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introduction

decision is optimization

select the best of all possible alternatives – the solutions –
regarding a quantitative criterion – the objective.

time: path with minimum travel duration, schedule with minimum total lateness

space: path with minimum travel distance, layout with minimumwasted space

money: design with minimum cost, operation with maximum profit

goods: design with maximum production, operation with minimum energy consumption

choice: work schedule for maximum satisfaction

quantity: state of minimum potential energy (equilibrium)
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modeling for solving

Amathematical optimization model is
an abstract representation of the problem solutions,
not explicitly as a list, a dataset, but implicitly as

relationships between unknowns (real-valued) functions over (real-valued)
variables

min { f(x) | g(x) ≤ 0, x ∈ Rn }

with f : Rn → R in the objective: the function to minimize
and g : Rn → Rm in the constraints: the relations to satisfy.
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solutions: theory vs practice

feasibility ? • models are approximate (e.g., abstract routes)
• data are uncertain (e.g., forecast travel times)
• data are truncated (floating-point numerical errors)

optimality ? • finite time complexity $= reachable (e.g. 290 operations)
• provable within a gap tolerance (f(x) ≤ f(y) + ε, ∀y)
• provable locally vs globally (f(x) ≤ f(y), ∀y ∈ V (x))

5

solving methods

analytical methods come from a provable theory, e.g.:
• min x2 − 4x+ 3, x ∈ [0, 5] (Fermat, derivative)
• shortest path in a graph (Dijkstra, Bellman)

numerical methods evaluate f(xk) iteratively at trial points (xk)

1st- or 2nd-order methods if driven by f ′(xk−1) or f ′′(xk−1)

derivative-free otherwise

guess xk f(xk) stop ?
k=0

compute/simulate

direction/step ?

k++
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different techniques for different classes of models

• with or without constraints

• single or multiple objectives

• fixed or uncertain data

• analytic or logic or graphic models

• linear or convex or nonconvex functions

• smooth or nonsmooth functions

• continuous or discrete decisions
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applications

operational research : operation, design and plan (routing, scheduling, packing,
cutting, rostering, allocating) of physical/economical systems in
logistics, energy, finance, etc.

optimal control : command u(t) to optimize trajectory x(t) s.t. x′(t) = g(x(t), u(t))

machine learning : find a best model/data match (e.g. a linear fit)

artificial intelligence : machines decide when they don’t dream of electric sheeps

game theory : multiple players, conflicting goals, best respective strategies
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mathematical programming

programming = planning (military/industrial) operations

minimize f(x)

subject to g(x) ≥ 0

x ∈ Rn

• x: the decision variables
• f : Rn → R: the objective function. Note: maximize f ≡ −minimize (−f)

• g : Rn → Rm: the constraints. Note: g(x) ≤ 0 ≡ −g(x) ≥ 0

solution/assignment X ∈ Rn

feasible solution X ∈ g−1(Rm
+ )

optimal solution X ∈ argmin{f(x) : g(x) ≥ 0, x ∈ Rn} 9

linear program

a mathematical programmin {f(x)|g(x) ≥ 0, x ∈ Rn}
with linear functions in constraints and objective:
min {cTx|Ax+ b ≥ 0, x ∈ Rn}, c ∈ Rn, A ∈ Rm×n, b ∈ Rm

Example: n = 3,m = 2,

x =




x1

x2

x3



, c =




1

0

0



, A =

(
5 3 −2

1 1 1

)
, b =

(
−4

1

)
min x1

s.t. 5x1 + 3x2 − 2x3 ≥ 4

x1 + x2 + x3 ≥ −1

x1, x2, x3 ∈ R

• This is the “and”: feasible solutions (x1, x2, x3) satisfy all constraints

• x )→ 5x2, (x, y) )→ 3xy are not linear (but quadratic)

10

how relevant is LP ?

• broad applicability:
format for practical decision problems,
approximation for convex problems,
basis for nonconvex/logic problems
(with discrete variables)

• easy to solve:
polynomial-time algorithms,
efficient practical algorithms
(e.g. restart, partial model),
nice properties: strong duality
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ex 1: nuclear waste management

A company eliminates nuclear wastes of 2 types A and B, by applying a sequence
of 3 processes I, II and III in any order. The processes I, II, III, have limited
availability, respectively: 450h, 350h, and 200h per month. The unit processing
times depend on the process and waste type, as reported in the following table:

process I II III
waste A 1h 2h 1h
waste B 3h 1h 1h

The profit for the company is 4000 euros to eliminate one unit of waste A and
8000 euros to eliminate one unit of waste B.

Objective: maximize the profit.
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how to model ?

1. decision variables: what a solution is made of ?

2. constraints: what is a feasible solution ?

3. objective: what is an optimal solution ?

4. check the units or convert

5. check LP format (linear, continuous, non-strict inequalities) or reformulate
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ex 1: nuclear waste management – LP model

• decision variables ?
• xA, xB the fraction of units of waste of type A or B to process each month

• constraints and objective ?
• definition domain of the variables (nonnegative)
• limited availability (in h/month) for each process
• maximize revenue (in keuros)

max 4xA + 8xB

s.t. xA + 3xB ≤ 450

2xA + xB ≤ 350

xA + xB ≤ 200

xA, xB ≥ 0
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ex 2: petroleum distillation

The two crude petroleum problem [Ralphs]

A petroleum company distills crude imported from Kuwait (9000 barrels
available at 20AC each) and from Venezuela (6000 barrels available at 15AC each),
to produce gasoline (2000 barrels), jet fuel (1500 barrels), and lubricant (500
barrels) in the following proportions:

gasoline jet fuel lubricant
Kuwait 0.3 0.4 0.2
Venezuela 0.4 0.2 0.3

(first column reads: producing 1 unit of gasoline requires 0.3 units of crude from Kuwait and
0.4 from Venezuela)

Objective: minimize the production cost.
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ex 2: petroleum distillation – LP model

• decision variables ?
• xK , xV the quantity (in thousands of barrels) to import from Kuwait or from
Venezuela

• constraints and objective ?
• availability for each crude, distillation balance for each product, production costs

min 20xK + 15xV

s.t. 0.3xK + 0.4xV ≥ 2

0.4xK + 0.2xV ≥ 1.5

0.2xK + 0.3xV ≥ 0.5

0 ≤ xK ≤ 9

0 ≤ xV ≤ 6
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Note on modelling

linearly equivalent formulations:
max f −min(−f)

ax ≤ b −ax ≥ −b

ax = b ax ≥ b and ax ≤ b

ax ≤ b ax+ s = b and s ≥ 0

x ∈ R x = y − z, y ≥ 0, z ≥ 0
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linear program in standard form

equality constraints and nonnegative variables:

min cTx

s.t. Ax = b

x ≥ 0

min
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj = bi, ∀i = 1, . . . ,m

xj ≥ 0 ∀j = 1, . . . , n

with c ∈ Rn, A ∈ Rm×n, b ∈ Rm
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reduction to standard form

Every linear program
min{cTx|Ax ≥ b, x ∈ Rn}

can be transformed into an equivalent problem in standard form

min{dT y|Ey = f, y ∈ Rp
+}

min x1

s.t. 5x1 − 3x2 ≥ 4

x1 + x2 ≥ −1

x1, x2 ∈ R

min (x+
1 − x−

1 )

s.t. 5(x+
1 − x−

1 )− 3(x+
2 − x−

2 )− z1 = 4

(x+
1 − x−

1 ) + (x+
2 − x−

2 )− z2 = −1

x+
1 , x

−
1 , x

+
2 , x

−
2 , z1, z2 ≥ 0
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reduction to standard form (recipe)

replace by

negative variable x ≤ 0 x = −z, z ≥ 0

free variable y free y = y+ − y−, y+, y− ≥ 0

slack constraint Ax ≥ b Ax− s = b, s ≥ 0

slack constraint Ey ≤ f Ey + u = f , u ≥ 0

maximization max cx −min(−c)x

max cTx+ dT y

s.t. Ax ≥ b

Ey ≤ f

x ≤ 0, y free

min (−c)T (−z) + (−d)T (y+ − y−)

s.t. A(−z)− s = b

E(y+ − y−) + u = f

z, y+, y−, s, u ≥ 0
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Ex: nuclear waste management – LP standard form

