
MINES-07 PSL week

combinatorial & stochastic

optimization

1

Sophie Demassey 2023

https://sofdem.github.io/

sophie.demassey@minesparis.psl.eu

mailto:sophie.demassey@minesparis.psl.eu

decision is optimization

2

select the best/optimum
of all possible alternatives/solutions

regarding a quantitative criterion/objective

3

decision: operation/strategy, static/dynamic, short/long-term
solution: plan/schedule, path/flow/routing, assignment/layout/design
objective: duration, distance/space, cost/profit/preference, amount/level

select the best solution regarding the objective

4

some historical FR players:

a tool for decision support:

 mathematical optimization aka operational research

scientist in optimization:
understand the business, do maths/cs, solve problems

1. build an abstract model of a concrete system
2. derive a mathematical formulation: relationships/unknowns
3. apply an algorithm to solve the model
4. derive practical solutions

mathematical optimization for decision

- models are approximate

- data are uncertain

- calculations are truncated

solve ? theory/practice

feasibility ? optimality ?

- finite time reasonable time≠
- provable with a gap tolerance

- provable locally vs. globally

machine learning

control

game theory, economics, calculus,...

7

find a best model/data match: min empirical risk (supervised), maxreward (reinforcement), min distance
(clustering), max homogeneity (decision tree), max margin (svm), max likelihood (markov process).

find a command to optimize trajectory s.t. u(t) x(t) x′ (t) = g(x(t), u(t))

math optimization also works for:

other advanced options for decision:

simulation given a reliable model but no good math formulation

machine learning given historical data but no good reliable model

hybridations evaluate computed solutions by simulation (e.g. black-box optimization), learn mathematical models

mathematical optimization decision support≠

- reliable models: how accurate ? close to reality ?

- optimality certificates: how good is the solution ?

- versatile algorithms: if the problem changes ?

- efficient algorithms: solution times for complex/large problems ?

math opt for decision (specs 1)

8

- discrete decisions and logical relationships (switch on or off ? if off then no process)

- uncertain data (approximations and forecasts)

9

combinatorial optimization

stochastic optimization

math opt for decision (specs 2)

this PSL week:

a quick overview of

10

combinatorial optimization

stochastic optimization

monday-wednesday morning

wednesday afternoon-friday

Sophie Demassey (Mines/CMA)

https://sofdem.github.io

Welington de Oliveira (Mines/CMA)

https://www.oliveira.mat.br

https://sofdem.github.io
https://www.oliveira.mat.br

11

combinatorial optimization

mixed integer linear programming (MILP)

12

combinatorial optimization: beyond MILP

NOT in this course:

- graph theory and combinatorial structures

- metaheuristics and approximation algorithms

- Logic or Constraint Programming

- Linear or Nonlinear Programming (just a glimpse)

- advanced theoretic topics in MI(N)LP

13

focus on practical MILP

IN this course: a practical approach how to model and solve

- MILP modeling techniques

- some applications

- notions of complexity

- main techniques to solve MILPs: bounding, branching, cutting

- modern MILP solvers (aka algorithms) and their usage

- steps towards reformulation, duality-based decomposition, and convex MINLP

- technical results without theoretical proofs (see the bibliography to learn more)

14

why the MILP lense ?

broad applicability:

- logical conditions as binary variables and linear inequalities

- nonlinear relations (physic/economic) as piecewise-linear fits

- convex NonLP ≈ LP convex MINLP ≈ MILP (theoretically)⟹
versatility:

- generic form = generic solvers fruit of many research works

- specific problem = specific model + generic solver + specific options

efficiency:

- easy LP + partial enumeration

- sophisticated strategies and algorithmic components

15

learning goals

after this course, you should be able to:

- identify if an optimization problem is eligible to MILP

- formulate it as a MILP, identify its complexities, and implement the model

- run an off-the-shelf MILP solver, understand the solution process and ways to improve it

- describe main applications of combinatorial optimization: domains and problems

- describe the principle of advanced solution methods and their usage

validation be there and participate

retake the code of the mini-project (to send by email before march 15)

16

evaluation & practice

Output define K points as centers
so as to minimize the sum of the
distances between each point and
its nearest center.

K-median clustering

17

K-mean clustering

Output partition the points into
K sets so as to minimize the sum
of the distances between each
point and the mean of points in
its cluster.

Input n data points , a
number K of clusters. Euclidean
distance.

mj ∈ ℝp

project:

power generation

- deterministic & stochastic variants

- proposed dev environment: Jupyter Notebook, Google Colab, Gurobi solver,

python API: code + report directly through your browser

- goals: model as a MILP, implement and call a solver

- correctness >> completeness

18

course schedule

course project

Mon AM modeling model (1)

Mon PM complexity model (2)

Tue AM algorithms code (1)

Tue PM modern solvers code (2)

Wed AM decomposition code (3)

ASK for explanations and breaks

the MILP way

Sophie Demassey 2023

a practical view

19(1)

1how to model ?

2how difficult ?

3how to solve ?

20

1how to model ?

2how difficult ?

3how to solve ?

21

22

Mathematical Program

f(x)
g(x) ≤ 0
x ∈ X ⊆ ℝn

subject to:minimize

• max f(x) = − min(−f)(x)
• g(x) ≥ b ≡ − g(x) + b ≤ 0
• sign or not allowed in MP

(this and beyond: see CLP)
< ≠

program = plan (e.g. military)

variables
objective
constraints

x ∈ ℝn

f : ℝn → ℝ
g : ℝn → ℝm

Definition Remark

23

Mixed Integer Linear Program

 min{f(x) | g(x) ≤ 0, x ∈ ℤp × ℝn−p}

min c⊤x
Ax ≥ b

x ∈ ℤp × ℝn−p

c ∈ ℝn, A ∈ ℝm×n, b ∈ ℝm

s.t.:

min
n

∑
j=1

cjxj
n

∑
j=1

aijxj ≥ bi ∀i = 1,…, m

xj ∈ ℤ
xj ∈ ℝ

∀j = 1,…, p
∀j = p+1,…, n

s.t.:

with linear functions and : f g

24

Mixed Integer Linear Program

min cx
Ax ≥ b
x ∈ ℤp × ℝn−p

objective
linear constraints
integrity constraints
right hand side (rhs)
cost vector
coefficient matrix
solution space
feasible set

cx
Ax ≥ b

x1, …, xp ∈ ℤ
b ∈ ℝm

c⊤ ∈ ℝn

A ∈ ℝm×n

{x ∈ ℝn}
{x ∈ ℤp × ℝn−p |Ax ≥ b}

terminology

s.t.:

25

waste management

2 types of nuclear waste A, B with different
unit profit/processing time going through 3
processes I, II and III with limited availability

objective: maximize the profit.

