Modelling in Linear Programming

sophie.demassey@minesparis.psl.eu

October 4, 2023

1 Exercises

1.1 Nuclear waste management

A company eliminates nuclear wastes of 2 types A and B, by applying a sequence of 3 processes I, II and III in any order. The processes I, II, III, have limited availability, respectively: $450 \mathrm{~h}, 350 \mathrm{~h}$, and 200 h per month. The unit processing times depend on the process and waste type, as reported in the following table:

process	I	II	III
waste A	1 h	2 h	1 h
waste B	3 h	1 h	1 h

(first entry reads one unit of A-type waste is processed in 1 hour with process I) The profit for the company is 4000 euros to eliminate one unit of waste A and 8000 euros to eliminate one unit of waste B.

Objective: maximize the profit.

$$
\begin{array}{cl}
\max & 4 x_{A}+8 x_{B} \\
\text { s.t. } & x_{A}+3 x_{B} \leq 450 \\
& 2 x_{A}+x_{B} \leq 350 \\
& x_{A}+x_{B} \leq 200 \\
& x_{A}, x_{B} \geq 0
\end{array}
$$

1.2 The two crude petroleum problem [Ralphs]

A petroleum company distills crude imported from Kuwait (9000 barrels available at $20 €$ each) and from Venezuela (6000 barrels available at $15 €$ each), to produce gasoline (2000 barrels), jet fuel (1500 barrels), and lubricant (500 barrels) in the following proportions:

	gasoline	jet fuel	lubricant
Kuwait	0.3	0.4	0.2
Venezuela	0.4	0.2	0.3

(first entry reads: producing 1 unit of gasoline requires 0.3 units of crude from Kuwait)
Objective: minimize the production cost.

$$
\begin{array}{ll}
\min & 20 x_{K}+15 x_{V} \\
\text { s.t. } & 0.3 x_{K}+0.4 x_{V} \geq 2 \\
& 0.4 x_{K}+0.2 x_{V} \geq 1.5 \\
& 0.2 x_{K}+0.3 x_{V} \geq 0.5 \\
& 0 \leq x_{K} \leq 9 \\
& 0 \leq x_{V} \leq 6
\end{array}
$$

1.3 network flow

A company delivers retail stores in 9 cities in Europe from its unique factory USINE. How to manage production and transportation in order to:

- meet the demand of each store,
- not exceed the production limit,
- not exceed the line capacities,
- minimize the transportation costs?

```
demand = {
    'PARIS': 110,
    CAEN': 90,
    'RENNES': 60,
    'NANCY': 90,
    'LYON': 80,
    'TOULOUSE': 50,
    'NANTES': 50,
    'LONDRES': 70
    'MILAN': 70
}
INES, unitary_cost, capacity = multidict({
    ('USINE','LILLE'): [2.9, 350],
    ('USINE','NICE') : [3.5, 320],
    ('USINE','BREST') : [3.1, 310],
    ('LILLE', 'PARIS') : [1.1, 150],
    ('LILLE','CAEN'): [0.7, 150],
    ('LILLE','RENNES'): [1.0, 150],
    ('LILLE','NANCY'): [1.3, 150],
    ('LILLE','LONDRES'): [1.3, 150],
    ('NICE','LYON'): [0.8, 200],
    ('NICE','TOULOUSE'): [0.2, 110],
    ('NICE','PARIS'): [1.3, 100],
    ('NICE','MILAN'): [1.3, 150],
    ('BREST','NANTES'): [0.9, 150]
    ('BREST','NANTES'): [0.9, 150]
    ('BREST','CAEN'):[0.8, 200],
    ('BREST','RENNES'): [0.8, 150]
})
MAX_PRODUCTION = 900
```


- x_{ℓ} the quantity of products $(f l o w)$ transported on line $\ell=(i, j) \in$ LINES
- TRANSITS $=\{$ LILLE, NICE, BREST $\}$

$$
\begin{aligned}
& \min \sum_{\ell \in \mathrm{LINES}} \operatorname{COST}_{\ell} x_{\ell} \\
& \text { s.t. } \sum_{i \in \text { TRANSITS }} x_{\text {(USINE, } i)} \leq \text { MAXPROD } \\
& i \in \text { TRANSTIS } \\
& \sum_{i \in \operatorname{TRANSITS}} x_{(i, j)} \geq \text { DEMAND }_{j}, \quad \forall j \in \operatorname{STORES} \\
& x_{\text {(USINE }, i)}=\sum_{j \in \operatorname{STORES}} x_{(i, j)}, \quad \forall i \in \text { TRANSITS } \\
& 0 \leq x_{\ell} \leq \text { CAPACITY }_{\ell}, \quad \forall \ell \in \operatorname{LINES} .
\end{aligned}
$$

1.4 minimum distance (1-norm)

Find a solution $x \in \mathbb{R}^{n}$ of the system of equation $A x=b, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$ of minimum L^{1} norm:

$$
\|x\|_{1}=\sum_{j=1, \ldots, n}\left|x_{j}\right|
$$

- variable splitting:

$$
\begin{array}{ll}
& |x|=\min \left\{x^{+}+x^{-} \mid x=x^{+}-x^{-}, x^{+}, x^{-} \geq 0\right\} \\
\min \sum_{j=1}^{n}\left(x_{j}^{+}+x_{j}^{-}\right) & \\
\text {s.t. } A x=b, & \forall j \\
& x_{j}=x_{j}^{+}-x_{j}^{-}, \\
x_{j}^{+}, x_{j}^{-} \geq 0, & \forall j
\end{array}
$$