max 4xA + 8xB

s.t. xA + 3xB ≤ 450

2xA + xB ≤ 350

xA + xB ≤ 200

xA, xB ≥ 0

−min − 4xA − 8xB

s.t. xA + 3xB + s1 = 450

2xA + xB + s2 = 350

xA + xB + s3 = 200

xA, xB , s1, s2, s3 ≥ 0
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Ex: petroleum distillation – LP standard form

min 20xK + 15xV

s.t. 0.3xK + 0.4xV ≥ 2

0.4xK + 0.2xV ≥ 1.5

0.2xK + 0.3xV ≥ 0.5

0 ≤ xK ≤ 9

0 ≤ xV ≤ 6

min 20xK + 15xV

s.t. 0.3xK + 0.4xV − sG = 2

0.4xK + 0.2xV − sJ = 1.5

0.2xK + 0.3xV − sL = 0.5

xK + sK = 9

xV + sV = 6

xk, xV , sG, sJ , sL, sK , sV ≥ 0
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linear algebra review and notation (1)

matrix A ∈ Rm×n with entry aij in row 1 ≤ i ≤ m, column 1 ≤ j ≤ n

transpose AT ∈ Rn×m with aTji = aij

(column) vector a ∈ Rn ≡ Rn×1

scalar product a, b ∈ Rn, 〈a, b〉 = aT b = bTa =
∑n

j=1 ajbj

matrix product A ∈ Rm×p, B ∈ Rp×n, C = AB ∈ Rm×n with cij =
∑p

k=1 aikbkj .
matrix product is associative (AB)C = A(BC) and (AB)T = BTAT
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linear algebra review and notation (2)

linear combination
∑p

i=1 λixi ∈ Rn

of vectors x1, . . . , xp ∈ Rn with scalars λ1, . . . ,λp ∈ R
linearly independence

∑p
i=1 λixi = 0 ⇒ λ1 = · · · = λp = 0

vector-space span V = {
∑p

i=1 λixi | λ1, . . . ,λp ∈ R} ⊆ Rn

dimension dim(V ) = p if x1, . . . , xp are linearly independent, i.e. form a basis for V

row space of A ∈ Rm×n span of the rows rsA = {λTA,λ ∈ Rm} ⊆ Rn

column space of A ∈ Rm×n span of the columns csA = {Aλ,λ ∈ Rn} ⊆ Rm

rank of A ∈ Rm×n: rkA = dim(rsA) = dim(csA) ≤ min(m,n)
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Reading:

to go further:
read [Bertsimas-Tsitsiklis]:
Section 1.1

for the next class:
read [Bertsimas-Tsitsiklis]:
Section 1.5: Linear algebra background
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algebra of linear programming

A LP in standard form with c ∈ Rn, A ∈ Rm×n, b ∈ Rm hasm+ n constraints:

min cTx

s.t. Ax = b (m)

x ≥ 0 (n)

A feasible solution ≡ non-negative coefficients forming b as a linear combination
of the columns of A:

x1





a11
...

am1



+ x2





a12
...

am2



+ · · ·+ xn





a1n
...

amn



 =





b1
...
bm





25

modeling LPs



how to model ?

1. decision variables: what a solution is made of ?

2. constraints: what is a feasible solution ?

3. objective: what is an optimal solution ?

4. check the units or convert

5. check LP format (linear, continuous, non-strict inequalities) or reformulate
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ex 3: network flow
network flow

A company delivers retail stores in 9 cities in Eu-
rope from its unique factory USINE.
How to manage production and transportation
in order to:

• meet the demand of each store,

• not exceed the production limit,

• not exceed the line capacities,

• minimize the transportation costs ?
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ex 3: graph model

• find a flow on a capacitated
directed graph

• flow conservation at each
node: IN=OUT

USINE

LILLE

BREST

NICE

LONDRES

CAEN

NANCY

RENNES

PARIS

NANTES

LYON

TOULOUSE

MILAN

350

310

320
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ex 3: LP model

• x! the quantity of products transported on line # = (i, j) ∈ LINES
• TRANSITS= {LILLE,NICE,BREST}

min
∑

!∈LINES
COST!x!

s.t.
∑

i∈TRANSITS
x(USINE,i) ≤ MAXPROD

∑

i∈TRANSITS
x(i,j) ≥ DEMANDj , ∀j ∈ STORES

x(USINE,i) =
∑

j∈STORES
x(i,j), ∀i ∈ TRANSITS

0 ≤ x! ≤ CAPACITY!, ∀# ∈ LINES.

29



ex 4: minimum distance

minimize L1 and L∞ norms
Find a solution x ∈ Rn of the system of equation Ax = b, A ∈ Rm×n, b ∈ Rm of
minimum

• L1 norm:
‖x‖1 =

∑

j=1,...,n

|xj |

• L∞ norm:
‖x‖∞ = max

j=1,...,n
|xj |
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ex 4: LP models min ‖x‖1 = min
∑

j |xj|

how to model |x|, x ∈ R ? x

y

variable splitting:

|x| = min{x++x− |x = x+−x−, x+, x− ≥ 0}

min
n∑

j=1

(x+j + x−j )

s.t. Ax = b,

xj = x+j − x−j , ∀j
x+j , x

−
j ≥ 0, ∀j

supporting plane model:

|x| = max{x,−x} = min{y | y ≥ x, y ≥ −x}

min
n∑

j=1

yj

s.t. Ax = b,

yj ≥ xj , ∀j
yj ≥ −xj , ∀j

Note thatmin
∑

|xj | =
∑

min |xj | because |xj | ≥ 0 31

ex 4: LP model min ‖x‖∞ = minmaxj |xj|

• y ≥ |xj | ⇐⇒ y ≥ xj ∧ y ≥ −xj

• y ≥ maxj |xj | ⇐⇒ y ≥ xj ∧ y ≥ −xj (∀j)

min y

s.t. Ax = b,

y ≥ xj , ∀j
y ≥ −xj , ∀j
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ex 4: norms and distances

• min |x| = min{y ≥ 0 | y ≥ x AND y ≥ −x} is a linear program
but NOTmax |x| = max{x,−x} = max{y ≥ 0 | y = x OR y = −x}

• we will see how to formulate disjunctions using binary (0/1) variables
e.g. to formulatemax ‖x‖1 andmax ‖x‖∞ as I(nteger)LPs

• modeling ‖x‖p = (
∑

j |xj |p)1/p for p ≥ 2 usually requires nonlinear functions
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ex 4: data fitting

data fitting [Bertsimas-Tsitsiklis]

Givenm observations – data points ai ∈ Rn and associate values bi ∈ R, i = 1..m–
predict the value of any point a ∈ Rn according to a linear regression model ?

a best linear fit is a function :

b(a) = aTx+ y, for chosen x ∈ Rn, y ∈ R

minimizing the residual/prediction error |b(ai)− bi|, globally over the dataset
i = 1..m, e.g:

Least Absolute Deviation or L1-regression:

min
∑

i

|b(ai)− bi|
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ex 4: data fitting – LAD regression (1)

supporting planes

min
∑

i

di

s.t. di ≥
∑

j

aijxj + y − bi, ∀i

di ≥ −(
∑

j

aijxj + y − bi), ∀i

d ∈ Rm, x ∈ Rn, y ∈ R

sparse supporting planes

min
∑

i

di

s.t. ri =
∑

j

aijxj + y − bi, ∀i

di ≥ ri, ∀i
di ≥ −ri, ∀i
r, d ∈ Rm, x ∈ Rn, y ∈ R

Secondmodel is better for many algorithms: larger (more variables and
constraints) but its constraint matrix is less dense (more zeros)
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ex 4: data fitting – LAD regression (2)

variable splitting

min
∑

i

d+i + d−i

s.t. d+i − d−i =
∑

j

aijxj + y − bi, ∀i

d+i , d
−
i ≥ 0, ∀i

x ∈ Rn, y ∈ R

dual model (see later)

max
∑

i

bizi

s.t.
∑

i

aijzi = 0, ∀j

∑

i

zi = 0,

zi ∈ [−1, 1], ∀i

Both models are equivalent by strong duality (see later) but the second one has
much fewer variables and non-bound constraints. The best algorithms for LAD
regression (Barrodale-Roberts) are special purpose simplex methods (see later)
for dense matrices and absolute values.
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Reading:

to go further:
read [Bertsimas-Tsitsiklis]:
Sections 1.2, 1.3, 1.4

for the next class:
read [Bertsimas-Tsitsiklis]:
Section 2.1: Polyhedra and convex sets
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geometry and algebra

ex 5: doors & windows

A factory made of 3 workshops produces doors and windows. The workshops A,
B, C are open 4, 12 and 18 hours a week, respectively. Assembling one door
occupies workshop A for 1 hour and workshop C for 3 hours and the door is sold
3000 euros. Assembling one window occupies workshops B and C for 2 hours
each and a window is sold 5000 euros. How to maximize the revenue ?
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ex 5: LP doors & windows