I II III unit
profit

A 1h 2h 1h 4k€

B 3h 1h 1h 8k€

available 450h 300h 200h

max 4a + 8b
a + 3b ≤ 450

a, b ∈ ℤ+

2a + b ≤ 300
a + b ≤ 200

s.t.:

 number of processed units of A and B resp.a, b

modeling logic as linear in !
26

- is item j selected ?

- is item j assigned to item i ?

- at most available itemsn
- is it greater than ?z ∈ ℝ+ a

true or false
01

27

x1, …, xn ∈ {0,1}
x ∈ {0,1}, z ∈ ℝ, z ≥ ax

xij ∈ {0,1}
xj ∈ {0,1}

binary variables to model true/false conditions on objects

Input n items, value cj and weight wj
for each item j, capacity K.
Output a maximum value subset of items
whose total weight does not exceed K.

Integer Knapsack

Problem

Mixed Integer Linear Programming
Course Note

OSE 2014: Optimization
sophie.demassey@mines-paristech.fr

October 3, 2014

max
n∑

j=1
c j x j

s.t.
n∑

j=1
w j x j ≤ K

x j ∈ {0,1} j = 1..n

min
n∑

j=1
c j x j +

n∑

j=1

m∑

i=1
di j yi j

s.t.
n∑

j=1
yi j = 1 i = 1..m

yi j ≤ x j j = 1..n, i = 1..m

x j ∈ {0,1} j = 1..n

yi j ∈ {0,1} j = 1..n, i = 1..m

xj is item j packed ? 28

- either x or y

- if x then y

- if x then z ≤ a

logic with binaries

“big M constraint”
big enough but keep it tight !

29

 binary variables; continuous variable; constantsx, y z a, k, n

linear constraints on binary variables to model logical relations between objects

x + y = 1
y ≥ x

z ≤ a + (M − a)(1 − x)

- either x or y

- if x then y

- if x then z ≤ a

- if not x then z ≥ a

- at most 1 out of n

- at least k out of n

logic with binaries

29

 binary variables; continuous variable; constantsx, y z a, k, n

linear constraints on binary variables to model logical relations between objects

x + y = 1
y ≥ x

z ≤ a + (M − a)(1 − x)
z ≥ a − (M + a)x

x1 + ⋯ + xn ≤ 1
x1 + ⋯ + xn ≥ k

Input n facility locations, m customers,
cost cj to open facility j, cost dij to
serve customer i from facility j
Output a mimimum (opening and service) cost
assignment of customers to facilities.

Uncapacitated

Facility Location

Problem

Mixed Integer Linear Programming
Course Note

OSE 2014: Optimization
sophie.demassey@mines-paristech.fr

October 3, 2014

max
n∑

j=1
c j x j

s.t.
n∑

j=1
w j x j ≤ K

x j ∈ {0,1} j = 1..n

min
n∑

j=1
c j x j +

n∑

j=1

m∑

i=1
di j yi j

s.t.
n∑

j=1
yi j = 1 i = 1..m

yi j ≤ x j j = 1..n, i = 1..m

x j ∈ {0,1} j = 1..n

yi j ∈ {0,1} j = 1..n, i = 1..m

xj is location j open ? yij is customer i served from j ?
30

or (if d positive)

n

∑
j=1

yij ≥ 1

Input n data points, distance dij between
each two points i,j, number k of clusters.
Output k centers minimizing the sum of
distances between each point and its
nearest center.

K-median clustering

xj is j a center ? yij is j the nearest center of i ?
31

Output define K points as centers so as to
minimize the sum of the distances between
each point and its nearest center.

K-median clustering

32

K-mean clustering

Output partition the points into K sets so
as to minimize the sum of the distances
between each point and the mean of points
in its cluster.

Input n data points , a number
K of clusters. Euclidean distance.

mj ∈ ℝp

K-mean clustering
xjk is j assigned to cluster k ?
yk coordinates of the center of k ?
djk distance from j to the center of k ?

33

distances cannot be precomputed:

decision variables and nonlinear constraints

min
K

∑
k=1

n

∑
j=1

xjkdjk

s . t . djk =
p

∑
i=1

(mi
j − yi

k)2 ∀j, k

K

∑
k=1

xjk = 1 ∀j

xjk ∈ {0,1}, yi
k ∈ ℝ, djk ≥ 0

nonconvex !

nonlinear

K-mean clustering
djk distance from j to the center of its cluster k ?

34

exact reformulation as a convex MINLP... still slower than specialized heuristics

min
K

∑
k=1

n

∑
j=1

djk

s . t . djk ≥
p

∑
i=1

(mi
j − yi

k)2 − djk(1 − xjk) ∀j, k

K

∑
k=1

xjk = 1 ∀j

xjk ∈ {0,1}, yi
k ∈ ℝ, djk ≥ 0

min
j

mi
j ≤ yi

k ≤ max
j

mi
j ∀i, k

y1
k ≤ y1

k+1 ∀k

"convexify"
without the integrity

constraints the feasible

set it convex

symmetry breaking

(fix an arbitrary order)

bounding

improve the model by

reducing the search space

{x | f(x) ≤ d}

modelling nonlinear functions
setup value

piecewise linear

discrete values

36

setup value

Mixed Integer Linear Programming
Course Note

OSE 2014: Optimization
sophie.demassey@mines-paristech.fr

October 3, 2014

set-up value:
f : [0,U] ⊆R+ →R+

f (x) =
{

0 if x = 0

ax +b if 0 < x ≤U

f (x) = ax +bδ
εδ≤ x ≤Uδ
δ ∈ {0,1}

discrete values:
f (x) = fi if x = i

f (x) =∑
i δi fi

with SOS1(δi)

piecewise linear:
linear on [ai−1, ai]

f (x) =∑
i δi f (ai)

with SOS2(δi)

U"
is x positive ? 37

discrete values

Mixed Integer Linear Programming
Course Note

OSE 2014: Optimization
sophie.demassey@mines-paristech.fr

October 3, 2014

set-up value:
f : [0,U] ⊆R+ →R+

f (x) =
{

0 if x = 0

ax +b if 0 < x ≤U

f (x) = ax +bδ
εδ≤ x ≤Uδ
δ ∈ {0,1}

discrete values:
f (x) = fi if x = i

f (x) =∑
i δi fi∑

i iδi = x∑
i δi = 1

δi ∈ {0,1} i = 0..n

piecewise linear:
linear on [ai−1, ai]

f (x) =∑
i δi f (ai)

with SOS2(δi)

#i is x=i (and f(x)=fi) ? 38

discrete values

Mixed Integer Linear Programming
Course Note

OSE 2014: Optimization
sophie.demassey@mines-paristech.fr

October 3, 2014

set-up value:
f : [0,U] ⊆R+ →R+

f (x) =
{

0 if x = 0

ax +b if 0 < x ≤U

f (x) = ax +bδ
εδ≤ x ≤Uδ
δ ∈ {0,1}

discrete values:
f (x) = fi if x = i

f (x) =∑
i δi fi∑

i iδi = x∑
i δi = 1

δi ∈ {0,1} i = 0..n

piecewise linear:
linear on [ai−1, ai]

f (x) =∑
i δi f (ai)

with SOS2(δi)

Special Ordered Set of type 1:

ordered set of variables, all zero except at most one

#i is x=i (and f(x)=fi) ?

