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sensitive analysis

DECISION IS OPTIMIZATION

select the best of all possible alternatives — the
regarding a quantitative criterion — the

INTRODUCTION

min travel duration, min lateness schedule
min travel distance, min wasted space layout
min cost design, max profit operation

max production, min energy consumption

max satisfaction

min potential energy (equilibrium)
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DECISION FOR CLIMATE

optimize to help

better processes : minimize consumption, maximize utility
new technologies : makes decision (problems) harder

Ex : PV, heat pumps, insulating materials for residential heat : how to choose, size, arrange,
plan, manage them ? which criteria : heating needs, budget, efficiency, emissions, lifespan ?
hard decision making requires
- strategic (design/long-term) or operational (control/short-term)

- large-scale (e.g. European electric system) or small-scale (e.g. water heater)
- integrated, externality

+ imperfect knowledge : complex dynamics, uncertain forecasts
+ CPU intensive

MODELS

Decision feasibility and value are observed through a model of the system/process

physical and virtual/numerical models

simulators: imperative "how" wind: S
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- conceptual models
- formulation: decarative "what"

built by experts from dynamics knowledge or learned automatically from solution samples

DECISION SUPPORT

Valua

Operations Research (1940)

-.'

'(.\°f‘. ot What happened? Why /fid it happen?

Descriptive analytics  Diagnostic analytics ~ F C 5. 5

OPTIMIZATION MODELS

is

an abstract representation of the problem solutions,
not explicitly as a list, a dataset, but implicitly as
relationships between unknowns over

with f : R™ — R in the objective : the function to minimize
and g : R™ — R™ in the constraints : the relations to satisfy.




MY FIRST MATHEMATICAL MODEL MY FIRST MATHEMATICAL MODEL

sizing PV panels sizing PV panels

how to equip two roofs with PV panels, respectively 4m and 6m long, to maximize the total

how to equip two roofs with PV panels, respectively 4m and 6m long, to maximize the total
power with an installation budget limited to 18ke, given the following cost/power of one
linear meter of PV installed : 3k€/150Wp on roof 1, 2k€/250Wp on roof 2

power with an installation budget limited to 18k€, given the following cost/power of one
linear meter of PV installed :

- onroof 1: 3k€ for 150Wp peak power

- on roof 2 : 2k€ for 250Wp peak power
max 150z, + 250z, AN i
1. what to decide? what is a selution? which decision variables? st oay <4 . 47 S\
2. what are the feasible solutions? which constraints ? 8 2.
. . . To <6 2 4
3. what are the good solutions? which objective? \<
3.771 + 21‘2 S 18

1. the length (in m) of PV installed on both roofs : (z1, 7) € R? >0 o

L . . . . xr1,To = -
2. non-negativity and maximal size 0 < x; < size; and maximal budget 3z; + 225 < 18 L2 1 2 34
3. score : total generated power 150z + 250z to maximize .
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ACCURACY & APPROXIMA N MODEL VS PROBLEM : THEORY VS PRACTICE

problem model

" n

—— Z ki inaccuracy in modeling :
I=1

i=1
iz

- uncertain (forecast) and imprecise (truncated) data
- approximate (simplified) dynamics/constraints

-+ conceptual objective

I inaccuracy in solving min f(z) : g(z) <0:

- feasible within a tolerance gap : g(x) < e

= - optimal within a tolerance gap : f(z) < min f +e

- optimal local vs global achaoms

concrete problem — abstract model 2§ model solution — practical decision * theoretic vs practical guarantees : high complexity, slow
convergence, limited time
model solving is not decision making



DECISION PRESCRIPTIVE TOOLS OPTIMIZATION METHODS

- mathematical optimization : algorithms to compute a solution : analytical methods come from a provable theory, e.g. :

The solution can be exact or approximate : f(z) ~ min f, g(z) < e

- simulation : evaluate a given decision x w.r.t. a model of the system/process, checking
feasibility g(z) < 0 and computing value f(x)

- simulation-optimization or black-box optimization : iterative simulation of decisions
z1,%9,..., TN € R™ searched heuristically or guided for convergence

zeargmin{ f(zx): g(zx) <0,k e {l,...,N}}

- machine learning : learn a numerical approximate model from samples of the
system/process (f, §) = (f, g) or, directly, of the best decisions M(f, g) ~ z*

DIFFERENT ALGORITHMS FOR DIFFERENT CLASSES OF MODELS
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+ with or without constraints g(z) < 0

+ single or multiple objectives f1(z), fa(x), ...

- fixed or uncertain data P(g(z) < 0)

+ analytic or logic or graphic models g1 (z) <0V g2(z) <0
+ linear or convex or nonconvex functions g(xz) = Az + b

+ smooth or nonsmooth functions V f

« continuous or discrete decisions z € Z"

* minz? — 4z + 3,z € [0,5] (Fermat, derivative)
+ shortest path in a graph (Dijkstra, Bellman)

numerical methods evaluate f(x},) iteratively at trial points ()

1st- or 2nd-order methods if driven by f/(zx) or f(xx) (simplex, gradient)
derivative-free otherwise (metaheuristics, branch-and-bound)

quess ——— x f(x) — stop?
k=0 ket i
direction/step?

APPLICATIONS OF MATHEMATICAL OPTIMIZATION

- operational research : operation, design and plan (routing, scheduling, packing, cutting,

rostering, allocating) of physical/economical systems in logistics, energy, finance, etc.

+ prospective : long-term vision on large systems

+ optimal control : command u(t) to optimize trajectory z(t) s.t. a'(¢) = g(x(t), u(t))
- machine learning : find a best model/data match (e.g. a linear fit)

- artificial intelligence : machines decide too, SAT, logic programming

- game theory : multiple players, conflicting goals, best respective strategies



MATHEMATICAL PROGRAMMING LINEAR PROGRAM

programming = planning (military/industrial) operations

Definition : - - .
a mathematical program min { f(z)|g(z) > 0,z € R"} with linear/affine functions f,g:

f(z) =c"z, g(x) = Az — bwhere c € R*, A € R™*" h ¢ R™.
minimize f(z) maximize f(x)

Definition :

subject to g(z) > 0 subjectto g(z) <0

x €R" r eR"
minimize or maximize under constraints <, > or =, but never > or <

X
min > c;z;
=il

minec'z
« z : the n decision variables n
A L : ) . st Az >0 o
« f:R™ — R : the objective function max f = — min (—f) = s.t. Zuiﬂj > by,
j=1

+ g: R™ = R™ :the m constraints gx) <0=—g(x) >0=g(x) +s=0,s>0 z e R"
z; ER

solutions R™
feasible solutions  {X € R™: g(X) > 0}
optimal solutions  argmin{f(z) : g(z) > 0,2 € R"}

LINEAR PROGRAM : AN EXAMPLE HOW RELEVANT IS LP ? (COURSE MOTIVATION)

f@)=cTx, g(z) = Az —bwithc € R*, A € R™*" b € R™. * many applications :
format for practical decision problems, : .
Example with » = 3 variables, i, = 2 constraints approximation for convex problems, X, 74
basis for nonconvex/logic problems L S ;’f \
min 1 (associated to integer variables) L4
st 5z + 3wy — 223 >4 - easy to solve :

polynomial-time algorithms,
efficient practical algorithms,
efficient off-the-shelf solvers,

strong properties : geometry, duality

T1 + 32 + 73 > —1

T1,22,23 € R

* (21,9, 23) is feasible iff it satisfies EVERY constraints
- beyond solving :

« x> 522, (z,y) — 3y are not linear (but quadratic " ) L . o
* % (2,9) . (butg ) sensitive analysis, modularity, interpretability, explainability



EX 1 : NUCLEAR WASTE MANAGEMENT HOW TO MODEL?

A company eliminates nuclear wastes of 2 types A and B, by applying a sequence of 3
processes |, Il and IIl in any order. The processes |, |1, Ill, have limited availability,
respectively : 450h, 350h, and 200h per month. The unit processing times depend on the
process and waste type, as reported in the following table : . decision variables : what a solution is made of ?

Tprocess T 11 . constraints : what is a feasible solution? (may require additional variables)

wasteA 1h 2h 1h . objective : what is an optimal solution? (may require add variables/constraints)

wasteB 3h 1h 1h

. check the units or convert

a M 0N =

. check LP format (linear, continuous, non-strict inequalities) or reformulate
The profit for the company is 4000 euros to eliminate one unit of waste A and 8000 euros
to eliminate one unit of waste B.

The company wants to maximize its profit.