• decision variables ?
• xD, xW (fractional) number of doors and windows produced a day

• constraints and objective?
• availability of each workshop (in hours/day), nonnegativity of the variables
• maximize revenue (in keuros)

max 3xD + 5xW

s.t. xD ≤ 4

2xW ≤ 12

3xD + 2xW ≤ 18

xD, xW ≥ 0
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graphical representation (ex: doors & windows)

max 3xD + 5xW

s.t. xD ≤ 4

2xW ≤ 12

3xD + 2xW ≤ 18

xD, xW ≥ 0 0 1 2 3 4
0

2

4

6

(3,2)

15
27

36

xD

x
W

• solution space R2

• linear constraint ≡ halfspace, ex: {x ∈ R2 | 3xD + 2xW ≤ 18}
• feasible region ≡ intersection of a finite number of halfspaces ! polyhedron
• objective: z = 3xD + 5xW , optimum: move the line up z ↗ until unfeasible
• optimum solution: 2x∗

W = 12 and 3x∗
D + 2x∗

V = 18⇒ x∗
W = 6, x∗

D = 2, z∗ = 36
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graphical representation (ex: petroleum distillation)

min 20xK + 15xV

s.t. 3xK + 4xV ≥ 20

4xK + 2xV ≥ 15

2xK + 3xV ≥ 5

0 ≤ xK ≤ 9

0 ≤ xV ≤ 6

0 2 4 6 8
0

2

4

6

52.5

xK

x
V

• constraint 2xK + 3xV ≥ 5 is redundant

• constraints 3xK + 4xV ≥ 20 and 4xK + 2xV ≥ 15 are active/binding at the
optimum (2, 3.5) but not constraints xK ≥ 0 or xV ≤ 6
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graphical representation (ex: nuclear waste)

max 4xA + 8xB

s.t. xA + 3xB ≤ 450

2xA + xB ≤ 350

xA + xB ≤ 200

xA, xB ≥ 0 0 200 400
0

100

200

300

1.3 Meuros

xA

x
B
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geometry of linear programming

• the feasible region is defined as a polyhedron
• thus it is convex (intersection of convex regions)

where are the optimal solutions ?
intuition: the optimum of a linear function on a polyhedron is
reached at a “corner point”
(under conditions of existence)

idea: solving an LP = evaluate the corner points progressively 43

characterizing the corner points
Theorem [BT 2.3]
A nonempty polyhedron P = {x ∈ Rn|Ax ≥ b}, A ∈ Rm×n, b ∈ Rm and a feasible
solution x̂ ∈ P, then these are equivalent: x̂ is a

vertex extreme point basic feasible solution

∃c ∈ Rn, ∀x ∈ P \ {x̂}, x̂ = λx+ (1− λ)y, ∃n linearly independent rows
cT x̂ < cTx x, y ∈ P ⇒ λ = 0 ai in A s.t. aix = bi

vertices and extreme points are model-independent; their number ≤
(
m

n

)
is

finite but large and not known a priori
44



characterizing the corner points (proof)
Theorem [BT 2.3]
x̂ ∈ P = {x ∈ Rn|Ax ≥ b}, A ∈ Rm×n, b ∈ Rm is either none or all together:
vertex extreme point basic feasible solution
∃c ∈ Rn, ∀x ∈ P \ {x̂}, x̂ = λx+ (1− λ)y, ∃n linearly independent rows
cT x̂ < cTx x, y ∈ P ⇒ λ = 0 ai in A s.t. aix = bi

Proof:

• x̂ vertex⇒ xpoint: ∃c, ∀x, y ∈ P \ {x̂}, cT x̂ < cTx and cT x̂ < cT y then
cT x̂ < λcTx+ (1− λ)cT y , ∀0 ≤ λ ≤ 1, then x̂ '= λx+ (1− λ)y

• x̂ not basic⇒ not xpoint: let I = {i|aix̂ = bi} then rk(aT
I ) < n then ∃d ∈ Rn, aT

I d = 0. Let
x = x̂+ ε.d and y = x̂− ε.d then x̂ = x+y

2 and x, y ∈ P: aT
i x = aT

i y = bi if i ∈ I, otherwise
aT
i x̂ > bi then aT

i x > bi and aT
i y > bi for ε small enough.

• x̂ basic feasible⇒ vertex: let c =
∑

i∈I ai then cT x̂ =
∑

i∈I bi ≤ cTx ∀x ∈ P, and equality
holds only for x̂ the unique solution of system aT

I x = bI .
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existence of optima and extreme points

Theorem: existence of an extreme point [BT 2.6]
nonempty P = {x ∈ Rn|Ax ≥ b}, A ∈ Rm×n has at least one extreme point
⇐⇒ it has no line: ∀x ∈ P , d ∈ Rn, {x+ θd|θ ∈ R} )⊆ P
⇐⇒ A has n linearly independent rows

Theorem: existence of an optimal solution [BT 2.8]
Minimizing a linear function over P having at least one extreme point, then:
either optimal cost is −∞, or an extreme point is optimal.

P
unbounded
∞ optima / 0 vertex
∞ optima including 1 vertex

P
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existence of extreme points (proof)

Theorem: existence of an extreme point [BT 2.6]
nonempty P = {x ∈ Rn|Ax ≥ b}, A ∈ Rm×n has at least one extreme point
⇐⇒ it has no line: ∀x ∈ P , d ∈ Rn, {x+ θd|θ ∈ R} )⊆ P
⇐⇒ A has n linearly independent rows

Proof:

• no line⇒ xpoint: let x ∈ P “of rank k”, i.e. I = {i|aix = bi} has k lin. indep. rows, if not
basic then k < n and ∃d, aT

I d = 0. The line (x, d) satisfies aT
I (x+ θd) = bi and it intersects

the border of P, i.e. ∃θ̂, j '∈ I s.t. aT
j (x+ θ̂d) = bj, then aT

j d '= 0, then x′ = x+ θ̂d ∈ P is of
rank k + 1. Repeat until reaching n.

• (ai)i∈I linearly independent⇒ no line: if P contains a line x+ θdwith d '= 0 then
ai(x+ θd) ≥ bi ∀θ then aid = 0 ∀i ∈ I then d = 0.
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existence of optima (proof)

Theorem: existence of an optimal solution [BT 2.8]
Minimizing a linear function over P having at least one extreme point, then:
either optimal cost is −∞, or an extreme point is optimal.

Proof:

• let x ∈ P of rank k < n, then ∃d, aT
I d = 0, ∀i ∈ I = {i|aix = bi}. Assume cT d ≤ 0 (or use

−d) then line (x, d) intersects the border of P at some x′ = x+ θd ∈ P of rank k + 1 (see
previous proof). If cT d = 0 then cTx′ = cTx. If cT d ≤ 0 then assume θ > 0 (or optimal
cost=−∞), then cTx′ < cTx. Repeat until reaching rank n, i.e. a basic feasible solution.