SOS1($)≥

38

piecewise linear

Special Ordered Set of type 2:

ordered set of variables, all zero except at most two consecutive

%i is x=ai ? (then &iai +&i+1ai+1 in [ai,ai+1] if &i +&i+1 =1)

SOS2(%)
39

modeling with ℤ
40

xi = 5
to order i is the 5th item

to count 5 items are selected

to measure time task i starts at time 5

to measure space item i is located on floor 5

≃ $i5 = 1
41

Binary Integer Linear Program (BIP) {0,1}n

Integer Linear Program (IP) ℤn

Mixed Integer Linear Program (MIP) ℤn U Qn

42

Output define K points as centers
so as to minimize the sum of the
distances between each point and
its nearest center.

K-median clustering

43

K-mean clustering

Output partition the points into
K sets so as to minimize the sum
of the distances between each
point and the mean of points in
its cluster.

Input n data points , a
number K of clusters. Euclidean
distance.

mj ∈ ℝp

project:

power generation

44

1/ basic power generation problem

Output
a number of units to commit and their production level to meet
the demand on each period and minimize the operation costs.

Input
demand (MW) for each period of length (h),
 units of each type with power output range (MW).

Base cost (€/h) to operate a unit at its min level
+ cost (€/MWh) per each extra MWh.

Dp p ∈ {0,…, P − 1} Δp
Nt t ∈ T [Lt, Lt]

Cb
t

Cr
t

- no need to know the activity of each individual unit

- be careful with equations in power (MW) or in energy (MWh)

- keep the same order of magnitude for data

45

xtp number of units of type t to commit on period p
ltp extra output (MW) of the units of type t on period p

Input
demand (MW) for each period of length (h),
 units of each type with power output range (MW).

Base cost (€/h) to operate a unit at its min level
+ cost (€/MWh) per each extra MWh.

Dp p ∈ {0,…, P − 1} Δp
Nt t ∈ T [Lt, Lt]

Cb
t

Cr
t

the MILP way

Sophie Demassey 2023

a practical view

1(2)

1how to model ?

2how difficult ?

3how to solve ?

2

3

waste management

2 types of nuclear waste A, B with
different unit profit/processing time
going through 3 processes I, II and III
with limited availability

objective: maximize the profit.

I II III profit

A 1h 2h 1h 4k€

B 3h 1h 1h 8k€

available 450h 300h 200h

max 4a + 8b
a + 3b ≤ 450

a, b ∈ ℤ+

2a + b ≤ 300
a + b ≤ 200

4

waste management

2 types of nuclear waste A, B with
different unit profit/processing time
going through 3 processes I, II and III
with limited availability

objective: maximize the profit.

I II III profit

A 1h 2h 1h 4k€

B 3h 1h 1h 8k€

available 450h 300h 200h

max 4a + 8b
a + 3b ≤ 450

a, b ≥ 0

2a + b ≤ 300
a + b ≤ 200

a, b ∈ ℤ
LP relaxation

LP solution: a* + 3b* = 450, a* + b* = 200 ⇒ (a*, b*) = (150
2 , 250

2)

active

active

Linear Programming cheat sheet

5

- MILP without integrality = LP-relaxation

- linear inequality = halfspace

- LP feasible set = polyhedron

- convex optimization

- if LP is feasible and bounded, at least one vertex is optimal

- primal simplex algorithm: visit adjacent vertices as cost decreases

- interior point method runs in polynomial time (but simplex often faster)

- strong duality: min
x

{cx |Ax ≥ b, x ≥ 0} = max
u

{ub |uA ≤ c, u ≥ 0}

LP is easy

Input 1 company, 2 divisions, m products
with availabilities dj, n retailers with
demands aij in each product j.
Output an assignment of the retailers to
the divisions approaching a 50/50
production split.

Market Split Problem

Mixed Integer Linear Programming
Course Note

OSE 2014: Optimization
sophie.demassey@mines-paristech.fr

October 6, 2014

min
m∑

j=1
s+j + s−j

s.t.
n∑

i=1
ai j xi + s+j − s−j =

d j

2
j = 1..m

xi ∈ {0,1} i = 1..n

s+j ≥ 0, s−j ≥ 0 j = 1..m

xi is retailer i assigned to division 1 ?
sj gap to the 50% split goal for product j6

Input 5 products, 40 retailers

Output .

. (hold the line please) . . .

Int Opt = 1

Time to the solution = 20 minutes

Time of optimality proof > 1 hour

MIPLIB markshare_5_0

7

MILP ≠ LP-relaxation

8

9

MILP ≠ round LP-relaxation

general MILP is NP-hard

10

• small problems are easy
• some specific problems are easy

1||Cmax Scheduling

Problem

Input n tasks, duration pi for each task
i, one machine
Output a minimal makespan schedule of
the tasks on the machine without overlap

Mixed Integer Linear Programming
Course Note

OSE 2014: Optimization
sophie.demassey@mines-paristech.fr

October 6, 2014

1||Cmax

min sn+1

s.t. sn+1 ≥ s j +p j j = 1..n

s j − si ≥ M xi j + (pi −M) i , j = 1..n

xi j +x j i = 1 i , j = 1..n; i < j

s j ∈Z+ j = 1..n +1

xi j ∈ {0,1} i , j = 1..n

min
m∑

j=1
s+j + s−j

s.t.
n∑

i=1
ai j xi + s+j − s−j =

d j

2
j = 1..m

xi ∈ {0,1} i = 1..n

s+j ≥ 0, s−j ≥ 0 j = 1..m

= p1+…+pn

≥ 0

11xij does i precede j ? sj starting time of j

Input digraph (V,A), demand or supply
bi at each node i, capacity hij and unit
flow cost cij for each arc (i,j)
Output a mimimum cost integer flow to
satisfy the demand