21

EX 1 : NUCLEAR WASTE MANAGEMENT - LP MODEL NOTE ON MODELLING

- decision variables?
- x4, zp the fraction of units of waste of type A or B to process each month
+ constraints and objective?
- definition domain of the variables (nonnegative)
+ limited availability (in h/month) for each process linearly equivalent formulations :
+ maximize revenue (in keuros) max f —min(—f)
ar <b —ax > —b

max 4r4 + 8zp ar=b az>bandax <b

St x4+ 3xp <450 ax<b ar+s=bands>0
224+ 25 < 350 TeER z=y-2y2>2022>20
za+xp <200
wAawBZO
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LINEAR PROGRAM IN STANDARD FORM REDUCTION TO STANDARD FORM

Proposition :

Every linear program

Definition : LP in min{c'z|Az > b,z € R"}

only equality constraints and nonnegative variables : can be transformed into an equivalent LP in standard form
U 0 S min{d"y|Ey = f,y € R*}
st Az =b le
>0 st z:ln,jmj = b,
j:z 0 ; min z1 min ($1+ _ w;)
with ¢ € R”, A € R™*", b € R™ st by — 320 >4 st 5z —z7) —3(xF —x7) — 21 =4
T+ 10 > —1 (zf —27)+ (27 —25) — 22 = -1
z1,20 €R zf,xf,x}x;,zl,zzz()
24 25

REDUCTION TO STANDARD FORM (RECIPE) EX : NUCLEAR WASTE MANAGEMENT - LP STANDARD FORM
replace by
negative variable 2 <0 x=—-2,22>0
free variable yfree y=yt -y, yt,y= >0
slack constraint Az >b Az —s=bs>0 '
slack constraint  Ey < f Ey+u=f u>0 max 4z +8zp —min —4z4 —8zp
maximization mazx cx  —min(—c)zx St x4+ 3z <450 St x4+ 3z + s =450
2x 4 +2xp < 350 2x 4 +xp + 52 = 350
za+zp <200 A+ xp+ s3 =200
maxc'z+d'y min (—¢) " (=2) + (—d) T (yT —y7) za,75 >0 TA,TB,81,52,83 >0
st Az >b st A(=2z)—s=0b
Ey<f E(y* -y )tu=f
<0,y free zy Ty, s u>0
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EX 2 : PETROLEUM DISTILLATION EX 2 : PETROLEUM DISTILLATION - LP MODEL

+ decision variables?

The two crude petroleum problem

A petroleum company distills crude imported from Kuwait (9000 barrels available at 20€ * @k, wy the quantity (in thousands of barrels) to import from Kuwait or from Venezuela
each) and from Venezuela (6000 barrels available at 15€ each), to produce gasoline (2000 + constraints and objective?

barre|s), Je‘t fuel (’] 500 barre|s), and lubricant (500 barre|s)' The topping process first - availability for each crude, distillation balance for each product, production costs
separates the crude into cuts, then the final products result from conversion, treating, and

mixing cuts. The crude oil is present in the products in the following proportions (e.g. : 30% min 20z x + 15z

of a barrel of crude from Kuwait and 40% from Venezuela are used to produce one barrel of

; st 0.3zx + 0.4xy > 2
gasoline) :

gasoline jet fuel lubricant 0.4rx +0.22y > 1.5

“Kuwait 03 04 02 0.2z + 0.3zy > 0.5
Venemla 04 02 03 0< o <9

Objective : minimize the production cost. 0<zy <6

28 29

EX : PETROLEUM DISTILLATION - LP STANDARD FORM HOW TO SOLVE MY LP?

+ LPs are smooth convex optimization problems and many algorithms apply

- dedicated algorithms include : the simplex methods, barrier/interior point method
min 20z + 15z min 20z + 15z + LP solvers are software or libraries with efficient implementations of this algorithms
st 0.3zx + 0.42y > 2 st 0.3xx +0.42y — sg =2 - commercial (most efficient but expensive/free for students) : gurobi, cplex,

042k +0.22y > 1.5 042k +0.2zy —sy; =15 mosek, Xpress, copt,...
0.2z + 0.3y > 0.5 0.2z +0.3zy — sp, = 0.5 - open source : HiGHS, QSopt, clp/cbc, SCIP/SoPlex, glpk,...
0<zr <9 Tr s =0 - to solve an LP : call the solver with input A, b, ¢ (no algorithm to implement)
0<azy <6 R - formats for input data (depending of the solver) :
Ty TV 5G: 87, 5L, 8K, 8v 2 0 :Ezt(j:lri?galta(r}:a),ge (gams, ampl)
+ library (pyomo,matlab),

- solver API (gurobipy)

&L 31



GUROBI AND THE PYTHON API LINEAR ALGEBRA REVIEW AND NOTATION (1)

matrix A € R™*™ with entry a;; inrow 1 <i <m,column1 <j<n

transpose AT € R™*™ with a; = ay;

GUROBI (column) vector o € R® = R**1

CFTIMIZATION scalar product a,b € R, (a,b) =a"b=b"a=Y"_, a;b;
gurobi + python = gurobipy matrix product A € R™*?, B € RPX®, C' = AB € R™ " with ¢;; = S"0_, aiby;.
matrix product is associative (AB)C = A(BC) and (AB)T = BTAT

O G o G o,

- Gurobi is a commercial solver, freely available for students and academics
- atrial version of gurobipy limited to small-size models is available from Google Colab

+ code examples as Jupyter Notebook can be edited and executed : #
https://www.gurobi.com/jupyter_models/

32 33

LINEAR ALGEBRA REVIEW AND NOTATION (2) READING :

linear combination >?_, \;z* € R®

of vectors z!,..., 2P € R™ with scalars Ay,..., A, € R to go further :
linearly independence >>  M\z'=0 = A\ =---=X,=0 read [BERTSIMAS-TSITSIKLIS] :
vector-space span V = {37 Mz’ | Aq,..., A, R} CR" Section 1.1
dimension dim(V) = pifx!,..., aP are linearly independent, i.e. form a basis for V/ for the next class :
row space of A € R™*" span of the rows rs4 = {A\TA,A € R™} C R" read [BERTSIMAS-TSITSIKLIS] :
column space of A € R™*™ span of the columns cs4 = {A)X, A € R*} CR™ Section 1.5 Linear algebra background

rank of A € R™*" :rky = dim(rsa) = dim(csa) < min(m,n)

34 35


https://www.gurobi.com/jupyter_models/

HOW TO MODEL?

. decision variables : what a solution is made of ?
MODELING LPS . constraints : what is a feasible solution?
. Objective : what is an optimal solution?

. check the units or convert

a b~ W N =

. check LP format (linear, continuous, non-strict inequalities) or reformulate

36

EX 3 : DOORS & WINDOWS EX 3 : LP DOORS & WINDOWS

+ decision variables?
+ zp,zw (fractional) number of doors and windows produced a day
+ constraints and objective ?

- availability of each workshop (in hours/day), nonnegativity of the variables

A factory made of 3 workshops produces doors and windows. The workshops 4, B, C are * maximize revenue (in keuros)
open 4, 12 and 18 hours a week, respectively. Assembling one door occupies workshop A
for 1 hour and workshop C for 3 hours and the door is sold 3000 euros. Assembling one max 3xp + Sxw
window occupies workshops B and C' for 2 hours each and a window is sold 5000 euros. st zp <4
imi ?
How to maximize the revenue* S < 12

3xp + 2zxw < 18

zp,zw >0

37 38



EX 4 : NETWORK FLOW EX 4 : GRAPH MODEL

network flow LONDRES
demand = {
'PARIS': 118,
‘CAEN': 28, CAEN
'REMNES*
' LIL
: : : o NANCY
A company delivers retail stores in 9 cities in Europe :
i i 'LONDRES ' : 70, 35
from its unique factory USINE. T RENNES
: : \
How to manage production and transportation LDUES, unitarycost, capacity = multidict({ 310
in order to : i e AR g Bt USINE PARIS
t 3.1, 3198], BRE
+ meet the demand of each store, ‘LILL ARIS') 5 (1.1, 1581, 20
o el ey NANTES
+ not exceed the production limit, TLLE', 'NANCY'): [1.3, 1501,
d h I t L .lIYEINIJREEE'l;:B['l.Z:‘;”'lEEEI LYON
- not exceed the line capacities, ('NICE','LYON'): [0.8, 2001, .
P NICE', 'TOULOUSE'): [e.2, l1e], - find a flow on a capacitated NI
+ minimize the transportation costs ? ! ! " . 1501, i
P BREST!, "NANTES: 1 (0.9, 1501, directed graph TOULOUSE
'y:l0.8, 200),
', 'RENNES'): [0.8, 1501, - flow conservation at each
5T, "PARIS'}: [8.9, 198]
%5 node : IN=OUT MILAN o

MAX_PRODUCTION = G@d

EX 5 : MINIMUM DISTANCE

+ x, the quantity of products transported on line ¢ = (i, j) € LINES
* TRANSITS= {LILLE,NICE,BREST}

minimize L' and L> norms
min Z COSTzy Find a solution z € R™ of the system of equation Az = b, A € R™*", b € R™ of minimum
LeLINES
st Y wusmeq < MAXPROD
1€TRANSITS
> ) > DEMAND;, Vj € STORES
1€TRANSITS
T(USINE,i) = Z Z(i,5)> Vi € TRANSITS
JESTORES
0 < xzy < CAPACITY,, V¢ € LINES.