• let x∗ be a basic feasible solution of P of minimum cost, then cTx∗ ≤ cTx ∀x ∈ P

48



optima and extreme points (exercise)

show that:

• P = {(x, y) ∈ R2 | x+ y = 0} is nonempty and has no extreme point

• (x, y) -→ 5(x+ y) has a finite optimum on P
• min{5(x+ y) | (x, y) ∈ P} has an optimal solution which is an extreme point
(not of P)

answer: put in standard form
min{5(x+ − x− + y+ − y−) | x+ − x− + y+ − y− = 0, x+, x−, y+, y− ≥ 0} reaches its
optimum at (0, 0, 0, 0)
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constructing a basic solution
Theorem: basic solution for standard form [BT 2.4]
A nonempty polyhedron in standard form P = {x ∈ Rn|Ax = b, x ≥ 0}withm

linear independent rows A ∈ Rm×n: x ∈ Rn is a basic solution iff Ax = b and there
existsm linear independent columns Aj, j ∈ β ⊂ {1, . . . , n} s.t. xj = 0, ∀j )∈ β.

The columns Aj, j ∈ β is a basis of Rm and form an invertible basis matrix
A|β ∈ Rm×m; xj, j ∈ β are the basic variables

Algorithm: find a basic solution

1. pickm linear independent columns Aj, j ∈ β ⊂ {1, . . . , n}
2. fix xj = 0, ∀j )∈ β

3. solve the system ofm equations in Rm: A|βx|β = b

4. the resulting basic solution x is feasible iff x|β = A−1
|β b ≥ 0
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basic solution for standard form (proof)
Theorem: basic solution for standard form [BT 2.4]
A nonempty polyhedron in standard form P = {x ∈ Rn|Ax = b, x ≥ 0}withm

linear independent rows A ∈ Rm×n: x ∈ Rn is a basic solution iff Ax = b and there
existsm linear independent columns Aj, j ∈ β ⊂ {1, . . . , n} s.t. xj = 0, ∀j )∈ β.

Proof:

• ⇐: let x ∈ Rn and β as in the statement, then A|βx|β = Ax = b and x|β = A−1
|β b is

uniquely determined, then span(A|β) = Rn (otherwise ∃d, A|βd = 0 and A|βy = bwould
have many solutions x|β + θd)

• ⇒: let x basic and I = {i|xi '= 0}, then the active constraints (Ax = b and xi = 0 ∀i '∈ I)
forms a systemwith an unique solution (otherwise for two solutions x1 and x2 then
d = x1 − x2 would be orthogonal, i.e. not in the span=Rn) then A|Ix|I = b has a unique
solution and then A|I has lin. ind. columns. Since A hasm lin. ind. rows then there
existm− |I| columns lin. ind. with A|I and, by def of I, xi = 0 for any other column i.
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basic solutions (ex: LP doors & windows)

max 3xD + 5xW

s.t. xD + s1 = 4

2xW + s2 = 12

3xD + 2xW + s3 = 18

xD, xW , s1, s2, s3 ≥ 0 0 1 2 3 4
0

2

4

6

xD

x
W

A =




1 0 1 0 0

0 2 0 1 0

3 2 0 0 1





β1 = (3, 4, 5),β2 = (1, 2, 5),β3 = (1, 4, 5),β4 = (1, 2, 3)

xβ1 = (0, 0, 4, 12, 18), xβ2 = (4, 6, 0, 0,−6), xβ3 = (4, 0, 0, 12, 6), xβ4 = (2, 6, 2, 0, 0)
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degeneracy

one basis defines one unique basic solution
but one basic solution may correspond to different bases, when it is
degenerate ⇐⇒ more than n active constraints

⇐⇒ some basic variables are set to 0.

basic nonfeasible degenerate ?
basic feasible nondegenerate ?
basic feasible degenerate ?

D

B and E

A and C
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ex 6: capacity planning

capacity planning [Bertsimas-Tsitsiklis]

find a least cost electric power capacity expansion plan:

• planning horizon: the next T ∈ N years

• forecast demand (in MW): dt ≥ 0 for each year t = 1, . . . , T

• existing capacity (oil-fired plants, in MW): et ≥ 0 available for each year t
• options for expanding capacities: (1) coal-fired plant and (2) nuclear plant

• lifetime (in years): lj ∈ N, for each option j = 1, 2

• capital cost (in euros/MW): cjt to install capacity j operable from year t
• political/safety measure: share of nuclear should never exceed 20% of available
capacity
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ex 6: LP model

• decision variables, xjt: installed capacity (in MW) of type j = 1, 2 starting at
year t = 1, . . . , T

• constraints, each year: total capacity meets the demand + nuclear share
• implied variables, yjt available capacity (in MW) j = 1, 2 for year t

min
T∑

t=1

2∑

j=1

cjtxjt

s.t. yjt −
t∑

s=max{1,t−lj+1}

xjs = 0, ∀j = 1, 2, t = 1, . . . , T

y1t + y2t − ut = dt − et, ∀t = 1, . . . , T

8y2t − 2y1t + vt = 2et, ∀t = 1, . . . , T

xjt ≥ 0, yjt ≥ 0, ut ≥ 0, vt ≥ 0 ∀j = 1, 2, t = 1, . . . , T
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ex: basic solution (capacity planning)

min
T∑

t=1

2∑

j=1

cjtxjt

s.t. yjt −
t∑

s=max{1,t−lj+1}
xjs = 0, ∀j = 1, 2, t = 1, . . . , T

y1t + y2t − ut = dt − et, ∀t = 1, . . . , T

8y2t − 2y1t + vt = 2et, ∀t = 1, . . . , T

xjt ≥ 0, yjt ≥ 0, ut ≥ 0, vt ≥ 0 ∀j = 1, 2, t = 1, . . . , T





L 0 I 0 0 0

0 L 0 I 0 0

0 0 I I −I 0

0 0 −2I 8I 0 I









x1

x2

y1
y2
u

v





=





0

0

d− e

2e





n = 6T variables,m = 4T , A has linearly independent rows;
I: identity matrix, L: lower triangular matrix of 1s and 0s basic solution
(0, 0, 0, 0, e− d, 2e) is feasible iff et ≥ dt, ∀t,
degenerate (4T > n−m zeros), other basis e.g (x1, x2, u, v)
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ex: basic solution and degeneracy (capacity planning)
Exercise: reformulate by dropping the redundant variables y1 and y2, find a basic
solution, and give conditions of degeneracy

min
T∑

t=1

2∑

j=1

cjtxjt

s.t.
t∑

s=max{1,t−l1+1}
x1s +

t∑

s=max{1,t−l2+1}
x2s − ut = dt − et, ∀t = 1, . . . , T

8
t∑

s=max{1,t−l2+1}
x2s − 2

t∑

s=max{1,t−l1+1}
x1s + vt = 2et, ∀t = 1, . . . , T

xjt ≥ 0, ut ≥ 0, vt ≥ 0 ∀j = 1, 2, t = 1, . . . , T

(
L L −I 0

−2L 8L 0 I

)




x1

x2

u

v




=

(
d− e

2e

)

basic solution (0, 0, e− d, 2e) is feasible iff et ≥ dt, ∀t,
degenerate iff ∃t, et = 0 or et = dt
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moving to another basic solution
Adjacency

• two basic solutions x and y are adjacent if there exists n− 1 linearly
independent constraints active at x and y

• the line segment between 2 adjacent basic feasible solutions is an edge of P
• (nondegenerate) adjacent basic feasible solutions correspond to adjacent
bases (in standard form), i.e. that sharem− 1 columns
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summary

• the feasible set of an LP is a polyhedron P
• if P is nonempty and bounded, then (i) there exists an optimal solution which
is an extreme point

• if P is unbounded, then either (i), or (ii) there exists an optimal solution but
no extreme point (not in standard form), or (iii) the optimal cost is infinite

• if (i) then the LP can be solved in a finite (probably exponential) number of
steps by evaluating all extreme points

Instead of complete enumeration: the simplex algorithmmoves along the edges
of P while improving the objective
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reading:

to go further:
read [Bertsimas-Tsitsiklis]:
Sections 2.2, 2.3, 2.4, 2.5, 2.6

for the next class:
read [Bertsimas-Tsitsiklis]:
Section 1.6: Algorithms and operation count
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the simplex methods

review

• min cx over P = {Ax = b, x ≥ 0}, A ∈ Rm×n, rk(A) = m reaches its optimum at a
basic feasible solution

• a basis β ⊆ {1, . . . , n} is made ofm linearly independent columns of A and the
associated basic solution is: xβ = A−1