Capacitated Transhipment

Problem

Mixed Integer Linear Programming
Course Note

OSE 2014: Optimization
sophie.demassey@mines-paristech.fr

October 6, 2014

f ≤ ax +M(1−x)

min
∑

(i , j)∈A
ci j xi j

s.t.
∑

j∈δ+(i)
xi j −

∑

j∈δ−(i)
xi j = bi i ∈V

xi j ≤ hi j (i , j) ∈ A

xi j ∈Z+ (i , j) ∈ A

1||Cmax

min sn+1

s.t. sn+1 ≥ s j +p j j = 1..n

s j − si ≥ M xi j + (pi −M) i , j = 1..n

xi j +x j i = 1 i , j = 1..n; i < j

s j ∈Z+ j = 1..n +1

xi j ∈ {0,1} i , j = 1..n

min
m∑

j=1
s+j + s−j

s.t.
n∑

i=1
ai j xi + s+j − s−j =

d j

2
j = 1..m

xi ∈ {0,1} i = 1..n

s+j ≥ 0, s−j ≥ 0 j = 1..m

≥ 0

xij flow on arc (i,j)12

LP = ILP sometimes

integral polyhedra

=

convex hull

=

ideal formulation

13

totally unimodular matrix

alternative models
improving models

good IP models

better models ?
formulation strength
easy problems

criteria for good models

a good model

small-size: polynomial number of constraints/variables
flexible: about slight changes of the problem
easy LP: the LP relaxation is solved fast
structured: call for decomposition
effective LP: the LP relaxation value is close to the optimum

Sophie Demassey, TASC, EMN-INRIA/LINA Université de Nantes / M2 ORO / Advanced Integer Programming / L3: modeling

alternative models
improving models

good IP models

better models ?
formulation strength
easy problems

formulation strength

Let X ⊆ Zn a discrete set, e.g. the feasible solution set of an IP.

formulation strength

a formulation for X is any polyhedron P ⊆ Rn such that X = P ∩ Zn

conv(X) is the strongest formulation of X:
the optimum of a linear program over conv(X) is at an extreme point
the extreme points of conv(X) all lie in X
max{cx | x ∈ X} = max{cx | x ∈ conv(X)}
the second program can be solved in polynomial time

characterizing conv(X) is as hard as solving the IP

Sophie Demassey, TASC, EMN-INRIA/LINA Université de Nantes / M2 ORO / Advanced Integer Programming / L3: modeling

alternative models
improving models

good IP models

better models ?
formulation strength
easy problems

explicit convex hull

There are a number of problems for which conv(X) can easily be
characterized

assignment problem
spanning tree problem
matching problem

Sophie Demassey, TASC, EMN-INRIA/LINA Université de Nantes / M2 ORO / Advanced Integer Programming / L3: modeling

alternative models
improving models

good IP models

better models ?
formulation strength
easy problems

totally unimodular matrix

(P) = max{ cx | Ax ≤ b, x ∈ Zn
+ }

basic feasible solutions of the LP relaxation (P̄) take the form:
x̄ = (x̄B , x̄N) = (B−1b, 0) where B is a square submatrix of (A, Im)

Cramer’s rule: B−1 = B∗/det(B) where B∗ is the adjoint matrix
(made of products of terms of B)
Proposition: if (P) has integral data (A, b) and if det(B) = ±1 then x̄
is integral

Definition
A matrix A is totally unimodular (TU) if every square submatrix has
determinant +1, −1 or 0.

Proposition

If A is TU and b is integral then any optimal solution of (P̄) is integral.

Sophie Demassey, TASC, EMN-INRIA/LINA Université de Nantes / M2 ORO / Advanced Integer Programming / L3: modeling

(theory)

14

totally unimodular matrix
alternative models
improving models

good IP models

better models ?
formulation strength
easy problems

totally unimodular matrix

How to recognize TU ?

Sufficient condition
A matrix A is TU if

all the coefficients are +1, −1 or 0
each column contains at most 2 non-zero coefficient
there exists a partition (M1,M2) of the set M of rows such that
each column j containing two non zero coefficients satisfies∑

i∈M1
aij −

∑
i∈M2

aij = 0.

Proposition

A is TU ⇐⇒ At is TU ⇐⇒ (A, Im) is TU
where At is the transpose matrix, Im the identitiy matrix

Sophie Demassey, TASC, EMN-INRIA/LINA Université de Nantes / M2 ORO / Advanced Integer Programming / L3: modeling

alternative models
improving models

good IP models

better models ?
formulation strength
easy problems

Quizz: easy problems

Capacitated Transhipment Problem

Given a digraph G = (V,A) with either (positive) demand or (negative)
supply bi at each node i ∈ V , arc capacities hij , and unit flow costs cij
for all (i, j) ∈ A. Find a feasible integer flow that satisfies all the
demands at minimum cost.

1 model as an IP
2 analyze this problem

Sophie Demassey, TASC, EMN-INRIA/LINA Université de Nantes / M2 ORO / Advanced Integer Programming / L3: modeling

alternative models
improving models

good IP models

better models ?
formulation strength
easy problems

Answer

Capacitated Transhipment Problem

min
∑

(i,j)∈A

cijxij

s.t.
∑

j∈δ+(i)

xij −
∑

j∈δ−(i)

xij = bi i ∈ V

xij ≤ hij (i, j) ∈ A

xij ∈ Z+ (i, j) ∈ A

xij = 1 is the flow value on arc (i, j) ∈ A

δ+(i) and δ−(i) are the sets of successors and predecessors of
i ∈ V , resp.

Sophie Demassey, TASC, EMN-INRIA/LINA Université de Nantes / M2 ORO / Advanced Integer Programming / L3: modeling

alternative models
improving models

good IP models

better models ?
formulation strength
easy problems

Answer

Capacitated Transhipment Problem

The matrix is
(

M
IA

)
with M ∈ {0, 1,−1}V ×A the incidence matrix

of the graph and IA the identity matrix
each column xij in M has coefficients:

arij =

1 in row r = i

−1 in row r = j

0 in all other rows r

the rows of M can be partitioned as M1 = M and M2 = ∅ such
that:

∑
r∈M1

arij −
∑

r∈M2
arij = (1+ (−1))− 0 = 0 for all column xij

M is TU then the matrix of the IP is TU
if demands b and capacities h are all integral then any optimum
network flow is integral.

Sophie Demassey, TASC, EMN-INRIA/LINA Université de Nantes / M2 ORO / Advanced Integer Programming / L3: modeling

(practice)

15

Show that the Transhipment ILP is ideal

Show that theScheduling ILP is NOT ideal

Interlude

16

Output define K points as centers
so as to minimize the sum of the
distances between each point and
its nearest center.

K-median clustering

17

K-mean clustering

Output partition the points into
K sets so as to minimize the sum
of the distances between each
point and the mean of points in
its cluster.

Input n data points , a
number K of clusters. Euclidean
distance.

mj ∈ ℝp

project:
power generation

18

a basic power generation problem

Output a number of units to commit and their production level to meet
both the demand and the reserve on each period so as to minimize the
operation costs.

Input electric power demand for each time period of
 hours, power generation units of each type with power output

range . A reserve factor . A base hourly cost to operate a
unit at its min level + a cost per extra MWh.