« L' norm:
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EX 5 : LINEARIZE THE ABSOLUTE VALUE EX 5 : LP MODELS Min |[z||; = min ), |z;]

- every value d € R can be decomposed as d = u — v with w > 0and v > 0 Two different ways to model [z|, z € R
+ in an infinite way, e.g. : i i
4 —4-8—=1000—-1004 =27 —6.7—=0—4—-.. 1. variable splitting : 2. supporting plane model :

(d,0) sid>0 |z| = min{a*+2~ |z =2 —27, 2,27 >0} |z[ = max{z, ~z} = min{y |y > 2,y > —z}

+ but only one decomposition minimizes u + v : (u,v) = )
(0,—d) sid<o0.

- and the minimum value is precisely the absolute value :

n n
|d| = min, ,)>o{u+v:d=u—v} min Z(m+ +27) min Z Yj
c c L ] J J J
* miny ||d||; = ming ), |d;|, positive independent terms, thus min and } | can be j=1 J=1
exchanged : st Az =b, st Az =b,
q ] q ] ot — - ) . 0
n’ldlnz |(]1| = Z n’(ll}n ‘dll = Zdirzl;{l:zli{“1+v7 5 (]1 = 11,7',—1},'} = gnull;l Z{Ui-‘rt‘i : (JL = 11,1'—?4’2'}. 'T] - ‘T_] - 'T] ) v] y] Z x]? vj
' L L ' af,z; >0, vj Yj = —2j v
43 i

o517 oo min .~ min s

Cy2rl = y2ai Ay > -y

©y>max; ;| <= y>z; Ay > —x; (V))
» min|z| =min{y > 0|y > 2 ANDy > —z} is a linear program
but NOT max |z| = max{z, —z} =max{y > 0|y =z ORy = —x}

miny
st Az =b - we will see how to formulate disjunctions using binary (0/1) variables
o Vi e.g. to formulate max ||z||; and max ||z||« as I(nteger)LPs
Yy =z Ty, J
! . - modeling ||z, = (3, |=;]?)/? for p > 2 usually requires nonlinear functions
y > —aj, vj !
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EX 5 : DATA FITTING

data fitting

Given m observations — data points a; € R™ and associate values b; € R, i = 1..m —
predict the value of any point @ € R™ according to a linear regression model?

.-‘E’; ‘gt a best linear fit is a function :

b(a) = a'z+vy, forchosenz e R",y € R

minimizing the residual/prediction error |b(a;) — bs|, globally over the dataseti = 1..m, e.g:
Least Absolute Deviation or L;-regression :

minz [b(a;) — bs

47

EX 5 : DATA FITTING - LAD REGRESSION (2)

variable splitting dual model (see later)
min Z d;r +d; max Z b;z;
@ @
st dj = d; = Z AijTj +y— bi7 Vi st Z Qijz; = 0, V]
g @
df,d; >0, Vi >z =0,
reR"yeR ‘
z € [-1,1], Vi

Both models are equivalent by strong duality (see later) but the second one has much fewer
variables and non-bound constraints. The best algorithms for LAD regression
(Barrodale-Roberts) are special purpose simplex methods (see later) for dense matrices
and absolute values.
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EX 5 : DATA FITTING - LAD REGRESSION (1)

supporting planes

min Z d;

st d; > Zaq‘,jIj +y— b, Vi
J

d,‘ 2 —(Zaijxj—l—y—bi), Vi
J

de R,z e R",ye R

sparse supporting planes
minZdi

st r,= Za,;ja:j +y—>b;, Vi
J
d; > 1, Vi
d; > —r;, Vi
rde R,z e R",yeR

Second model is better for many algorithms : larger (more variables and constraints) but its

constraint matrix is less dense (more zeros)
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EX 6 : WATER QUALITY

la Demande Biochimique en O, mesure la pollution de I'eau en masse d'O- requise pour biodégrader la

matiere organique présente dans l'eau

traitement de l'eau

Par jour, deux usines produisent resp. 1200m? (DBO=850g/m?) et 4000m>
(DBO = 400g/m3) d'eaux usées. Les systemes de traitement respectifs raménent 1 tonne

DBO a 100kg et 50kg pour un co(t de 400 et 500 euros. La part traitée est rejetée dans la

riviere dans la limite autorisée de DBO = 170kg. La part non traitée a un colt d'évacuation
de 0.56 et 0.25 euro par m?. Est-il possible de respecter la limite environnementale dans un
budget journalier de 1250 euros?

50



EX 6 : WATER QUALITY EXERCICE 6 : MODELE PL

~ i - dairy : traitée : 1 tonne — 100kg DBO = 400 euros,
\\ Y évacuée : 0.56 euros/m? + Quel volume d'eau traiter pour minimiser DBO dans un budget de 1250 euros? La
[ - beverage : traitée : 1 tonne — 50kg DBO = 500 euros, valeur DBO est-elle < 170kg? (ou inversement : minimiser le colt et contraindre DBO)
m-—"v---'m-'-u--/—_\ évacuée : 0.25 euros/m? . x1, 29 : vOlumes traités (m?)
J= rnirni P q .
+ quel volume d'eau traiter pour minimiser DBO dans un
? .
budget de 1250 euros* Min 0.171 + 0.05r,
* 1,75 volumes traites (en m?) S (400 * 71 + 500 % 73) % 107 + 0.56 * (1200 — 1) + 0.25 * (4000 — 25) < 1250
eau non-traitée : volumes évacués (en m?)? colt (en euros)? 1 = 850 % 1073 % 2,

+ volumes y; = (1200 — 1), y2 = (4000 — x2), colt 0.56 * y; + 0.25 * yo , 400 % 1073 % 2
2 = 2

0 <z <1200
0 <z <4000

- eau traitée : rejet DBO avant (en kg) ? apres (en kg) ? co(t (en euros)?
* rejetavant 7 = 850 % 1073 x xq, o = 400 * 1073 * 5, aprés : 10%r; + 5%
+ co(t : 400 % 1073 % 71 + 500 * 1073 % ry

51 52

READING :

to go further :

read [BERTSIMAS-TSITSIKLIS] :

Sections 1.2,1.3,1.4 GEOMETRY AND ALGEBRA

for the next class :

read [BERTSIMAS-TSITSIKLIS] :
Section 2.1 : Polyhedra and convex sets
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EXERCISE : DOORS & WINDOWS

GRAPHICAL REPRESENTATION (EX : DOORS & WINDOWS)

A factory made of 3 workshops produces doors and windows. The workshops 4, B, C are
open 4, 12 and 18 hours a week, respectively. Assembling one door occupies workshop A
for 1 hour and workshop C for 3 hours and the door is sold 3000 euros. Assembling one
window occupies workshops B and C for 2 hours each and a window is sold 5000 euros.
How to maximize the revenue?

max 3x1 + 52

linear program (see ex : PV panels)
stz <4

x1, o | installed length (in meters)
T3 <6 constraints : maximal length, budget
3x1 4 229 < 18 objective : maximize production

T1,T2 Z 0

54

GRAPHICAL REPRESENTATION (EX: PETROLEUM DISTILLATION)

max 3xp + Sy
st. zp <4

Tw

Tw < 6 24
3zp + 2zw < 18

zp,zw = 0

« solution space R?

+ linear constraint = halfspace, ex : {z € R? | 3zp + 2zy < 18}

- feasible region = intersection of a finite number of halfspaces £ polyhedron
+ objective: z = 3zp + Saw, optimum : move the line up z ~ until unfeasible
+ optimum solution : zj;, = 6 and 3z}, + 22}, = 18 = 3, = 6,27, = 2,2* = 36

55

min 20z + 15z

St 3zk +4xy > 20
dxy + 2xy > 15
2xK + 3xy > 5
0<zg <9

Oéwng

« constraint 2z + 3zy > 5 is redundant

+ constraints 3z x + 4zy > 20 and 4z i + 22y > 15 are active/binding at the optimum
(2,3.5) but not constraints zx > 0 or zy < 6

56

GRAPHICAL REPRESENTATION (EX : NUCLEAR WASTE)

max 4z 4 + 8z 300 % |
St x4+ 3ap < 450 < 200 |
24 + xp < 350 o B |
T4+ 25 < 200
za, 25 >0 0(] 200 - 400

zaA
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GEOMETRY OF LINEAR PROGRAMMING WHAT IS A CORNER?