β b, x¬β = 0

• adjacent basic solutions sharem− 1 basic variables: β′ = β ∪ {j′} \ {j′′}
• adjacent basic solutions may coincide if degenerate (if xj′ = xj′′ = 0)

the simplex method goes from a basic feasible solution to an adjacent one as the
cost decreases
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feasible improving direction

feasible direction from x ∈ Rn

d ∈ Rn such that ∃θ > 0, x+ θd ∈ P
improving direction from x ∈ Rn

d ∈ Rn such that cT d < 0

following a feasible improving direction dwith a step θ > 0 leads to a feasible
solution x′ = x+ θd ∈ P of better cost cTx′ = cTx+ θ.cT d < cx
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feasible improving basic direction

Let x be a basic feasible solution of basis β, and j′ '∈ β:

the j′th basic direction

d ∈ Rn: dj′ = 1, dj = 0, ∀j '∈ β ∪ {j′}, and Ad = 0 (i.e. dβ = −A−1
β Aj′)

is a feasible direction if x nondegenerate:

• xβ > 0 ⇒∃θ > 0, xβ + θdβ ≥ 0⇒ x+ θd ≥ 0

• Ad = Aβdβ +Aj′ = 0 ⇒ ∀θ > 0, A(x+ θd) = Ax = b

reduced cost of nonbasic variable xj′

c̄j′ = cT d = cj′ − cTβA
−1
β Aj′

• c̄j′ = cT d = cTx′ − cTx is the cost deviation when θ = 1 and x′ = x+ d

• d is an improving direction iff c̄j′ < 0

• the reduced cost of a basic variable j ∈ β is always 0: c̄j = cj − cTβA
−1
β Aj = cj − cTβ ej = 0

63



example: basic improving direction

minx≥0 2x1 + x2 + x3 + x4

s.t. x1 + x2 + x3 + x4 = 2

2x1 + 3x3 + 4x4 = 2

• m = 2, n = 4, rk(A) = 2

• β = {1, 2} is a basis
• x = (1, 1, 0, 0) feasible nondegenerate (xj > 0 ∀j ∈ β)

• basic direction j = 3: d3 = 1, d4 = 0, Ad =
(

d1 + d2 + 1

2d1 + 3

)
= 0 ⇒ dβ =

(
d1
d2

)
=

(
−3/2

1/2

)

• improving direction: c̄ = cT d = 2(−3/2) + (1/2) + 1 = −3/2 < 0
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step length θ

β basis of x feasible nondegenerate, d feasible direction to j′ '∈ β s.t. cT d = c̄j′ < 0

Theorem [BT 3.2]
if d ≥ 0 then the LP is unbounded, otherwise
if j′′ ∈ argmin{−xj/dj , j ∈ β, dj < 0} and θ = −xj′′/dj′′ then x′ = x+ θd is a basic
feasible solution of basis β′ = β ∪ {j′} \ {j′′}: j′ enters the basis, j′′ exits the basis.

θ is the highest value s.t. x′ ∈ P, i.e. s.t. one (or more) new active constraint x′
j′′ ≥ 0

Proof:

• by construction, Ax′ = Ax+ θAd = Ax = b then
x′ ∈ P ⇐⇒ xj + θdj ≥ 0 ∀j ⇐⇒ xj + θdj ≥ 0 ∀j ∈ β : dj < 0.

• θ > 0 since x nondegenerate (xβ > 0)

• if d ≥ 0 then x+ θd ∈ P ∀θ > 0 and c(x+ θd) ↘when θ ↗

• A−1
β Aj = ej, ∀j ∈ β \ {j′′}, andA−1

β Aj′ = −dβ has a nonzero j′′ component⇒ {Aj , j ∈ β′}
are linear independent⇒ β′ is a basis
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example: basic improving direction (cont.)

minx≥0 2x1 + x2 + x3 + x4

s.t. x1 + x2 + x3 + x4 = 2

2x1 + 3x3 + 4x4 = 2

• β = {1, 2} is a basis: x = (1, 1, 0, 0) feasible nondegenerate

• basic feasible improving direction j = 3: d = (−3/2, 1/2, 1, 0), c̄3 = cT d = −3/2

• x′ = x+ θd ≥ 0 ⇒ x′
1 = 1− (3/2)θ ≥ 0 ⇒ θ ≤ 2/3

• x′ = (0, 4/3, 2/3, 0) basic feasible solution β′ = {2, 3}, cx′ = cx+ θc̄3 = cx− 1
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optimality condition

Theorem [BT 3.1]
Let x be a basic feasible solution of basis β and c̄ ∈ Rn the vector of reduced costs.

• if c̄j ≥ 0 ∀j '∈ β then x is optimal

• if x is optimal and nondegenerate then c̄ ≥ 0

Proof:
(⇒) for any y ∈ P, let d = y − x and c¬β ≥ 0:
Aβdβ +A¬βy¬β = Ad = Ay −Ax = b− b = 0 ⇒ dβ = −A−1

β A¬βy¬β ⇒
cT y − cTx = cTβ dβ + cT¬βy¬β = (cT¬β − cTβA

−1
β A¬β)y¬β = c̄¬βy¬β ≥ 0

(⇐) if x nondegenerate and c̄j < 0, then j is nonbasic and of feasible improving direction,
then x nonoptimal
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example: basic improving direction (cont.)

minx≥0 2x1 + x2 + x3 + x4

s.t. x1 + x2 + x3 + x4 = 2

2x1 + 3x3 + 4x4 = 2

• note that optimum ≥ 2 since cx = x1 + 2, ∀x feasible
• β = {2, 3} is a basis with x = (0, 4/3, 2/3, 0) nondegenerate
• basic directions are not improving:

• j = 1: d = (1,−1/3,−2/3, 0) and c̄1 = cd = 1 ≥ 0

• j = 4: d = (0, 1/3,−4/3, 1) and c̄4 = cd = 0 ≥ 0

• then x is optimal
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The simplex method (simple case)

steps howto:
1. get a basis β findm linearly independent columns
2. get a basic feasible x x¬β = 0, xβ = A−1

β b if xβ ≥ 0

halt condition (optimality) c̄ = c− cTβA
−1
β A ≥ 0 if nondegenerate

3. find an improving direction any j′ '∈ β s.t. c̄j′ < 0 if nondegenerate
halt condition (unboundness) dβ = −A−1

β Aj′ ≥ 0

4. find the largest step length any j′′ ∈ argmin{−xj/dj | j ∈ β, dj < 0}
5. update the basis β := β ∪ {j′} \ {j′′}
6. goto 2 x := x− (xj′′/dj′′)d
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the simplex method

convergence [BT 3.3]
if P '= ∅ and every basic feasible solution is nondegenerate then the simplex
method terminates after a finite number of iterations with either an optimal
basis β or with some direction d ≥ 0, Ad = 0, cT d < 0, and the optimal cost is −∞

Proof:

• cx decreases at each iteration, all x are basic feasible solutions, the number of
basic feasible solutions is finite
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pivoting rules

• choice of the entering column j′ '∈ β s.t. c̄j′ < 0, e.g.:
• largest cost decrease per unit change: min c̄j
• largest cost decrease: min θc̄j
• smallest subscript: min j

• choice of the exiting column j′′ ∈ argmin{−xj/dj | j ∈ β, dj < 0}
• trade-off between computation burden and efficiency,
e.g. compute a subset of reduced costs
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in case of degenerary ?

• if x is degenerate with xj = 0 and dj < 0 for some j ∈ β, then θ = 0: the basis
changes but not the basic feasible solution

• a sequence of basis changes may lead to a cost reducing feasible direction or it
may cycle

• to avoid cycles and ensure convergence: select the smallest subscript pivoting
rules for both entering and exiting columns (see [Bertsimas-Tsitsiklis] Section
3.4 for details)
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the initial basic feasible solution ?