Dp p ∈ {0,…, P − 1}
Δp Nt t ∈ T

[Lt, Lt] F Cb
t

Cr
t

- no need to know the activity of each individual unit

- be careful with equations in power or in energy

- choose units to enforce the homogeneity of the values

19

Input electric power demand (MW) for each time period
of hours, power generation units of each type with power
output range (MW). A reserve factor . A base hourly cost

 (eur/h/unit) to operate a unit at its min level + a cost (eur/
MWh) per extra MWh.

Dp p ∈ {0,…, P − 1}
Δp Nt t ∈ T

[Lt, Lt] F ∈ [0,1]
Cb

t Cr
t

xtp number of committed units of type t on period p
ltp extra load (MW) of all units of type t on period p

min ∑
t,p

(ΔpCb
t xtp + ΔpCr

t ltp)

∑
t

Ltxtp ≥ (1 + F) * Dp ∀p

0 ≤ ltp ≤ (Lt − Lt)xtp ∀t, p

xtp ∈ ℤ ∀t, p
0 ≤ xtp ≤ Nt ∀t, p

∑
t

(Ltxtp + ltp) ≥ Dp ∀p

20

startup costs
Input the number of active units at time 0, a positive startup cost
 to turn a unit on.

At
Cs

t

ytp number of units of type t starting on period p

min … + ∑
t,p

Cs
t ytp

yt0 ≥ xt0 − At ∀t

ytp ∈ ℤ+ ∀t, p

ytp ≥ xtp − xtp−1 ∀t, p ≠ 0

 in any feasible solution andytp ≥ max(0, xtp − xtp−1)
 in any optimal solution (prove it)ytp ≤ max(0, xtp − xtp−1)

21

hydro power generation
Input hydro units with fixed power output (MW), hourly
reservoir depth reduction (m/h) and hourly cost (eur/h) when on,
and with startup cost (eur); the commitment status (true/false)
of the unit before time 0. At end, the unique reservoir must be
replenished to its initial level; pumping electric consumption (MWh/
m) for 1 meter depth increase.

h ∈ H Lh
Rh Cb

h
Cs

h Ah

E

xhp hydro unit h committed on period p
yhp hydro unit h started on period p
up reservoir depth increase (m/h) by pumping on period p

22

hydro power generation

min… + ∑
h,p

(ΔpCb
h xhp + Cs

hyhp)

xhp, yhp ∈ {0,1} ∀h, p

∑
p

∑
h

RhΔpxhp = ∑
p

Δpup

∑
t

Ltxtp + ∑
h

Lh ≥ (1 + F) * Dp ∀p

up ∈ ℝ+ ∀p

∑
t

(Ltxtp + ltp) + ∑
h

Lhxhp ≥ Dp + Eup ∀p

xh(−1) = Ah

yhp ≥ xhp − xhp−1 ∀h, p

23

Physical limits of the units:
minimum up/down times and
maximum ramp up/down rates

Input (noncyclic)
up/down times: minimum time (h) unit may remain on or off;
time (h) the th unit of type has been on/off before period 0.
ramp rates: maximum power increase/decrease (MW) between two
consecutive periods; maximum power (MW) when turned on; maximum power
 (MW) before turned off; load (MW) for th unit of type before

period 0.
Input (cyclic)
the status before period 0 () are duplicated from period P-1.

Δ+
t , Δ−

t t ∈ T
Δ+

0it, Δ−
0it i t ∈ T

L+
t , L−

t
LS

t
LE

t L0it i t ∈ T

Δ+
0it, Δ−

0it, L0it

commitment must be monitored for units individually

24

minimum uptime

Let .

Show that an unit of type cannot been turned on more than once during .

Show that if an unit of type is off at time then it has not been turned on at any time

 .

Reformulate these assertions as a linear relation between the binary variables modelling the unit

status and status change at appropriate periods.

P+
t (p) = {0 ≤ p′ ≤ p |

p−1

∑
k=p′

Δk < Δ+
t }

t P+
t (p)

t p
p′ ∈ P+

t (p)

25

minimum uptime (noncyclic case)

If unit of type has been on for exactly hours before time 0, what can you say about

its status and status change at any period in

?

Fix binary variables modelling the status and status change of a unit at given periods according to

this assertion.

i t Δ+
0it > 0

P+
it = {p ≥ 0 |

p−1

∑
k=0

Δk < Δ+
t − Δ+

0it}

the MILP way
a practical view

1

(3)
Sophie Demassey 2023

1how to model ?

2how difficult ?

3how to solve ?
2

Complete enumeration

3

= 2p
 LPs to solve

MILP with p binaries

x1=0 x1=1

x2=0 x2=1 x2=0 x2=1

x3=0 x3=1 x3=0 x3=1 x3=0 x3=1 x3=0 x3=1

x4=0 x4=1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Combinatorial explosion

4

2p p100p

p

Combinatorial explosion

4

2p

p

100p
p

age of the universe ≈ 290
 milliseconds

21

Two options

5

compute

an ideal formulation

evaluate partial solutions

 progressively

X

X
X

4
3
2
1Cut Generation compute an ideal formulation

Branch&Bound evaluate partial solutions progressively

modern Branch&Cut mix up+presolve+heuristics

decomposition methods (Branch&Price, Lagrangian relaxation, Benders)
6

Cutting Plane Algorithm

7

Cut valid inequality that separates a relaxed LP solution

Farkas Lemma cuts are linear combinations of constraints
8

cutting plane algorithm

1. solve the LP relaxation of (P), get x

2. if x is integral STOP: feasible then optimal
for (P)

3. find cuts C for (P,x) from template T

4. add constraints C to (P) then 1.

9

separation subproblem

templates

general-purpose

structure-based

problem-specific

mixed integer rounding, split, Chvátal-Gomory

clique, cover, flow cover, zero half

subtour elimination (TSP), odd-set (matching)

10

ex1Chvátal-Gomory cuts

11

(P) : max{cx | Ax ≤ b, x ∈ ℤ+}

variants in the choice of , ex: Gomory or MIR cuts u

For any the following inequalities are valid:

1. surrogate:

2. round off:

3. Chvátal-Gomory:

u ∈ ℝm
+

∑
j

∑
i

uiaijxj ≤ ∑
i

uibi

∑
i

⌊∑
j

uiaij⌋xj ≤ ∑
i

uibi

∑
i

⌊∑
j

uiaij⌋xj ≤ ⌊∑
i

uibi⌋

(u ≥ 0)

(x ≥ 0)

(⌊uA⌋x ∈ ℤ)

ex2Cover cuts

easy problems

cutting-plane methods

definitions

examples

Exercices

Cover inequalities

Find a non-dominated cover inequality

P
i⌅K yi ⌅ |K|� 1 for:

S = {y ⌃ {0, 1}7|11y1 + 6y2 + 6y3 + 5y4 + 5y5 + 4y6 + y7 ⌅ 19}

GUB inequalities

Find a non-dominated GUB inequality

P
i⌅C yi ⌅ |C|� 1 for:

S = { y ⌃ {0, 1}8

s.t. 2y1 + y2 + 5y3 + 2y4 + 3y5 + 6y6 + 4y7 + y8 ⌅ 9

y1 + y4 + y6 ⌅ 1

y5 + y8 ⌅ 1

y2 + y7 ⌅ 1 }

Sophie Demassey, TASC, EMN-INRIA/LINA Université de Nantes / M2 ORO / Advanced Integer Programming / L5: solving/cuts

easy problems

cutting-plane methods

definitions

examples

Answer: Cover inequalities

Cover inequalities

S = {y ⌃ {0, 1}7|11y1 + 6y2 + 6y3 + 5y4 + 5y5 + 4y6 + y7 ⌅ 19}

(y3, y4, y5, y6) is a minimal cover for

11y1 + 6y2 + 6y3 + 5y4 + 5y5 + 4y6 + y7 ⌅ 19 as 6 + 5+ 5+ 4 > 19 then

y3 + y4 + y5 + y6 ⌅ 3 is a cover inequality

we can derive a stronger valid inequality

y1 + y2 + y3 + y4 + y5 + y6 ⌅ 3 by noting that y1, y2 has greater

coefficients than any variable in the cover

note furthermore that (y1, yi, yj) is a cover �i ⌥= j ⌃ {2, 3, 4, 5, 6}
then 2y1 + y2 + y3 + y4 + y5 + y6 ⌅ 3 is also valid

The procedure to get this last equality is called lifting

Sophie Demassey, TASC, EMN-INRIA/LINA Université de Nantes / M2 ORO / Advanced Integer Programming / L5: solving/cuts

easy problems

cutting-plane methods

definitions

examples

Answer: GUB inequalities

GUB inequalities

2y1 + y2 + 5y3 + 2y4 + 3y5 + 6y6 + 4y7 + y8 ⌅ 9

y1 + y4 + y6 ⌅ 1

y5 + y8 ⌅ 1

y2 + y7 ⌅ 1

(y1, y6, y7) is a minimal cover having 2 variables in the first clique

inequality, then the associated cover inequality y1 + y6 + y7 ⌅ 2 is

redundant with y1 + y6 ⌅ y1 + y4 + y6 ⌅ 1

y1 + y5 + y7 ⌅ 2 is a GUB inequality, i.e. the cover has at most one

variable in each clique constraint

by lifting, we can strengthen it: y1 + y5 + y7 + y3 + y6 ⌅ 2

Sophie Demassey, TASC, EMN-INRIA/LINA Université de Nantes / M2 ORO / Advanced Integer Programming / L5: solving/cuts

easy problems

cutting-plane methods

definitions

examples

Separation with templates

problem-specific cuts are usually derived according to:

the template paradigm

1 describe one or more templates of linear inequalities that are

satisfied by all the points of S

2 for each template, design an efficient separation algorithm that,

given an x̄, attempts to find a cut that matches the template.

The separation algorithm may be:

exact: finds a cut that separates z̄ from S and matches the

template whenever one exists

heuristic: sometimes fails to find such a cut even though one exists.

Sophie Demassey, TASC, EMN-INRIA/LINA Université de Nantes / M2 ORO / Advanced Integer Programming / L5: solving/cuts

12

lifting

separation: solve knapsack min{∑
j

(1 − yj)xj | ∑ ajxj ≥ b + ϵ, x ∈ {0,1}n}
get coefficients of the cover inequality x* ∑ x*j yj ≤ ∑ x*j − 1
if then it is a cut (not satisfied by current LP solution)∑ (1 − yj)x*j < 1 ȳ

to go further: Kaparis & Letchford 2010
Separation algorithms for 0-1 knapsack polytopes

ex3Subtour for TSP

13

ex3Subtour for TSP

Mixed Integer Linear Programming

Course Note

OSE 2014: Optimization

sophie.demassey@mines-paristech.fr

October 7, 2014

min

X

e2E
ce xe

s.t.

X

e2E |i2e
xe = 2 i 2V

X

±(Q)

xe ∏ 2 ;(Q (V

xe 2 {0,1} e 2 E

13

2n constraints !

ex3Subtour for TSP

14

separation: solve min s-t cut in for some fixed s and for each to

find a cutset of capacity < 2 or prove that none exists

(V, ⃗E , x̄) t ∈ V∖{s}
δ(Q)

limits depending on the templates

- the algorithm may stop prematurely

- the algorithm may not converge

- the algorithm may converge slowly

- the separation procedure may be NP-hard

- the LP relaxation grows

- the LP relaxation structure changes

15

LP-Branch and Bound

16

Search tree
divide/evaluate/prune

17

oracle(S)=FALSE if

no solution in S

(false-positive allowed)

oracle(S) = FALSE if either:
-the LP relaxation is unfeasible on S
-the relaxed LP solution x is not better than

the best integer solution found so far x*
- x is integer (then update x*)

18

LP-based branch and bound
1. evaluate by solving the LP relaxation and compare bounds

2. divide with variable bounding (hyperplanes)

19

branching

node selection

variable selection

which order to visit nodes ?

how to separate nodes ?

constraint branching
versus variable branching

20

node selection

Best Bound First Search explore less nodes, manages larger trees

Depth First Search sensible to bad decisions at or near the root

DFS (up to n solutions) + BFS (to prove optimality)
21

variable selection

most fractional easy to implement but not better than random

strong branching best improvement among all candidates (impractical)

pseudocost branching record previous branching success for each var (inaccurate at root)

reliability branching pseudocosts initialised with strong branching
22

constraint branching

from the LP relaxation to an IP solution

branch-and-bound

LP-based branch-and-bound

definition

branching strategies

branching strategies

GOAL: accelerate the search

MEAN: try to minimize the number of nodes to evaluate

3 combined heuristics

1 choose the way a subspace is divided

2 choose the element of division

3 choose the subspace to divide

in order to keep the evaluation easy

Sophie Demassey, TASC, EMN-INRIA/LINA Université de Nantes / M2 ORO / Advanced Integer Programming / L6: solving/B&B

from the LP relaxation to an IP solution

branch-and-bound

LP-based branch-and-bound

definition

branching strategies

how to divide ?