Theorem : vertex = extreme point = basic feasible solution
- the feasible region is a polyhedron = intersection of half-planes

A nonempty polyhedron P = {x € R"|Az > b}, A € R™*", b € R™ and a feasible solution
« intuition : a linear function on a polyhedron reaches its min at a “corner” # € P, then these are equivalent : 2 is a
+ idea for solving an LP : evaluate the corners progressively

The primal simplex algorithm

find a first corner if exists
choose a

along an edge

if no direction, STOP : the corner is optimal

select the corner in this direction and goto step 2

dc e R",Vx € P\ {&}, =M+ (1- Ny, In linearly independent
c'i<c'z

z,y€EP=A=0 rows a; in Ast a;x =b;

For algorithm and proofs, we need an algebraic characterization of the geometric objects

corners are associated to invertible submatrices of A and associated null slack variables :

58 a;x + s; = b;, s; = 0; their number < m) is finite but large and not known a priori
n
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VERTEX, EXTREME POINT, AND BASIC SOLUTION (PROOF)
Theorem [BT 2.3]

EXAMPLE OF EXTREME POINTS

ex : doors & windows
2 € P={z €R"Az > b}, A € R™*", b € R™ is either none or all together :

Je € R™, Vo € P\ {#},

c'i<cx

z=Xx+(1-MNy,

Jn linearly independent rows
2,y €EP=>A=0

a; in Ast a;x =b;

max 3x1 + 5xo
st oz <4
Proof :

& vertex = xpoint : 3¢, Vo, y € P\ {#},c¢'¢ < c'zand ¢’z < ¢y then
Tz <A x4+ (1—Nc'y, YOS A< L thend # Az + (1 — Ny

Q
012314
X

# not basic = not xpoint : let I = {i|a;& = b;} then rk(a] ) < nthen 3d € R™, a] d = 0. Let
t=2+edandy =2 —edthend = “t¥ and 2,y € P:a/ z = a] y = b; if i € I, otherwise - i not in standard form! n = 2 variables (dimension), m = 5 constraints (edges)
a] & > b; then a; = > b; and a; y > b; for e small enough. - rows 2 and 3 are lin. independent, active at (2, 6) feasible : vertex

& basic feasible = vertex:letc = 3, ai then¢"& = 3, b; < ¢z Vo € P, and equality holds - rows 5 and 3 are lin. independent, active at (6, 0) unfeasible : basic solution
only for Z the unique solution of system a; = = b;.

- rows 2 and 5 do not intersect (lin. dependent)
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EXISTENCE OF OPTIMA AND EXTREME POINTS

Theorem : existence of an extreme point [BT 2.6]

anonempty P = {z € R"|Az > b} has at least one extreme point
< ithasno Ve eP,deR™ {x+0df eR} L P

<= A has n linearly independent rows

Theorem : existence of an optimal solution [BT 2.8]
Minimizing a linear function over P having at least one extreme point, then :
either optimal cost is —oo, or an extreme point is optimal.

/ unbounded
P l oo optima / 0 vertex
oo optima including 1 vertex

”1/
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EXISTENCE OF OPTIMA (PROOF)

Theorem : existence of an optimal solution [BT 2.8]
Minimizing a linear function over P having at least one extreme point, then :
either optimal cost is —oo, or an extreme point is optimal.

Proof :

letz € P of rank k < n,then3d, a] d = 0,Vi € T = {ia;z = b;}. Assume ¢' d < 0 (or use —d)
then line (z, d) intersects the border of P at some &' = x + 6d € P of rank k + 1 (see previous
proof). If ¢"d = 0then ¢"a’ = ¢"x. If ¢" d < 0 then assume 6 > 0 (or optimal cost=—o0), then
¢z’ < ¢ z. Repeat until reaching rank n, i.e. a basic feasible solution.

let z* be a basic feasible solution of P of minimum cost, then¢"2* < ¢'zVz € P

64

EXISTENCE OF EXTREME POINTS (PROOF)

Theorem : existence of an extreme point [BT 2.6]

nonempty P = {z € R"|Az > b}, A € R™*™ has at least one extreme point
< ithasno VxeP,deR”, {z+0df c R} Z P

<= A hasn linearly independent rows

Proof :

no line = xpoint: letz € P “of rank k", i.e. I = {i|a;z = b;} has k lin. indep. rows, if not basic then
k < nand 3d, af d = 0. The line (z, d) satisfies a] (= + 0d) = b; and it intersects the border of P,
ie.30,j ¢ Ist a) (z+0d) =bj, thena] d # 0, thena’ = z + Od € P is of rank k + 1. Repeat
until reaching n.

(ai)ier linearly independent = no line : if P contains a line z + 6d with d # 0 then a;(z + 6d) > b;
V6 then a;d = 0Vi € I thend = 0.

OPTIMA AND EXTREME POINTS (EXERCISE)

show that :

« P ={(z,y) € R? | z + y = 0} is nonempty and has no extreme point

* (z,y) — 5(x + y) has a finite optimum on P

- min{5(z +y) | (z,y) € P} has an optimal solution which is an extreme point (not of P)
answer : put in standard form
min{5(zt -z~ +yt —y7) |zt —a~ +yt —y~ =0, 2,27, y",y~ > 0} reaches its
optimum at (0, 0, 0,0)
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HOW TO FIND A FIRST CORNER? BASIC SOLUTION FOR STANDARD FORM (PROOF)

Theorem : basic solution [BT 2.4] Theorem : basic solution for standard form [BT 2.4]

A nonempty polyhedron in standard form 7 = {z € R*| Az = b,z > 0} with m < n linear A nonempty polyhedron in standard form P = {x € R"[Az = b,z > 0} with m linear
independent rows A € R™*" : z € R™ is a basic solution iff Az = b and there exists m independent rows A € R™*" : z € R™ is a basic solution iff Az = b and there exists m

linear independent columns A;, j € 8 C {1,...,n} st a; = 0,Vj & 8. linear independent columns A;, j € 8 C {1,...,n} st.z; =0,Vj & 5.

Submatrix Ag is invertible : its columns form a basis of R™ with basic variables (z;)ep-

Algorithm : find a basic solution

1.
2.
e}

+ the resulting basic solution z is feasible <= z; > 0Vj <= 23 = Aglb >0
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EXAMPLE OF BASIC SOLUTIONS IN STANDARD FORM EXAMPLE OF BASIC SOLUTIONS IN STANDARD FORM

geometry : edges, corners and basic solutions algebra : check 8 = (1,2,3), 8 = (1,3,4),and 3 = (1, 3, 5)

min — 3z — 5o 10 1 0 min — 3z; — 5o
St 1 +ax3=4 £ £ St 1 +x3=4 A=(0 1
To+x4=06 ) - ‘ To+x4=06 3200
32, + 21y + 25 = 18 n = 5 variables, 0 - 321 + 229 + x5 = 18 n = 5 variables,
>0 m = 3 lin. indep. rows >0 m = 3 lin. indep. rows
+ x5 is the slack variable for constraint z; < 4 1 O 5y ) “n z
. ) T ) - f=1(1,2,3):Ag= |0 1 o] invertible;fixzy =25 =0solve Ag|z2| = | 6 | :
- active constraint x; =4 <= z3 = 0 is an edge of the projected polyhedron P 3 2 0 “Nex 18
- edges x4 = 0 and x5 = O intersect at z = (2,6, 2,0,0) > 0 feasible o1+ a3 =4, 15 = 6,311 + 225 = 18z = (2,6,2,0,0) > 0 feasible
- z3 = 2is the distance from point z to constraint z; = 4 inside P + B=(1,3,4): Aginvertible, fix zo = 25 = 0 solve xy + 3 =4, x4 = 6, 3z = 18
- edges z2 = 0 and x5 = 0 intersect at z = (6,0, —2,6,0) # 0 unfeasible x = (6,0, —2,6,0) # 0 unfeasible

+ x3 = —2is the distance from point x to constraint z; = 4 outside P 68 + 8=1(1,3,5) notabase : A is not invertible (cannot have x5 = x4 = 0 and @ + x4 = 6) 60



HOW TO FIND A NEXT CORNER? EXAMPLE OF ADJACENCY

check point (2, 6) and go along edge z; = 0

Definition : degeneracy and adjacency
Let P = {z € R"|Az = b,z > 0} with m < n linear independent rows A € R™*"; let
n} defines a basis with associated basic solution z min — 3ay — 5,