• if P = {Ax ≤ b, x ≥ 0}, then we directly get a basis from the slack variables:
P = {Ax+ Is = b, x ≥ 0, s ≥ 0}

• if the problem is already in standard formmin{cx,Ax = b, x ≥ 0}, then we can
first solve the auxiliary LP:

min{1.y, Ax+ Iy = b, x ≥ 0, y ≥ 0}

if optimum is 0 then we get a feasible basic solution for the original LP,
otherwise it is unfeasible (see [Bertsimas-Tsitsiklis] Section 3.5 for details)
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implementations

• each iteration involves costly arithmetic operations:
• computing uT = cTβA

−1
β or A−1

β Aj takes O(m3) operations
• computing c̄j = cj − uTAj for all j *∈ β takes O(mn) operations

• revised simplex: update matrix A−1
β∪{j′′}\{j′} from A−1

β in O(mn)

• full tableau: maintain and update them× (n+ 1)matrix Aβ−1(b|A)

• specific data structures for sparse (many 0 entries in A) vs. dense matrices

• in theory, complexity is exponential in the worst case: the LPmay have 2n

extreme points and the simplex method visits them all

• in practice, sophisticated implementations of the simplex method perform
often better than polynomial-time algorithms (interior point/barrier,
ellipsoid) and have additional features (duality, restart)

(see [Bertsimas-Tsitsiklis]Section 3.3 for details)
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ex: simplex algorithm (LP doors & windows)

min − 3xD − 5xW

s.t. xD + s1 = 4

2xW + s2 = 12

3xD + 2xW + s3 = 18

xD, xW , s1, s2, s3 ≥ 0 β1 β2

d2

d1

β3

xD

x
W

• start at β1 = (3, 4, 5): xβ1 = (0, 0, 4, 12, 18) (feasible nondegenerate)

• d1 = (1, 0,−1, 0,−3), c̄1 = −3, and d2 = (0, 1, 0,−2,−2), c̄2 = −5 both improving

• choose j′ = 1: θ =min(4/1, 18/3) = 4, j′′ = 3, β2 = (1, 4, 5), xβ2 = (4, 0, 0, 12, 6)

• or choose j′ = 2: θ =min(12/2, 18/2) = 6, j′′ = 4, β3 = (2, 3, 5), xβ3 = (0, 6, 4, 0, 6)
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duality

duality: motivation

P : z = min {x2 + y2 | x+ y = 1 } (not linear, still convex)

• unconstrained smooth convex optimization is easy: zero of the derivative
• penalization methods: Pu : zu = min x2 + y2 + u(1− x− y)

relax the constraints and penalize the violations with price/multiplier u ∈ R
• provides a lower bound zu ≤ z:
(x, y) feasible for P ⇒ feasible for Pu and zu ≤ x2 + y2 + u(1− x− y) = x2 + y2

• Pu is a relaxation of P
• the optimal solution of Pu is (u/2, u/2): ∇c(x, y) = 0 iff (2x− u, 2y − u) = 0

• for u = 1: (1/2, 1/2) is both optimal for P1 and feasible for P ,
thus it is optimal for P : 1/2 = z1 ≤ z ≤ (1/2)2 + (1/2)2 = 1/2
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lagrangian multipliers

P : z = min cTx

s.t. Ax = b

x ≥ 0

Pu : zu = min cTx+ uT (b−Ax)

s.t. x ≥ 0

with multipliers u ∈ Rm

• lagrangian problems Pu, u ∈ Rm provide lower bounds zu ≤ z

• dual problem: find the tightest (greater) lower bound

D : d = maxu∈Rmzu

• if x is optimal for some Pu and satisfies Ax = b then x is optimal for P and d = z
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this class: properties of LP duality

• if P is an LP thenD is also an LP and z = dwhen finite (strong duality)

• the dual ofD is P and the constraints of P correspond to the variables ofD
(and vice versa)

• the primal simplex algorithm also computes solutions in the dual space and
stops when the basis is dual feasible

• the dual simplex algorithm also computes solutions in the primal space and
stops when the basis is primal feasible

• sensitive analysis / restart when problem changes: check how to recover
feasibility in the primal or in the dual space
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dual linear program
Theorem

• the dual of a linear program is a linear program:

(P ) : min cTx

s.t. Ax = b, x ≥ 0

(D) : max uT b

s.t. uTA ≤ cT

• the dual of D is the primal P

• equivalent forms of P give equivalent forms ofD

Proof:

• zu = minx≥0cTx+ uT (b−Ax) = uT b+minx≥0(cT − uTA)x

• zu =

{
uT b if (cT − uTA) ≥ 0

−∞ otherwise
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how to build the dual ?
primal/dual correspondence

min max
cost vector c RHS vector b

matrix A matrix AT

constraint aix = bi free variable ui ∈ R
constraint aix ≥ bi nonnegative variable ui ≥ 0

free variable xj ∈ R constraint uTAj = cj
nonnegative variable xj ≥ 0 constraint uTAj ≤ cj

P : min cTx+ dT y

s.t. Ax = b (u)

Dx+ Ey ≥ f (v)

x ≥ 0

D : max uT b+ vT f

s.t. ATu+DT v ≤ c (x)

ET v = d (y)

v ≥ 0 80

ex 7: steel factory

steel factory
A factory can produce steel in coils (bobines), tapes (rubans), and sheets (tôles)
every week up to 6000 tons, 4000 tons and 3500 tons, respectively. The selling
prices are 25, 30, and 2 euros, respectively, per ton of product. Production
involves two stages, heating (réchauffe) and rolling (laminage). These twomills
are available up to 35 hours and 40 hours a week, respectively. The following
table gives the number of tons of products that each mill can process in 1 hour:

heating rolling
coils 200 200
tapes 200 140
sheets 200 160

The factory wants to maximize its profit.
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ex 7: LP model

• decision variables ?
• xC , xT , xS the quantity (in tons) of weekly produced coils, tapes and sheets

• constraints ?
• mill occupation
• maximum production

P : max 25xC + 30xT + 2xS

s.t.
xC

200
+

xT

200
+

xS

200
≤ 35 (heating)

xC

200
+

xT

140
+

xS

160
≤ 40 (rolling)

0 ≤ xC ≤ 6000 (coils)

0 ≤ xT ≤ 4000 (tapes)

0 ≤ xS ≤ 3500 (sheets)
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ex: dual model (steel factory)

D : min 35uH + 40uR + 6000uC + 4000uT + 3500uS

s.t.
uH

200
+

uR

200
+ uC ≥ 25 (coils)

uH

200
+

uR

140
+ uT ≥ 30 (tapes)

uH

200
+

uR

160
+ uS ≥ 2 (sheets)

u ≥ 0
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weak duality

Theorem [BT 4.3]

• if x is feasible for P (min) and u is feasible forD (max) then: uT b ≤ cx

• if the optimal cost of P is −∞ thenD is unfeasible

• if the optimal cost ofD is +∞ then P is unfeasible

• if uT b = cx then x is optimal for P and u is optimal forD

Proof:

• if P in standard form: Ax = b, x ≥ 0 and uTA ≤ cT , then uT b = uTAx ≤ cx.

• in any form: if (x, u) primal-dual feasible then by construction uT (Ax− b) ≥ 0

and (cT − uTA)x ≥ 0, then uT b ≤ uTAx ≤ cx.
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strong duality

Theorem [BT 4.4]
if a linear programming problem has an optimal solution, so does its dual and
their respective optima are equal: uT b = cx

Proof:

• let x an optimal solution of P = min{cTx|Ax = b, x ≥ 0} of basis β
• x optimal then the reduced costs are all nonnegative c̄T = cT − cTβA

−1
β A ≥ 0

• let uT = cTβA
−1
β then u is feasible forD = max{uT b|uTA ≤ cT }

• uT b = cTβA
−1
β b = cTβ xβ = cTx then u is optimal forD

At optimality: the primal reduced costs c̄T are the dual slacks cT − uTA

85

complementary slackness

Theorem [BT 4.5]
let x feasible for P and u feasible forD then they are optimal iff

ui(a
T
i x− bi) = 0 ∀i row of P

(cj − uTAj)xj = 0 ∀j row ofD.

