
{\overline{c^{\prime}}}_{\neg \beta}^{T} & =c_{\neg \beta}^{T}-\left(c_{\beta}+\delta e_{l}\right)^{T} A_{\beta}^{-1} A_{\neg \beta}=\bar{c}_{\neg \beta}^{T}-\delta e_{l}^{T} A_{\beta}^{-1} A_{\neg \beta} \\
& =\bar{c}_{\neg \beta}^{T}-\delta g \geq 0
\end{aligned}
$$

where g is the l-th row of $A_{\beta}^{-1} A_{\neg \beta}$ (available in the simplex algorithm) and the optimal cost varies by $\delta x_{j}=\left(c^{\prime T}-c^{T}\right) x$

- x_{j} is the marginal cost per unit increase of c_{j}
- otherwise an improving direction exists and we must run additional iterations of the primal simplex algorithm from β to reach an optimal basis

ADDING A NEW INEQUALITY CONSTRAINT

- add a violated constraint $a_{m+1}^{T} x \geq b_{m+1}$; by substitution, assume that $a_{m+1, j}=0 \forall j \notin \beta$
- add a slack variable x_{n+1} and get a new basis $\beta^{\prime}=\beta \cup\{n+1\}$:

$$
A_{\beta^{\prime}}=\left(\begin{array}{cc}
A_{\beta} & 0 \\
a_{m+1}^{T} & -1
\end{array}\right) \quad A_{\beta^{\prime}}^{-1}=\left(\begin{array}{cc}
A_{\beta}^{-1} & 0 \\
a_{m+1}^{T} A_{\beta}^{-1} & -1
\end{array}\right)
$$

- $u^{T}=\left(c_{\beta}^{T} 0\right) A_{\beta^{\prime}}^{-1}=\left(c_{\beta}^{T} A_{\beta}^{-1} 0\right)$ is feasible as the reduced costs are unchanged:

$$
\bar{c}^{T}=\left(c^{T} 0\right)-\left(c_{\beta}^{T} 0\right) A_{\beta^{\prime}}^{-1} A=\left(\bar{c}^{T} 0\right)
$$

- we must run additional iterations of the dual simplex algorithm to recover primal feasibility
- for an equality constraint, we introduce an artificial variable (as in the two-phase method)

EXAMPLE: ADDING A CONSTRAINT

CHANGING A NON-BASIC COLUMN

$\beta=\{1,3\}$ optimal basis $x^{T}=(1,0,1), u^{T}=(2,1)$ primal-dual feasible, opt $=19$
$P: \min 13 x_{1}+10 x_{2}+6 x_{3}$
s.t. $5 x_{1}+x_{2}+3 x_{3}=8$
$3 x_{1}+x_{2}=3$
$x_{1}+x_{3}+x_{4}=1$
$x_{1}, x_{2}, x_{3}, x_{4} \geq 0$
$D: \max 8 u_{1}+3 u_{2}+u_{3}$
s.t. $5 u_{1}+3 u_{2}+u_{3} \leq 13$
$u_{1}+u_{2} \leq 10$
$3 u_{1}+u_{3} \leq 6$
$u_{3} \leq 0$

- $\beta=\{1,3,4\}$ is a basis, $u^{T}=(2,1,0)$ is dual feasible
- $x^{T}=(1,0,1,-1)$ is not primal feasible
- let $a_{i j}^{\prime}=a_{i j}+\delta$ for some non-basic $j \notin \beta$
- β remains a basis and $x_{\beta}=A_{\beta}^{-1} b \geq 0$ is primal feasible
- β remains optimal if $u^{T}=c_{\beta}^{T} A_{\beta}^{-1}$ is dual feasible:

$$
\begin{aligned}
\bar{c}_{j}^{\prime} & =c_{j}-c_{\beta}^{T} A_{\beta}^{-1}\left(A_{j}+\delta e_{i}\right) \\
& =\bar{c}_{j}-\delta u_{i} \geq 0
\end{aligned}
$$

and the optimal value $c_{\beta} x_{\beta}$ does not change

- otherwise j is an improving direction and we must run additional iterations of the primal simplex algorithm from β to reach an optimal basis

eXAMPLE: CHANGING A_{j} (NON-BASIC)

CHANGING A BASIC COLUMN

$\beta=\{1,3\}$ optimal basis $x^{T}=(1,0,1), u^{T}=(2,1)$ primal-dual feasible, opt $=19$
$P: \min 13 x_{1}+10 x_{2}+6 x_{3}$
s.t. $5 x_{1}+(1+\delta) x_{2}+3 x_{3}=8$
$3 x_{1}+x_{2}=3$
$x_{1}, x_{2}, x_{3} \geq 0$

- β remains a basis, x^{T} remains primal feasible
- u^{T} remains feasible iff $(1+\delta) u_{1}+u_{2}=3+\delta \leq 10$
- optimal solutions and values do not change while $\delta \leq 7=\frac{\bar{c}_{2}}{u_{1}}$

D: $\max 8 u_{1}+3 u_{2}$ s.t. $5 u_{1}+3 u_{2} \leq 13$

$$
(1+\delta) u_{1}+u_{2} \leq 10
$$

$3 u_{1} \leq 6$

- parametric simplex method: solve parametric LPs (e.g. with regularization)
- (progressive) column generation: solve LPs with many variables without knowing them a priori
- (progressive) constraint generation: solve LPs with many variables without knowing them a priori
- change variable bounds: e.g. in branch-and-bound
- implement the primal and the dual models of steel factory with Gurobipy
- get the dual optimal values: Constr.pi
- get the slack values: Constr. slack
- get the reduced costs: Var .rc
- how to interpret a zero slack value ?
- how to interpret a non-zero reduced cost ? simulate the change
- how to interpret a non-zero dual value ? simulate the change
- play also with the attributes (see the Gurobi documentation):
- Var: VBasis, SAObjLow/Up, SALBLow/Up, SAUBLow/Up
- Constr: CBasis, SASRHSLow/Up

EXERCISE (STEEL FACTORY): NOTES

READING:

- a zero slack value for a mill: the corresponding dual value is the marginal cost of an extra hour of availability of the mill
- a negative reduced cost for a product (that is not in the solution): how much the unit price of the product have to be raised to make it profitable / the marginal cost of producing 1 unit of the product (if feasible)
- be careful with the signs as the model is not in standard form