+ two bases 3 and g’ are if they differ by 1 column St oy +ax3=4

if z; = 0 for some basic variable j € 3 T+ 24 =06
3x1 + 229 + x5 = 18 n = 5 variables,

m — 2lin i
>0 m = 3 lin. indep. rows

D :basic nonfeasible degenerate - (2,6,2,0,0) of non-degenerate basis 8 = (1,2,3) : (n — m = 2 edges x4 = 0,25 = 0)

Band E: bas_iC feas.ible nondegenerate - leave the point (24 > 0) and go along edge z5 = 0 until reaching z3 = 0
Aand C': basic feasible degenerate - reach adjacent point (4, 3) of non-degenerate adjacent basis 8 = (1,2, 4)
+ non-degenerate adjacent bases correspond to adjacent vertices along an edge of P - leave the point (z3 < 0) and go along edge z5 = 0 until reaching z5 = 0
* move to an adjacent vertex by swapping a basic and a non-basic column - reach unfeasible point (6,0) of non-degenerate adjacent basis 8 = (1, 3,4)
70 + bases (1,2,3), (1,2,4), (1, 3,4) are adjacent 2 by 2 as they differ by 1 column 7

EXERCISE BASIC SOLUTION

study the basic solutions

EXAMPLE OF DEGENERACY

add constraint 3z, + x5 < 12

min — 3x; — 5o

s.t. xr1 + Tr3 = 4
T2 + Ty — (7
3x1 + 2x9 + x5 = 18

3x1+ 1o + 26 = 12

n = 6 variables,

x>0 m = 4in. indep. rows z + standard formm =2,n =3
- . 3basis: f=(1,2) (z=0), 8= (1,3) (y = 0)and 5 = (2,3) (z = 0)
+ when adding redundant constraint 3z, + zo < 12, vertex (2, 6) becomes degenerate - corresponding to the same degenerate point (0, 0, 0)
+ itlieson3edges:zys =0,25 =0and zg =0 - lying on the 5 edges (planes)

+ and corresponds to 3 adjacent bases : (1,2,3,4), (1,2,3,5), (1,2, 3,6)
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EX 7 : CAPACITY PLANNING

capacity planning
find a least cost electric power capacity expansion plan :

+ planning horizon : the next T' € N years
- forecast demand (in MW) :d; > 0 foreachyeart =1,...,T

- existing capacity (oil-fired plants, in MW) : e; > 0 available for each year ¢
- options for expanding capacities : (1) coal-fired plant and (2) nuclear plant
- lifetime (in years) : I; € N, for each option j = 1,2
- capital cost (in euros/MW) : ¢;; to install capacity j operable from year ¢
- political/safety measure : share of nuclear should never exceed 20% of available capacity

EX : BASIC SOLUTION (CAPACITY PLANNING)

T 2
min D ejrege
i=15=1

t
stoyjp — > @js =0,

3 Vi=1,2,t=1,...,T
:;:maX{l,t—lj+l}
Y1t + y2tr — ut =dt — ey, Vt=1,...,T
8yoy — 2y1g + vt = 2ey, VE=1,..., T
@j¢ > 0,yj4 > 0,up > 0,vp >0 Vi=1,2,t=1,...,T
1

L 0 I 0 0 0 T 0

0 L 0 I 0 0 i 0

0 0 I —I 0 | ld-e

0 0 21 81 0 1 u 2e

n = 67 variables, m = 4T, A has linearly independent rows;

I :identity matrix, L : lower triangular matrix of 1s and 0s basic solution (0,0, 0,0, e — d, 2¢)
is feasible iff e; > d;, Vt,

degenerate (4T > n — m zeros), other basis e.g (x1, z2,u, v)
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variables 2, installed capacity (in MW) of type j = 1,2 atyeart =1,...,T
objective minimize the installation costs
constraints each year, demand satisfaction + nuclear share
implied variables y,, available capacity (in MW) j = 1,2 for year ¢

T 2
min Z Z CjtTjt
t=1 j=1
t

s.t. Yjt — Z

s=max{1,t—l;+1}

Ljs =0, Vi=12t=1,....,T
vt=1,...,T
vt=1,...,T

Vi=12t=1,...,T

Y1t + Yot — Uz =d; — ey,
Byat — 2y1e + v = 2e4,

zj > 0,950 > 0,ug > 0,v, >0

reformulate by dropping the redundant variables y; and ys, find a basic solution, and give
conditions of degeneracy (assume that T'—I; + 1 < 1 and constant e, = E > 0 Vt)

T 2
min 30 3" @yt

t=1j=1 1

t t

S wis+ > wos—up=di—E, Vt=1,..., T L L -1 0 T2 | d—F
s=1 s=1

-, -, —2L 8L 0 I)|u 2F
83 wos —2 Y wig+ vy =2E, Vt=1,..., T v

s=1 s=1

zjp = 0,up = 0,vg >0 Vi=1,2,t=1,...,T

+ basic solution (0,0, F — d, 2F) : feasible iff £ > d;,Vt, degenerate iff 3t, E = 0 or E = d,

+ basis (z1,v) and suppose that D, = d; — d,—; > 0Vt with dy = E then the basic
solution (D, 0,0, 2d) is feasible nondegenerate (full coal scenario)

+ question : under which condition can we improve the cost by installing nuclearat¢ = 1?
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EX : BASIC SOLUTION AND DEGENERACY (CAPACITY PLANNING)

77



SUMMARY READING :

- the feasible set of an LP is a polyhedron P to go further :

- if P is nonempty and bounded, then LP has a basic optimal solution read [BERTSIMAS TSITSIKLIS]

) ) ) Sections 2.2,2.3,2.4,2.5,2.6
+ we can solve LP by enumerating all basic solutions : move along the edges of P by

taking adjacent bases for the next class :
+ next lesson : the primal simplex algorithm improves the basic solution cost at each read [BERTSIMAS-TSITSIKLIS] :
iteration (if non-degenerate) Section 1.6 : Algorithms and operation count
78
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REVIEW

- minc'z over P = {Az = b,z > 0}, A € R™*", rk(A) = m reaches its optimum at a
basic feasible solution

- ahasis 8 C {1,...,n} is made of m linearly independent columns of A and the

THE SIMPLEX METHODS associated basic solution is :

b= Az = Agxg + Ayx, Withzg = Aglb, zy =0

- adjacent basic solutions share m — 1 basic variables : 5" = U {j'} \ {j”}

- adjacent basic solutions may coincide if degenerate (if z;; = z;» = 0)

instead of visiting the basic solutions randomly, the =~~~ selects the next
adjacent basic solution such that it is feasible and of better cost.
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FEASIBLE DESCENT DIRECTION

minimize ¢z over P = {z € R"|Az = b,z > 0}, and some point z € R®

from z € R™

from z € R™

d e R"suchthat30 > 0,z +60d € P d e R" such thate™d < 0

if d is a feasible descent direction, then there is a feasible solution 2’ = = + 6d strictly
improving upon z sincec'z’ =cTz +0.cTd< c'x

81

STEP LENGTH 6

8 basis of x feasible nondegenerate, d feasible directionto 5’ ¢ 3s.t.cTd=¢; <0
look for the largest value 6 > 0 such that 2’ = x + 6d remains feasible, i.e. 2’ > 0:
Theorem [BT 3.2]

if d > 0then the LP is unbounded (d is an extreme ray), otherwise

if j € argmin{—x;/d;,j € B,d; < 0} and § = —x;/d;» then z’ = z + 0d is a basic
feasible solution of basis 8’ =

=pU{i I\ {j"}:

- j' enters the basis, j” exits the basis : constraint z;» > 0 becomes active
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BASIC DESCENT DIRECTION

min {c"x : Az = b,z > 0}, x a basic feasible solution of basis 8,and j' ¢ 3

deR":dy =1,d; =0,Vj £ BU{j'}, and Ad =0

is a feasible direction (if z nondegenerate) and dg = —AglAj, :
Ad=0 = A(z+0d) = Az =b
z; >0Vjef=30>0:23+60dg >0

of a nonbasic variable z;,

« ¢y =c'd=c'(z+d) —c'xisthe cost deviation between solutions z and z + d
+ dis a descent direction iff ¢;; < 0

the reduced cost of a basic variable j € Bisalways 0:¢; = ¢; — cEAglAj =cj—che; =0
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STEP LENGTH 6 (PROOF)

B basis of x feasible nondegenerate, d feasible directionto 5’ ¢ 3s.t.cTd=¢; <0
Theorem [BT 3.2]

if d > 0then the LP is unbounded, otherwise

if j € argmin{—x;/d;,j € B,d; < 0} and § = —x;/d;» then ' = = + Od is a basic

feasible solution of basis 8 = U {j’} \ {4} :
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EXAMPLE : BASIC DESCENT DIRECTION WHEN STOPS THE ALGORITHM ?