Proof:

• (x, u) primal(min)-dual(max) feasible then ui(aix− bi) ≥ 0 and (cj − uTAj)xj ≥ 0

• cTx− uT b =
∑

j(cj − uTAj)xj +
∑

i ui(aix− bi) sum of nonnegative terms is zero iff all
terms are zero

Either a constraint is binding at the optimum or the dual variable is zero
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exercise: optimality without simplex

P : min 13x1 + 10x2 + 6x3

s.t. 5x1 + x2 + 3x3 = 8

3x1 + x2 = 3

x1, x2, x3 ≥ 0

show that the basic solution of P of basis β = {1, 3} is feasible nondegenerate and
optimal using the complementary slackness theorem
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exercise: optimality without simplex

P : min 13x1 + 10x2 + 6x3

s.t. 5x1 + x2 + 3x3 = 8

3x1 + x2 = 3

x1, x2, x3 ≥ 0

D : max 8u1 + 3u2

s.t. 5u1 + 3u2 ≤ 13

u1 + u2 ≤ 10

3u1 ≤ 6

• β = {1, 3}⇒ x2 = 0, x1 = 3/3 = 1, x3 = (8− 5)/3 = 1

• x = (1, 0, 1), x ≥ 0⇒ feasible, xj > 0, ∀j ∈ β ⇒ nondegenerate
• P in standard form⇒ first C.S. is always condition satisfied
• let u satisfying second C.S. condition, i.e. 5u1 + 3u2 = 13 and 3u1 = 6

• u = (2, 1) is feasible forD since u1 + u2 = 3 ≤ 10

• C.S. theorem⇒ x and u are optimal with cost 19
• u = c$β A

−1
β basic dual solution: feasible ⇐⇒ c̄2 = cT2 − uTA2 ≥ 0 (reduced cost)
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optimality conditions
Theorem

x is optimal for P = min{cTx|Ax = b, x ≥ 0} if exists u ∈ Rm s.t. (x, u) satisfies:

1. primal feasibility: Ax = b

2. primal feasibility: x ≥ 0

3. dual feasibility: uTA ≤ cT

4. complementary slackness: xj > 0 ⇒ uTAj = cj

• basic feasible solutions always satisfy 1,2 and 4 with uT = cTβA
−1
β

(xj > 0 ⇒ j ∈ β and c̄j = cTj − uTAj = 0).
• Condition 3 is the halting condition c̄ ≥ 0 of the simplex algorithm
• if x is degenerate then solutions u of condition 4may not be unique
• these are the KKT necessary and sufficient conditions on
l(x, u, v) = cTx+ uT (b−Ax)− vx: exists (u, v) ∈ Rm×n s.t. Ax = b (primal), x ≥ 0

(primal),∇lu,v(x) = c− (u$A+ v) = 0 (stationarity), v ≥ 0 (dual), x$v = 0 (CS) 89

dual simplex

for P = min{cx|Ax = b, x ≥ 0} andD = max{uT b|uTA ≤ c}

• a basis β determines basic solutions for P andD: xβ = A−1
β b and uT = cTβA

−1
β

• if both are feasible, then both are optimal (according to C.S. since
uT (Ax− b) = 0 and (cT − uTA)x = (cTβ − uTAβ)xβ = 0)

• simplex algorithmmaintains primal feasibility (xβ ≥ 0) while trying to
achieve dual feasibility (c̄T = cT − uTA ≥ 0)

• dual simplex algorithmmaintains dual feasibility (c̄ ≥ 0) while trying to
achieve primal feasibility (xβ ≥ 0)

• examples of usage: after modifying b or adding a new constraint to P , run the
dual simplex starting from the feasible dual solution cTβA

−1
β
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Farka’s lemma and unfeasibility
theorem
A ∈ Rm×n, b ∈ Rm. Exactly one of the following holds:

1. ∃x ∈ Rn, x ≥ 0, Ax = b (P =minx≥0{cx : Ax = b} is feasible)
2. ∃u ∈ Rm, uTA ≥ 0 and uT b < 0 (xor b can be separated from {Ax, x ≥ 0} by a

plane)

Proof:
(1 ⇒ ¬2) if x ∈ P and uTA ≥ 0 then uT b = uTAx ≥ 0

(¬1 ⇒ 2) if P : max{0|Ax = b, x ≥ 0} is unfeasible thenD : min {uT b|uTA ≥ 0} is either
unbounded or unfeasible. Since u = 0 is feasible forD, then (2) holds.

if b is not in the cone {Ax, x ≥ 0} spanned by the
columns of A then a separating hyperplane {x ∈
Rm|uTx = 0} exists 91

Interior-Point Methods (applied to LP)

• idea: iterate on primal and dual feasible solutions until achieving
complementary slackness

• disturbed KKT conditions: x is optimal for P = min{cTx|Ax = b, x ≥ 0} if exists
(u, v) ∈ Rm×n s.t. Ax = b (primal), x ≥ 0 (primal), Au+ v = c (stationarity),
v ≥ 0 (dual), x$v = 1/t (quasi-CS)

• this are the KKT conditions for the centered problem
Pt = min{tcTx+ φ(x)|Ax = b}where the barrier function φ(x) = −

∑
j log(xj) is a

smooth approximation of the indicator function for x ≥ 0

• barrier method: solve Pt with the Newtonmethod for increasing t (fix
v = x−1/t)

• primal-dual interior-point method: update (x, u, v) at each iteration
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reading:

to go further:
read [Bertsimas-Tsitsiklis]:
Sections 4.1, 4.2, 4.5, 4.6, 4.7

for the next class:
read [Bertsimas-Tsitsiklis]:
Section 4.4: Optimal dual variables as marginal costs
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ex: simplex algorithm (LP doors & windows)

min − 3xD − 5xW

s.t. xD + s1 = 4

2xW + s2 = 12

3xD + 2xW + s3 = 18

xD, xW , s1, s2, s3 ≥ 0 β1 β2

d2

d1

β3

xD

x
W

• β1 = (3, 4, 5):
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sensitive analysis

goal of sensitive analysis

models of real-world decision problems are often approximated:

• they rely on forecast/inaccurate data: a model is more reliable if its solutions
are less sensitive to changes in the data

• they have incomplete knowledge of the problem: a model is more robust if its
solutions are less sensitive to additions of variables/constraints

how to evaluate the sensitivity of an optimal solution of P : min{cx | Ax = b, x ≥ 0}
to one local change in A, b or cwithout having to simulate every possible changes
by solving from scratch the LP again and again ?
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the core idea

• let P in standard form P : min{cx | Ax = b, x ≥ 0}
• when the simplex method stops with an optimal solution, it returns an
optimal basis β and feasible primal and dual solutions x and u such that:

x = (xβ , x¬β) = (A−1
β b, 0)

xβ ≥ 0 primal feasibility

uT = cTβA
−1
β

c̄T = cT − uTA ≥ 0 dual feasibility

• when the problem changes, check how these conditions are affected
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adding a new variable/column

• new variable xn+1 and column (cn+1, An+1): like assuming n+ 1 +∈ β (with
xn+1 = 0)

• β remains a basis and xβ = A−1
β b, x¬β∪{n+1} = 0 is primal feasible

• it remains optimal if uT = cTβA
−1
β is dual feasible, i.e.:

c̄n+1 = cn+1 − cTβA
−1
β An+1 ≥ 0

and the optimal value cβxβ does not change

• otherwise the n+ 1-th direction is improving and wemust run additional
iterations of the primal simplex algorithm from β to reach an optimal basis
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example: adding a variable

β = {1, 3} optimal basis xT = (1, 0, 1), uT = (2, 1) primal-dual feasible, opt = 19

P : min 13x1 + 10x2 + 6x3 + δx4

s.t. 5x1 + x2 + 3x3 + x4 = 8

3x1 + x2 + x4 = 3

x1, x2, x3, x4 ≥ 0

D : max 8u1 + 3u2

s.t. 5u1 + 3u2 ≤ 13

u1 + u2 ≤ 10

3u1 ≤ 6

u1 + u2 ≤ δ

• β remains a basis, xT = (1, 0, 1, 0) primal feasible

• uT = (2, 1) remains feasible iff the new constraint is satisfied u1 + u2 = 3 ≤ δ

• optimal solutions and values do not change when δ ≥ 3
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changing the right hand side vector

• let b′k = bk + δ, i.e. b′ = b+ δek for some k = 1, . . . ,m

• β remains a basis and uT = cTβA
−1
β remains dual feasible (cT − uTA ≥ 0)

• β remains optimal if primal feasibility holds:

A−1
β b′ = A−1

β (b+ δek) = xβ + δh ≥ 0

where h = A−1
β ek is the k-th column of A−1

β

and the optimal cost varies by δuk = uT (b+ δek)− uT b

• dual value uk is themarginal cost (or shadow price) per unit increase of bk
• otherwise wemust run additional iterations of the dual simplex algorithm
from β to reach an optimal basis
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example: changing b

β = {1, 3} optimal basis xT = (1, 0, 1), uT = (2, 1) primal-dual feasible, opt = 19

P : min 13x1 + 10x2 + 6x3

s.t. 5x1 + x2 + 3x3 = 8 + δ

3x1 + x2 = 3

x1, x2, x3 ≥ 0

D : max (8 + δ)u1 + 3u2

s.t. 5u1 + 3u2 ≤ 13

u1 + u2 ≤ 10

3u1 ≤ 6

• β remains a basis, uT remains dual feasible

• xT = (1, 0, 1 + δ
3 ) is feasible iff 1 + δ

3 ≥ 0

• (1, 0, 1 + δ
3 ) is optimal while δ ≥ −3 and the optimum value is 19 + 2δ

• increasing b1 by δ = 1 unit leads to a marginal cost u1 = 2
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changing the cost of a non-basic variable

• let c′j = cj + δ for some non-basic j +∈ β

• β remains a basis and xβ = A−1
β b ≥ 0 is primal feasible

• β remains optimal if uT = cTβA
−1
β is dual feasible:

c̄′j = (cj + δ)− uTAj = c̄j + δ ≥ 0

and the optimal value cβxβ does not change

• reduced cost c̄j is the cost reduction value fromwhich j becomes improving

• otherwise j is an improving direction and wemust run additional iterations of
the primal simplex algorithm from β to reach an optimal basis
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example: changing c (non-basic)

β = {1, 3} optimal basis xT = (1, 0, 1), uT = (2, 1) primal-dual feasible, opt = 19

P : min 13x1 + (10 + δ)x2 + 6x3

s.t. 5x1 + x2 + 3x3 = 8

3x1 + x2 = 3

x1, x2, x3 ≥ 0

D : max 8u1 + 3u2

s.t. 5u1 + 3u2 ≤ 13

u1 + u2 ≤ 10 + δ

3u1 ≤ 6

• β remains a basis, xT remains primal feasible

• uT remains feasible iff u1 + u2 = 3 ≤ 10 + δ

• optimal solutions and values do not change while δ ≥ −7 = −c̄2

• x2 is profitable if c2 is below 10− c̄2 = 3
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changing the cost of a basic variable

• let c′j = cj + δ for some basic j ∈ β and j is the l-th element of β i.e. c′β = cβ + δel

• β remains a basis and xβ = A−1
β b ≥ 0 is primal feasible

• β remains optimal if u′T = c′Tβ A−1
β is dual feasible:

c̄′
T
¬β = cT¬β − (cβ + δel)

TA−1
β A¬β = c̄T¬β − δeTl A

−1
β A¬β

= c̄T¬β − δg ≥ 0

where g is the l-th row of A−1
β A¬β (available in the simplex algorithm)

and the optimal cost varies by δxj = (c′T − cT )x

• xj is themarginal cost per unit increase of cj
• otherwise an improving direction exists and wemust run additional
iterations of the primal simplex algorithm from β to reach an optimal basis

103

example: changing c (basic)

β = {1, 3} optimal basis xT = (1, 0, 1), uT = (2, 1) primal-dual feasible, opt = 19

P : min (13 + δ)x1 + 10x2 + 6x3

s.t. 5x1 + x2 + 3x3 = 8

3x1 + x2 = 3

x1, x2, x3 ≥ 0

D : max 8u1 + 3u2

s.t. 5u1 + 3u2 ≤ 13 + δ

u1 + u2 ≤ 10

3u1 ≤ 6

• β remains a basis, xT remains primal feasible

• uT = (2, 1 + δ
3 ) is feasible iff u1 + u2 = 2 + 1 + δ

3 ≤ 10, i.e. δ ≤ 21

• and the optimum value increases by x1δ = δ

• x1 is less profitable than x2 if c1 is above 10 + 21 = 31
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adding a new inequality constraint

• add a violated constraint aTm+1x ≥ bm+1; by substitution, assume that
am+1,j = 0 ∀j +∈ β

• add a slack variable xn+1 and get a new basis β′ = β ∪ {n+ 1}:

Aβ′ =

(
Aβ 0

aTm+1 −1

)
A−1

β′ =

(
A−1

β 0

aTm+1A
−1
β −1

)

• uT = (cTβ 0)A−1
β′ = (cTβA

−1
β 0) is feasible as the reduced costs are unchanged:

c̄′
T
= (cT 0)− (cTβ 0)A−1

β′ A = (c̄T 0)

• we must run additional iterations of the dual simplex algorithm to recover
primal feasibility

• for an equality constraint, we introduce an artificial variable (as in the
two-phase method)
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example: adding a constraint

β = {1, 3} optimal basis xT = (1, 0, 1), uT = (2, 1) primal-dual feasible, opt = 19

P : min 13x1 + 10x2 + 6x3

s.t. 5x1 + x2 + 3x3 = 8

3x1 + x2 = 3

x1 + x3 + x4 = 1

x1, x2, x3, x4 ≥ 0

D : max 8u1 + 3u2 + u3

s.t. 5u1 + 3u2 + u3 ≤ 13

u1 + u2 ≤ 10

3u1 + u3 ≤ 6

u3 ≤ 0

• β = {1, 3, 4} is a basis, uT = (2, 1, 0) is dual feasible

• xT = (1, 0, 1,−1) is not primal feasible
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changing a non-basic column

• let a′ij = aij + δ for some non-basic j +∈ β

• β remains a basis and xβ = A−1
β b ≥ 0 is primal feasible

• β remains optimal if uT = cTβA
−1
β is dual feasible:

c̄′j = cj − cTβA
−1
β (Aj + δei)

= c̄j − δui ≥ 0

and the optimal value cβxβ does not change

• otherwise j is an improving direction and wemust run additional iterations of
the primal simplex algorithm from β to reach an optimal basis
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example: changing Aj (non-basic)

β = {1, 3} optimal basis xT = (1, 0, 1), uT = (2, 1) primal-dual feasible, opt = 19

P : min 13x1 + 10x2 + 6x3

s.t. 5x1 + (1 + δ)x2 + 3x3 = 8

3x1 + x2 = 3

x1, x2, x3 ≥ 0

D : max 8u1 + 3u2

s.t. 5u1 + 3u2 ≤ 13

(1 + δ)u1 + u2 ≤ 10

3u1 ≤ 6

• β remains a basis, xT remains primal feasible

• uT remains feasible iff (1 + δ)u1 + u2 = 3 + δ ≤ 10

• optimal solutions and values do not change while δ ≤ 7 = c̄2
u1
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changing a basic column

• it’s complicated...
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applications in computing

• parametric simplex method: solve parametric LPs (e.g. with regularization)

• (progressive) column generation: solve LPs with many variables without
knowing them a priori

• (progressive) constraint generation: solve LPs with many variables without
knowing them a priori

• change variable bounds: e.g. in branch-and-bound
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exercise (steel factory)

• implement the primal and the dual models of steel factory with Gurobipy

• get the dual optimal values: Constr.pi
• get the slack values: Constr.slack
• get the reduced costs: Var.rc
• how to interpret a zero slack value ?

• how to interpret a non-zero reduced cost ? simulate the change

• how to interpret a non-zero dual value ? simulate the change
• play also with the attributes (see the Gurobi documentation):

• Var: VBasis, SAObjLow/Up, SALBLow/Up, SAUBLow/Up
• Constr: CBasis, SASRHSLow/Up
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exercise (steel factory): notes

• a zero slack value for a mill: the corresponding dual value is the marginal cost
of an extra hour of availability of the mill

• a negative reduced cost for a product (that is not in the solution): howmuch
the unit price of the product have to be raised to make it profitable / the
marginal cost of producing 1 unit of the product (if feasible)

• be careful with the signs as the model is not in standard form
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reading:

to go further:
read [Bertsimas-Tsitsiklis]:
Section 5.1
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