the division strategy must be compatible with the bounding strategy:

exclude the current relaxed solution

exclude no feasible solution

not overload the relaxed model

not modify its structure

Sophie Demassey, TASC, EMN-INRIA/LINA Université de Nantes / M2 ORO / Advanced Integer Programming / L6: solving/B&B

from the LP relaxation to an IP solution

branch-and-bound

LP-based branch-and-bound

definition

branching strategies

branching on variables

example: variable dichotomy

let x̄ the LP solution, x̄ ⌃⇧ Zn

choose a fractional variable x̄i ⌃⇧ Z
divide in two by shrinking the bounds of the variable in the two

child LPs: xi ⇤ ↵x̄i� (left branch) and xi ⌅ �x̄i� (right branch)

variable dichotomy is compatible to any LP relaxation

default branching strategy in most solvers

other variable branching: fix variable value in each branch

xi = v1i ⌦ xi = v2i ⌦ xi = v3i ⌦ · · · ⌦ xi = vpii

Sophie Demassey, TASC, EMN-INRIA/LINA Université de Nantes / M2 ORO / Advanced Integer Programming / L6: solving/B&B

from the LP relaxation to an IP solution

branch-and-bound

LP-based branch-and-bound

definition

branching strategies

branching on constraints

example: GUB dichotomy

if (P) contains a GUB constraint

�
C xi = 1, x ⇧ {0, 1}n

choose C⇤ ⇥ C s.t. 0 <
�

C0 x̄i < 1

create two child nodes by setting either

�
C0 xi = 0 or

�
C0 xi = 1

enforced by fixing the variable values

leads to more balanced search trees

special case when C is logically ordered: SOS1 branching

Sophie Demassey, TASC, EMN-INRIA/LINA Université de Nantes / M2 ORO / Advanced Integer Programming / L6: solving/B&B

from the LP relaxation to an IP solution
branch-and-bound

LP-based branch-and-bound

definition
branching strategies

branching on constraints

SOS1 branching in a facility location problem

choose a warehouse depending on its size/cost:

COST = 100x1 + 180x2 + 320x3 + 450x4 + 600x5

SIZE = 10x1 + 20x2 + 40x3 + 60x4 + 80x5

(SOS1) : x1 + x2 + x3 + x4 + x5 = 1

let x̄1 = 0.35 and x̄5 = 0.65 in the LP solution then SIZE= 55.5

choose C� = {1, 2, 3} in order to model SIZE� 40 or SIZE⇥ 60

the branching point of the SOS C is given by:

argmax{aj | aj <
�

i⇥C

aix̄i, j ⇤ C}.

Sophie Demassey, TASC, EMN-INRIA/LINA Université de Nantes / M2 ORO / Advanced Integer Programming / L6: solving/B&B

from the LP relaxation to an IP solution

branch-and-bound

LP-based branch-and-bound

definition

branching strategies

division strategies

examples

variable dichotomy xi ⇧ [0, a] ⌦ xi ⇧ [a+ 1, b]

branching on semi-continuous variables xi ⇧ {0} � [a, b]

branching on domain values xi = 0 ⌦ xi = 1 ⌦ · · · ⌦ xi = u

GUB branching

SOS1 branching

SOS2 branching x1 + x2 + x3 + x4 + x5 = 1, if x̄2 = x̄4 = 0.5
set either x4 = x5 = 0 (enforcing x2 > 0) or x1 = x2 = 0 (enforcing

x4 > 0)

branching on connectivity constraints in TSP, if

�
e⌅�(U) x̄e = 2.5 set

either

�
e⌅�(U) xe = 2 or

�
e⌅�(U) xe ⌅ 4 (enforcing

�
e⌅�(U) x̄e = 2k)

... other problem specific strategies

Sophie Demassey, TASC, EMN-INRIA/LINA Université de Nantes / M2 ORO / Advanced Integer Programming / L6: solving/B&B

from the LP relaxation to an IP solution

branch-and-bound

LP-based branch-and-bound

definition

branching strategies

branching strategies

GOAL: accelerate the search

MEAN: try to minimize the number of nodes to evaluate

3 combined heuristics

1 choose the way a subspace is divided

2 choose the element (variable/constraint) of division

3 choose the subspace to divide

in order to keep the tree size small

Sophie Demassey, TASC, EMN-INRIA/LINA Université de Nantes / M2 ORO / Advanced Integer Programming / L6: solving/B&B

from the LP relaxation to an IP solution

branch-and-bound

LP-based branch-and-bound

definition

branching strategies

variable choice rule

choosing the fractional variable in variable dichotomy ?

choose the most infeasible variable: with the most fractional value

(closest to 1/2)

or choose the most suboptimal variable: that causes the LP

optimum to deteriorate quickly

the first strategy aims at fixing the hesitating variables: often as

good as a random choice

the second strategy is the most usual in solvers

helps in keeping the tree size small by augmenting pruning (when

z̄ < z⇥ + 1)

but it can be too expensive to compute the optimum changes for

each fractional variable at each node

Sophie Demassey, TASC, EMN-INRIA/LINA Université de Nantes / M2 ORO / Advanced Integer Programming / L6: solving/B&B

23

bounding: the dual simplex algorithm

24

• primal-dual problem pair:

• primal-dual basic solutions: with and ,

• primal basic feasible solutions are the extreme points of polyhedron

• if both are feasible (and) then both are optimal ()

• primal simplex algorithm: iterate over bases, maintain primal feasibility, stop when achieving dual feasibility

• dual simplex algorithm: iterate over bases, maintain dual feasibility, stop when achieving primal feasibility

• branching updating the dual basic solution remains feasible

• we can warm-start the dual simplex algorithm to solve the LP-relaxation at a search node with the dual basic

solution of the parent node

• great impact on the running time of the LP-B&B algorithm

• convex MINLP: NLP-B&B algorithm does usually not perform well (OA-based cutting-plane algorithms are usually

better) mostly because no such warm-start algorithm exists for NLP

min
x

{c⊤x |Ax = b, x ≥ 0} = max
u

{u⊤b |A⊤u ≤ c}

x = (xB, xN) xN = 0, xB = A−1
B b u⊤ = c⊤

B A−1
B

P = {x ≥ 0 | Ax ≥ b}
xB ≥ 0 c⊤ − u⊤A ≥ 0 uTb = c⊤

B xB = cx

⟹ b ⟹

Output define K points as centers
so as to minimize the sum of the
distances between each point and
its nearest center.

K-median clustering

62

K-mean clustering

Output partition the points into
K sets so as to minimize the sum
of the distances between each
point and the mean of points in
its cluster.

Input n data points , a
number K of clusters. Euclidean
distance.

mj ∈ ℝp

project:

power generation

68

Physical limits of the units:

minimum up/down times and

maximum ramp up/down rates

Input (noncyclic)
up/down times: minimum time unit may remain on or off; time

 the th unit of type has been on/off before period 0.
ramp rates: maximum power increase/decrease between two
consecutive periods; maximum power when turned on; maximum power
before turned off; load for th unit of type before period 0.
Input (cyclic)
the status before period 0 () are duplicated from period P-1.