check basis (1, 2) and find basic descents

Theorem : optimality condition [BT 3.1]

Ming>o 2¢1 + 2 + 3 + T4 Let 2z be a basic feasible solution of basis 3 and ¢ € R™ the vector of reduced costs.
St o1 +ax2+ 23 +x4 =2 . , . n
if¢; > 0Vj & B then x is optimal

2x1 + 3x3 +4xy = 2 ) ) '
if z is optimal and nondegenerate then ¢ > 0

*m=2n=4rk(A) =25 =(1,2) forms a basis
+ = (1,1,0,0) feasible nondegenerate: z; > 0Vj € 8
- basic direction j =3:d; =1,dy =0, Ad = (f‘l,;fj;l) =0=dsg= (j;) = (j‘j./j)

- isadescent direction:é=c'd =2(-3/2) + (1/2) +1=-3/2<0

+ steplength:2’ =24+ 60d>0=2,=1-(3/2)0 >0=60<2/3
- 2’ =(0,4/3,2/3,0) basic feasible 8/ = (2,3),¢'2/ =¢ z+ s =c'z — 1
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EXAMPLE : BASIC IMPROVING DIRECTION (CONT.) THE PRIMAL SIMPLEX METHOD (SIMPLE CASE)

check basis (2, 3)

Ming>0 2T1 + T2 + T3 + T4 steps howto :
@1 @2 23+ Ta =2 1. geta basis g3 find m linearly independent columns
271 + 313 + 44 = 2 2. get a basic feasible = x5 =025 =A5"bifzs >0

halt condition (optimality) c=c— chglA > 0 if nondegenerate
3.find an improving direction  any j' & 8 s.t. ¢ < 0 if nondegenerate

- note that optimum > 2 since ¢"¢ = a1 + 2, Va feasible halt condition (unboundness)  ds = —A5"4; >0

* B =(2,3)isabasis withz = (0,4/3,2/3,0) nondegenerate 4. find the largest step length  any j” € argmin{—=;/d; | j € 8,d; < 0}

- the 2 basic directions are not descent : 5. update the basis B=pU{i I\ {i"}

cj=1:d=(1,-1/3,-2/3,0)and & =c'd=12>0 6. goto 2 z = — (xjm/djr)d

«j=4:d=(0,1/3,-4/3,1)andés =c'd=0>0
+ then z is optimal
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THE PRIMAL SIMPLEX METHOD

convergence [BT 3.3]

if P # 0 and every basic feasible solution is nondegenerate then the simplex method
terminates after a finite number of iterations with either an optimal basis 3 or with some
direction d > 0, Ad = 0, ¢"d < 0, and the optimal cost is —co

Proof :

cx decreases at each iteration, all z are basic feasible solutions
the number of basic feasible solutions is finite bounded by C*

in case of degeneracy : apply techniques (ex : fixed order subscripts) to avoid cycling on the
same vertex

THE INITIAL BASIC FEASIBLE SOLUTION ?

- if P ={Az <b,x > 0}, then we directly get a basis from the slack variables :
P={Ax+Is=0bx>0,s>0}

- if the problem is already in standard form min{cz, Az = b, > 0}, then we can first
solve the auxiliary LP :

min{l.y, Az + Iy = b,z > 0,y > 0}

if optimum is 0 then we get a feasible basic solution for the original LP, otherwise it is
unfeasible (see [BErRTSIMAS-TsITSIKLIS] Section 3.5 for details)

PIVOTING RULES

+ choice of the entering column ;' ¢ 5 sit.¢; < 0,e.q.:

- largest cost decrease per unit change : min ¢;
+ largest cost decrease : min 6¢;
+ smallest subscript : min j

+ choice of the exiting column ;" € argmin{—z;/d; | j € §,d; < 0}
- trade-off between computation burden and efficiency,

e.g. compute a subset of reduced costs
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IMPLEMENTATION

- each iteration involves costly arithmetic operations, including matrix inversion :

- computingu” = cj A" or A;"A; takes O(m?) operations
+ computing é; = ¢; —u' A; forall j ¢ B takes O(mn) operations
=il

o , i . 1
revised simplex : update matrix AGS Gy from A5~ in O(mn)

+ full tableau : maintain and update the m x (n + 1) matrix Agl(b|A)

- specific data structures for sparse (many 0 entries in A) vs. dense matrices

+ in theory, complexity is exponential in the worst case, i.e. when the LP has 2™ extreme

points and the simplex method visits them all

- in practice, sophisticated implementations of the simplex method perform often better

than polynomial-time algorithms (interior point/barrier, ellipsoid) and have additional
features (duality, restart)

(see [BerTsIMAS-TsITsIKLIS] Section 3.3 for details)
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EX : SIMPLEX ALGORITHM READING :

startat 5, = (3,4,5)

minI;_\o —3z1 — bxo

to go further :
y 0 read [BERTSIMAS-TSITSIKLIS] :
T2+ x4 =6 S 0 | L Sections 3.1,3.2,3.3

3x1 + 25 + x5 = 18.

St zy+23=4

for the next class :
read [BERTSIMAS-TSITSIKLIS] :
-z =(0,0,4,6,18) is feasible (x > 0) nondegenerate (z; =0 < j & ) Section 1.6 : Algorithms and operation count
letd; =0,dy =1and Ad=0:d = (0,1,0,—1,-2),é¢=c'd = —5 < 0 = descent
- find thelargest6 > 0s.t. z +6d = (0,0,4,6 — 6,18 — 20) > 0,i.e. # = min(6,18/2) = 6:
new basis 82 = (2,3, 5) and solution = + 8d = (0, 6,4, 0, 6)
+ next:d=(1,0,—1,0,-3),¢ = —3 descentz + 6d = (6,6,4 —6,0,6 — 30) = (2,6,2,0,0)
* next:d=(2/3,-1,-2/3,1,0), ¢ = 3 optimum z = (2,6,2,0,0), cx = —36 93 94

DUALITY : MOTIVATION

A constrained nonlinear convex problem

P:z=minz®’+vy* : a+y=1 (not linear, still convex)

+ unconstrained smooth convex optimization is easy : zero of the derivative

DUALITY

+ penalization : relax constraint and penalize violation with price/multiplier u € R

* P, : z, =min 2?4+ 4% +u(l —z — y) provides a lower bound z, < z:
(x,y) optimal for P = feasible for P, and z, < 2?2 + ¢ +u(l —z —y) = 2

- P, is arelaxation of P
+ the optimal solution of P, is (u/2,u/2) : Ve (z,y) = 0iff (22 — u,2y —u) =0
« foru=1:(1/2,1/2) is both optimal for P, and feasible for P,

thus it is optimal for P:1/2 = z; < 2 < (1/2)? + (1/2)? = 1/2
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LAGRANGIAN DUAL SPECIFIC PROPERTIES OF LP DUALITY

(general optimization)

P :z=minc(x) Py, : zy = minc(x) + uTg(:.r)

st >0 - if Pisan LPthen D is also an LP and the dual of D is the primal P

with cR™ + constraints/variables of P correspond to variables/constraints of D
(%5 X

- strong duality always holds for LP

- if P is unbounded then D is unfeasible, and conversely
find the tightest (greater) lower bound 2, of z - primal simplex : computes solutions in the dual space, stops when dual feasible
+ dual simplex : computes solutions in the primal space, stops when primal feasible

D d=mazyermzu + sensitive analysis : how to recover feasibility in the primal or in the dual space

+ weak duality d < z always holds (by definition)

+ strong duality d = z may hold if exists  optimal for some P, and feasible for P
9% 97

THE DUAL LINEAR PROGRAM HOW TO BUILD THE DUAL OF AN LP?

primal/dual correspondence

min  max
cost vector ¢ RHS vector b
‘ - matrix A matrix AT
(D) :mazu b constraint a;z = b;  free variable u; € R
st.ulA<cl constraint a;z > b; nonnegative variable u; > 0
free variable z; € R constraintu’ A; = ¢;
nonnegative variable z; > 0  constraint u’ A; < ¢;

Theorem : the dual of an LP is an LP

2y = mingsoc' Tz +u' (b— Az) = uTb + ming>o(c’ —u' A)x

{uTb if (T —uTA)>0
iy =

—_0o otherwise P:minc' z+ dTy D :mazu'b+ va
st Az =b (u) st ATlu+D v<c (x)
Dz+Ey> f (v) ETv=d ()
x>0 v >0
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equivalent forms of (P) give equivalent forms of (D)



EX : DUAL MODEL (STEEL FACTORY)

EX 8 : STEEL FACTORY

steel factory

A factory produces steel in coils (bobines), tapes (rubans), and sheets (téles) every week
up to 6000 tons, 4000 tons and 3500 tons, respectively. The selling prices are 25, 30, and 2
euros, respectively, per ton of product. Production involves two stages, heating (réchauffe)
and rolling (laminage). These two mills are available up to 35 hours and 40 hours a week,
respectively. The following table gives the number of tons of products that each mill can
process in 1 hour :
heating rolling

coils 200 200

tapes 200 140

sheets 200 160

The factory wants to maximize its profit.