- supporting plane model:

$$
|x|=\max \{x,-x\}=\min \{y \mid y \geq x, y \geq-x\}
$$

$\min \sum_{j=1}^{n} y_{j}$
s.t. $A x=b$,

$$
\begin{array}{ll}
y_{j} \geq x_{j}, & \forall j \\
y_{j} \geq-x_{j}, & \forall j
\end{array}
$$

1.5 minimum distance (infinity-norm)

Find a solution $x \in \mathbb{R}^{n}$ of the system of equation $A x=b, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$ of minimum L^{∞} norm:

$$
\|x\|_{\infty}=\max _{j=1, \ldots, n}\left|x_{j}\right|
$$

- $y \geq\left|x_{j}\right| \Longleftrightarrow y \geq x_{j} \wedge y \geq-x_{j}$
- $y \geq \max _{j}\left|x_{j}\right| \Longleftrightarrow y \geq x_{j} \wedge y \geq-x_{j}(\forall j)$
$\min y$
s.t. $A x=b$,
$y \geq x_{j}, \quad \forall j$
$y \geq-x_{j}, \quad \forall j$

1.6 data fitting (LAD regression)

Given m observations - data points $a_{i} \in \mathbb{R}^{n}$ and associate values $b_{i} \in \mathbb{R}, i=1 . . m$ - predict the value of any point $a \in \mathbb{R}^{n}$ according to a linear regression model ?

A best linear fit is a function :

$$
b(a)=a^{T} x+y, \text { for chosen } x \in \mathbb{R}^{n}, y \in \mathbb{R}
$$

minimizing the residual/prediction error $\left|b\left(a_{i}\right)-b_{i}\right|$, globally over the dataset $i=1 . . m$, e.g:

Least Absolute Deviation or L_{1}-regression:

$$
\min \sum_{i}\left|b\left(a_{i}\right)-b_{i}\right|
$$

supporting planes

$$
\begin{array}{ll}
\min \sum_{i} d_{i} & \\
\text { s.t. } & d_{i} \geq \sum_{j} a_{i j} x_{j}+y-b_{i}, \\
& \forall i \\
& d_{i} \geq-\left(\sum_{j} a_{i j} x_{j}+y-b_{i}\right), \\
& \forall i \\
& d \in \mathbb{R}^{m}, x \in \mathbb{R}^{n}, y \in \mathbb{R}
\end{array}
$$

variable splitting

$$
\begin{array}{ll}
\min \sum_{i} d_{i}^{+}+d_{i}^{-} & \\
\text {s.t. } & d_{i}^{+}-d_{i}^{-}=\sum_{j} a_{i j} x_{j}+y-b_{i}, \\
& \forall i \\
& d_{i}^{+}, d_{i}^{-} \geq 0, \\
& x \in \mathbb{R}^{n}, y \in \mathbb{R}
\end{array}
$$

sparse supporting planes

$$
\left.\begin{array}{ll}
\min \sum_{i} d_{i} & \\
\text { s.t. } & r_{i}=\sum_{j} a_{i j} x_{j}+y-b_{i}, \\
& \forall i \\
& d_{i} \geq r_{i}, \\
& d_{i} \geq-r_{i}, \\
& \quad, d \in \mathbb{R}^{m}, x \in \mathbb{R}^{n}, y \in \mathbb{R}
\end{array}\right)
$$

dual model

$$
\begin{array}{ll}
\max \sum_{i} b_{i} z_{i} & \\
\text { s.t. } & \sum_{i} a_{i j} z_{i}=0, \\
& \forall j \\
& \sum_{i} z_{i}=0, \\
& z_{i} \in[-1,1],
\end{array} \quad \forall i
$$

1.7 capacity planning

find a least cost electric power capacity expansion plan:

- planning horizon: the next $T \in \mathbb{N}$ years
- forecast demand (in MW): $d_{t} \geq 0$ for each year $t=1, \ldots, T$
- existing capacity (oil-fired plants, in MW): $e_{t} \geq 0$ available for each year t
- options for expanding capacities: (1) coal-fired plant and (2) nuclear plant
- lifetime (in years): $l_{j} \in \mathbb{N}$, for each option $j=1,2$
- capital cost (in euros/MW): $c_{j t}$ to install capacity j operable from year t
- political/safety measure: share of nuclear should never exceed 20% of available capacity
- decision variables, $x_{j t}$: installed capacity (in MW) of type $j=1,2$ starting at year $t=1, \ldots, T$
- constraints, each year: total capacity meets the demand + nuclear share
- implied variables, $y_{j t}$ available capacity (in MW) $j=1,2$ for year t

$$
\begin{array}{lr}
\min \sum_{t=1}^{T} \sum_{j=1}^{2} c_{j t} x_{j t} & \\
\text { s.t. } y_{j t}=\sum_{s=\text { max }\left\{1, t-l l_{j}+1\right\}}^{t} x_{j s}, & \forall j=1,2, t=1, \ldots, T \\
e_{t}+y_{1 t}+y_{2 t} \geq d_{t}, & \forall t=1, \ldots, T \\
8 y_{2 t} \leq 2 e_{t}+2 y_{1 t}, & \forall t=1, \ldots, T \\
x_{j t} \geq 0, y_{j t} \geq 0, & \forall j=1,2, t=1, \ldots, T
\end{array}
$$