100

D : min 35ug + 40ug + 6000uc + 4000ur + 3500us
s.t.

ug UR .
— — >
500 + 500 +uc > 25 (coils)

ug UR
200 " 140

Uy UR
—  — >2 heet
200+160+US_ (sheets)

u>0

+up > 30 (tapes)

102

+ decision variables?

. xc, T, xs the quantity (in tons) of weekly produced coils, tapes and sheets
+ constraints?

- mill occupation

+ maximum production

P :max 25x¢c + 30z + 2xg

s.t.

o xT xs .
T IS heat
200 * 200 T 200 =3° (heating)
zc xT xs .
e 2T S o

200 + 140 + 160 = 40 (rolling)
0 < zc <6000 (coils)
0 < zr <4000 (tapes)
0 <zg <3500 (sheets)
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WEAK DUALITY

Theorem [BT 4.3]

if - is feasible for P (min) and w is feasible for D (max) then:ub < c¢'z
if the optimal cost of P is —oo then D is unfeasible
if the optimal cost of D is +oco then P is unfeasible

if uTh = c"x then x is optimal for P and  is optimal for D

103



STRONG DUALITY COMPLEMENTARY SLACKNESS

Theorem [BT 4.5]
Theorem [BT 4.4]

o : : : : : let = feasible for P and u feasible for D then they are optimal iff
if a linear programming problem has an optimal solution, so does its dual and their
respective optima are equal :u"b= ¢z

u,-(a;rr —b;)=0 Virowof P

Proof : (c; —u' Aj)xz; =0 Vjrowof D.
let z an optimal solution of P = min{c"z|Az = b,z > 0} of basis 8
x optimal then the reduced costs are all nonnegativee” =¢” —cf A3'A >0 Proof :
letu! = CP;A/;l then w is feasible for D = maz{ubluT A < '} (z,w) primal(min)-dual(max) feasible then w;(a;z — b;) > 0and (¢; — u' A;)z; >0

uwlh= CgAEIb = c'ﬁrmﬁ = ¢T z then w is optimal for D c'z—u'b= ACES ul Aj)z; + 3, ui(aiz — bs) sum of nonnegative terms is zero iff all terms
are zero

At optimality : the primal reduced costs ¢" are the dual slacks ¢” — u T A ) o _ ) ) )
Either a constraint is active at the optimum or the dual variable is zero
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EXERCISE : OPTIMALITY WITHOUT SIMPLEX EXERCISE : OPTIMALITY WITHOUT SIMPLEX

P :min 13z, + 10x2 + 623 D : max 8uy + 3us
show that 5 = (1, 3) is an optimal basis st 5z1 + a2+ 3z3 =8 st Bui + 3uz < 13
3z1+x2=3 up + uz < 10
P : min 13z + 10z5 + 623 z1, 2,23 > 0 3u1 <6
s.t. 51’1 + 29 + 7)!), =8 ° ﬂ S {173} = o = 0, ) = 3/3 = 1, 3 = (8 — 5)/3 = 1l
3x1 + 20 = « = (1,0,1), z > 0 = feasible, z; > 0,Vj € 8 = nondegenerate

- Pin standard form = first C.S. is always condition satisfied

- let u satisfying second C.S. condition, i.e. 5u; + 3us = 13 and 3u; = 6

« u=(2,1)is feasible for D since u; +us =3 < 10

+ C.S. theorem = 2 and u are optimal with cost 19

+ basic dual solution u = chgl feasible <= reducedcosté=c" —uTA >0
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OPTIMALITY CONDITIONS ALT ALGORITHM : DUAL SIMPLEX

Theorem : Karush-Kuhn-Tucker optimality conditions in LP (P) :min{c"z: Az = b,x > 0} and (D) : maz{u'b:u' A< c"}

i g ol goll Al — . i i m 9 g i . . . . 8
x is optimal for P = min{c' z|Az = b,z > 0} iff exists u € R™ s.t. (z, u) satisfies : - a basis 3 determines basic solutions for P and D : z5 = Aglb aglan? = ch/;l

primal feasibility : Az = b - satisfying complementary slackness :@; > 0= j€ =26 =c; —u' A; =0
primal feasibility : 2 > 0 + primal simplex algorithm maintains primal feasibility (zs > 0) and tries to achieve dual

ihility (2T — T _ T
dual feasibility : uT A < ¢ feasibility " =c¢" —uTA>0)

complementary slackness : z; > 0= u" A; = ¢;

equivalent to solving (D) with the primal simplex

- a basic feasible solution z always satisfy 1,2 and 4 with u" = cj A5"
(z; >0=>jepande =c/ —u'A; =0).

- Condition 3 is the halting condition ¢ > 0 of the simplex algorithm Usage : after modifying b or adding a new constraint to (P), the dual basic solution
- if 2 is degenerate then solutions « of condition 4 may not be unique ul = (:;A/g1 remains feasible : start the dual simplex iterations from this basis

maintains dual feasibility (¢ > 0) and tries to achieve primal feasibility (z5 > 0)

108 109

FARKA'S LEMMA AND UNFEASIBILITY

(P) :min{cTz: Ax = b,z > 0} and (D) : maz{u'b:uTA<c'} theorem

KKT: Az =b,2>0,v" =c' —u' A > 0,and complementary slackness : zTv =0 A e R™*" p e R™. Exactly one of the following holds :

ALT ALGORITHMS : INTERIOR POINT

dz e R",z > 0,4z = b (i.e. P = min,>o{c'z : Az = b} is feasible)

iterates on primal feasible 2 and dual feasible u, v with zTv = for increasing ¢ Ju e R™ uT A >0andu"b < 0 (xor bcan be separated from {Az,z > 0} by a plane)

KKT with disturbed complementary slackness : Az = b,z > 0,v >0,z v =

= KKT for the centered problem P? : min{tc"z + ¢(x) : Az = b} with function
¢(z) = — >, log(x;), a smooth approximation of the indicator function z > 0

given an interior point z > 0 : Az = b, then P? can be efficiently solved with Newton
method and returns an other interior point #t > 0

- at each iteration i, increase t = t; = ut;_1, solve P; with Newton's
method starting from z*-* to get (2, u) and define v} = 1/tz’ then (z*, u*, v")
satisfies the disturbed KKT.

if bis not in the cone { Az, z > 0} spanned by the columns of A
then a separating hyperplane {z € R™|uT2 = 0} exists

- update also u, v within inner-loop (Newton) iterations
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READING :

to go further :

read [BERTSIMAS-TSITSIKLIS] :

Sections 4.1, 4.2, 4.5, 4.6, 4.7 SENSITIVE ANALYSIS

for the next class :
read [BERTSIMAS-TSITSIKLIS] :
Section 4.4 : Optimal dual variables as marginal costs
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GOAL OF SENSITIVE ANALYSIS THE CORE IDEA

« let P in standard form P : min{c'z | Az = b,z > 0}

- when the simplex method stops with an optimal solution, it returns an optimal basis 3

Most LP models of real-world decision problems rely on forecast/inaccurate data and
and associate primal and dual solutions :

incomplete knowledge

- amodel is more reliable if its solutions are less sensitive to changes in data z = (zg,7-p) = (A5'),0) and  u' =cjA;' satisfying:
+ amodel is more robust if its solutions are less sensitive to addition of variables/constraints

primal feasibility

of the optimal solution of an LP
dual feasibility

in the LP
without having to solve the LP again for every possible value change.

(primal feas. Az = b and comp. slackness ¢z = 0 satisfied by construction of z and u)

- when the problem changes, check how these conditions are affected
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EXAMPLE : ADDING A VARIABLE

ADDING A NEW VARIABLE/COLUMN

* new variable z,41 and column (¢ 41, Apt1)

given B = (1, 3) optimal basis T = (1,0,1), u" = (2,1) primal-dual feasible, opt = 19

add column A, = (1, 1) : for which cost ¢, = ¢ the basis remains optimal ?

+ equivalent to suppose n + 1 is non-basic and z,,.1 = 0 , ) ) ,
P : min 13z1 + 10x2 + 623 D : max 8ui + 3us

- Bremains abasisand zg = AZ'b, z_ = 0 is primal feasible ) )
B B B puU{n+1} p st 5x1 + 22 g S.t. Buy + 3uz < 13

L ) ) T T4 . o . o
it remains optimal if u' = ¢4 Agis dual feasible, i.e. n 4+ 1 is not a descent direction : 321 4 o : w1+ up < 10

— = T - T1,T2,T3 a )
Cntl =Cnt1— U Apt1 20 L1, T2, %3, L4 2 3u; < 6

+ then, the optimal value ¢} z3 does not change
- otherwise, if n + 1 is a descent direction : run additional iterations of the primal simplex 8 =(1,3) remains a basis, z" = (1,0, 1,0) primal feasible
algorithm starting from the primal feasible basis 4 « u' = (2,1) remains feasible iff the dual constraint is satisfied u; +us =3 < §

+ the optimal solution = and value 19 do not change when § > 3
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EXAMPLE : CHANGING b

given 3 = (1,3) optimal basis T = (1,0,1), uT = (2, 1) primal-dual feasible, opt = 19

CHANGING THE RIGHT HAND SIDE VECTOR

* letb, = b +9,i.e. b = b+ dey, foragiven constraintk =1,...,m

change RHS in the first constraint o) = b; + ¢

+ Bremains a basisand u” = ¢! AZ! remains dual feasible (¢T —uTA4 >0
R

. P : min 13z, + 1022 + 623 Jui + 3uz

. . : . . T T G

B remains optimal if the new primal solution x Ag b s still feasible, i.e: St 5oy 4 2 + ; St 5uy + 3us < 13
T/3 =xg + 0A 3 1( >0 3z, + x2 = 3 w1 4 uz < 10

T1,T2,x3 > 0 3ur <6

« then, the optimal cost varies by du, = u"d —u'b

+ the dual value u, is the marginal cost (or shadow price) per unit increase of by, - Bremains a basis, uT remains dual feasible

+ otherwise, if 2’ not feasible : run additional iterations of the dual simplex algorithm « o' = (1,0,1+ %) isfeasibleiff 1 + 3 >0

starting from the dual feasible basis / « 2’ remains optimal if § > —3 and the optimum value increases by v — uTb = 1§

« increasing b; by § = 1 unit induces a marginal (additional) cost u; = 2
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CHANGING THE COST OF A NON-BASIC VARIABLE

CHANGING THE COST OF A BASIC VARIABLE

* let ¢} = ¢; + ¢ for some non-basic variable j ¢
- Bremains a basis and 23 = A;'b > 0 remains primal feasible

+ B remains optimal if the basic dual solution v = chgl remains feasible,
i.e. j is still not a descent direction :

5} :(Cj+5)—7LTAj = c; >0

- then, the optimal value cgcpg does not change
+ the reduced cost ¢; is the cost reduction value from which j becomes profitable

- otherwise, j is a descent direction : run additional iterations of the primal simplex
algorithm starting from the primal feasible basis
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* letc; = ¢; + ¢ for some basic variable j € 8
+ fremains a basisand zg = Aglb > 0 remains primal feasible

« 3 remains optimal iff the new dual basic solution ' T = cQAEl is feasible :

T T T
(j,jﬂ:t'wf()(/f‘;‘li ; >0

- then, the optimal cost varies by éz; = (¢'T —¢")x
* x; is the marginal cost per unit increase of ¢;

« otherwise an improving direction exists and we must run additional iterations of the
primal simplex algorithm from 3 to reach an optimal basis
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EXAMPLE : CHANGING ¢ (NON-BASIC)

B = (1,3) optimal basis T = (1,0,1), u" = (2, 1) primal-dual feasible, opt = 19

change the non-basic cost c; by &

P : min 13z, + (10 )x2 + 623 D : maz 8uy + 3uz

st bxi 4+ a2 + 3z

St buy +3uz <13

31 +x2 =3 u1 +uz < 10
21,20, 23 > 0 3ur <6

- B remains a basis, z and u are still basic and x remains feasible

+ wremains feasible iff & + 6 = (10 + §) — (ug +u2) > 0,i.€.6 > =7
- optimal solutions and values do not change while § > —7 = —¢,

+ x9 becomes profitable when its cost is below 10 — ¢, = 3
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EXAMPLE : CHANGING c (BASIC)

B = {1,3} optimal basis T = (1,0,1), u" = (2, 1) primal-dual feasible, opt = 19

change the (basic) cost c; by ¢

D : max 8ui + 3us

St Buy + 3us < 13

w1 +u2 <10
3ur <6

+ A remains a basis, T remains primal feasible

- new dual solution u’ solves 5u} + 3u} = 13 +6,3u) = 6:u' = (2,1 + $)
- o' is feasible iff uf +ujy =2+ 1+ § < 10,i.e.ifd < 21

+ and the optimum value increases by 216 = §

« x1 is less profitable than x5 if ¢; is above 13 + 21 = 31
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EXAMPLE : ADDING A CONSTRAINT

ADDING A NEW INEQUALITY CONSTRAINT

: : B = (1,3) optimal basis T = (1,0,1), " = (2, 1) primal-dual feasible, opt = 19
- add a violated constraint a,}, 1@ > bp1 (1,3) op I ( ) (2,1)p o

+ by substitution, we may assume that a,,41; = 0j & 8 adding constraint z; + 23 < 1 and slack variable =,

- add a slack variable z,,11 and get a new basis 8’ = S U {n + 1} :
P : min 13x1 + 1022 + 62 D : max 8u1 + 3us

Ag 0 - Azt 0 t. 521 + 25 + 323 = 8 St 5ur + 3uz + us < 13
Ag = ol 1 A = ol ATl 1
m41 m+1413 a up +u2 < 10

T T 1 T =il ) . . Ju1 SG
cu' = (cz, 0)A5 = (cg Ay, 0) is feasible as the reduced costs are unchanged::

¢ =(c", 0)—(cj, 0)Az'A=(c", 0)
+ run additional iterations of the dual simplex algorithm to recover primal feasibility « B=1{1,3,4} isabasis,u" = (2,1,0) is dual feasible
- for equality constraints, introduce an artificial variable as in the two-phase method - 2T =(1,0,1,—1) is not primal feasible
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EXAMPLE : CHANGING Aj (NON-BASIC)

CHANGING A NON-BASIC COLUMN

B = {1,3} optimal basis T = (1,0,1),uT = (2, 1) primal-dual feasible, opt = 19

* leta}; = a;; + 0 for some constraint 4 and non-basic variable j ¢ 8 changing coefficient in the non-basic column A,
+ Bremains a basis and x5 = Aglb > 0 is primal feasible
- B remains optimal iful = chgl remains feasible : P : min 13x1 4+ 10x2 + 6z3 D : max 8uy + 3uz
st 5z + (1 Voo + 313 = 8 st bui +3uz <13
cj = ¢j — cg A5 (A; + de;) 321 + 73 = 3 1+ 6)us +u2 < 10
=¢j —ou; >0 il > 3up < 6

- then, the optimal value CgIg does not change

« Bremains a basis, z T remains primal feasible

- otherwise, j becomes a descent direction : run additional iterations of the primal

LT : L o
simplex algorithm starting from the primal feasible basis u’ remains feasible iff (1 + 6)ur +uz =3 +5 <10

- optimal solutions and values do not change while § < 7 = <

ul
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CHANGING A BASIC COLUMN

+ it's complicated...

EXERCISE (STEEL FACTORY)

+ implement the primal and the dual models of steel factory with Gurobipy
+ get the dual optimal values : Constr.pi

+ get the slack values : Constr.slack

- get the reduced costs: Var.rc

+ how to interpret a zero slack value?

+ how to interpret a non-zero reduced cost ? simulate the change

+ how to interpret a non-zero dual value? simulate the change

- play also with the attributes (see the Gurobi documentation) :

+ Var:VBasis, SAObjLow/Up, SALBLow/Up, SAUBLow/Up
+ Constr:CBasis, SASRHSLow/Up
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APPLICATIONS IN COMPUTING

take advantage of warm-start (feasible primal/dual solutions) in iterative solutions :

- constraint generation : generate constraints progressively when they are violated
- column generation : generate nonbasic variables progressively when they are profitable
+ branch-and-bound : update the variable bounds dynamically

- parametric simplex method for solving LP with a variable parameter
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EXERCISE (STEEL FACTORY) : NOTES

+ a zero slack value for a mill : the corresponding dual value is the marginal cost of an

extra hour of availability of the mill

+ a negative reduced cost for a product (that is not in the solution) : how much the unit

price of the product have to be raised to make it profitable / the marginal cost of
producing 1 unit of the product (if feasible)

+ be careful with the signs as the model is not in standard form
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READING :

to go further :

read [BERTSIMAS-TSITSIKLIS]
Section 5.1
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