Δ+
t , Δ−

t t ∈ T
Δ+

0it, Δ−
0it i t ∈ T

L+
t , L−

t
LS

t LE
t

L0it i t ∈ T

Δ+
0it, Δ−

0it, L0it

commitment must be monitored for units individually

69

minimum uptime

Let .

Show that an unit of type cannot been turned on more than once during .

Show that if an unit of type is off at time then it has not been turned on at any time

 .

Reformulate these assertions as a linear relation between the binary variables modelling the unit

status and status change at appropriate periods.

P+
t (p) = {0 ≤ p′ ≤ p |

p−1

∑
k=p′

Δk < Δ+
t }

t P+
t (p)

t p
p′ ∈ P+

t (p)

70

minimum uptime (noncyclic case)

If unit of type has been on for exactly hours before time 0, what can you say about

its status and status change at any period in

?

Fix binary variables modelling the status and status change of a unit at given periods according to

this assertion.

i t Δ+
0it > 0

P+
it = {p ≥ 0 |

p−1

∑
k=0

Δk < Δ+
t − Δ+

0it}

71

maximum ramp

If unit of type starts at p () then

Otherwise either unit i is on at p-1 and on at p and

 or unit i is on at p-1 and off at p and

 or unit i is off at p-1 and off at p and

i t yithp = 1 litp − litp−1 ≤ LS
it

litp − litp−1 ≤ L+
it

litp − litp−1 < 0
litp − litp−1 = 0

the MILP way
a practical view

25

(4)
Sophie Demassey 2023

ENCORE EN GRÈVE

modern solvers

26

Branch & Cut

Simplex
var branching

Heuristics
Parallelism

Preprocessing

27

Slide from Martin Grötschel Co@W Berlin 201528

© 2013 IBM Corporation

Component Impact CPLEX 12.5 Summary

Benchmarking setup

• 1769 models
• 12 core Intel Xenon 2.66 GHz
• Unbiased: At least one of all the

test runs took at least 10sec

99% 82% 91% 26%93%91% 46%83% 65%% affected

12 29

30

From Andrea Lodi's MIP course (Wien 2012)

From Robert Bixby (1000x MIP Tricks 2012)

CPLEX 20.1 GUROBI 7.5 - 10.0

31

Preprocessingreduce size
remove redundancies x+y≤3, binaries
substitute variables x+y-z=0
fix variables by duality cj≥0, Aj≥0 ⇒ x=xmin

fix variables by probing x=1 infeas ⇒ x=0

strengthen LP relaxation

 adjust bounds 2x+y≤1, binaries ⇒ x=0

 lift coefficients 2x-y≤1, binaries ⇒ x-y≤1

identify/exploit properties
 detect implied integer 3x+y=7, x int ⇒ y int

 build the conflict graph
 detect disconnected components
 remove symmetries

32

Input 5 products, 40 retailers
Output
. . . (hold the line please)

Int Opt = 1
Solution time = 20 minutes
Proof time = > 1 hour

MIPLIB markshare_5_0

33

Input 5 products, 40 retailers
Output
. . . (hold the line please)

Int Opt = 1
Solution time = 20 minutes
Proof time = > 1 hour

MIPLIB markshare_5_0

x22 1
x23 1
x26 1
x27 1
x28 1
x34 1
x35 1
x38 1
x39 1
[sofdem:~/Documents/Code/gurobi]$ gurobi.sh mymip.py markshare_5_0.mps.gz
Optimize a model with 5 rows, 45 columns and 203 nonzeros
Found heuristic solution: objective 5335
Presolve time: 0.00s
Presolved: 5 rows, 45 columns, 203 nonzeros
Variable types: 0 continuous, 45 integer (40 binary)

Root relaxation: objective 0.000000e+00, 15 iterations, 0.00 seconds

 Nodes | Current Node | Objective Bounds | Work
 Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

 0 0 0.00000 0 5 5335.00000 0.00000 100% - 0s
H 0 0 320.0000000 0.00000 100% - 0s
 0 0 0.00000 0 6 320.00000 0.00000 100% - 0s
 0 0 0.00000 0 5 320.00000 0.00000 100% - 0s
 0 0 0.00000 0 6 320.00000 0.00000 100% - 0s
 0 0 0.00000 0 5 320.00000 0.00000 100% - 0s
H 0 0 239.0000000 0.00000 100% - 0s
 0 0 0.00000 0 5 239.00000 0.00000 100% - 0s
* 36 0 29 96.0000000 0.00000 100% 2.7 0s
* 99 32 34 58.0000000 0.00000 100% 2.1 0s
H 506 214 53.0000000 0.00000 100% 1.9 0s
H30682 442 1.0000000 1.00000 0.00% 2.1 0s

Cutting planes:
 Cover: 26

Explored 30682 nodes (65348 simplex iterations) in 0.70 seconds
Thread count was 4 (of 4 available processors)

Optimal solution found (tolerance 1.00e-04)
Best objective 1.000000000000e+00, best bound 1.000000000000e+00, gap 0.0%
Optimal objective: 1
Matching parameters: [u'Cutoff', u'IterationLimit', u'NodeLimit', u'SolutionLimit', u'Time
Limit', u'FeasibilityTol', u'IntFeasTol', u'MarkowitzTol', u'MIPGap', u'MIPGapAbs', u'Opti
malityTol', u'PSDTol', u'Method', u'PerturbValue', u'ObjScale', u'ScaleFlag', u'SimplexPri
cing', u'Quad', u'NormAdjust', u'SiftMethod', u'Sifting', u'BarIterLimit', u'BarConvTol',
u'BarCorrectors', u'BarHomogeneous', u'BarOrder', u'BarQCPConvTol', u'Crossover', u'Crosso
verBasis', u'BranchDir', u'Disconnected', u'Heuristics', u'MinRelNodes', u'MIPFocus', u'No
defileStart', u'NodefileDir', u'NodeMethod', u'NoRelHeuristic', u'PumpPasses', u'RINS', u'
SolutionNumber', u'SubMIPNodes', u'Symmetry', u'VarBranch', u'ZeroObjNodes', u'Cuts', u'Cu
tPasses', u'CliqueCuts', u'CoverCuts', u'CutAggPasses', u'FlowCoverCuts', u'FlowPathCuts',
 u'GomoryPasses', u'GUBCoverCuts', u'ImpliedCuts', u'MIPSepCuts', u'MIRCuts', u'NetworkCut
s', u'SubMIPCuts', u'ZeroHalfCuts', u'ModKCuts', u'ServerPool', u'ServerPassword', u'Aggre
gate', u'AggFill', u'PreDual', u'ConcurrentMIP', u'ConcurrentMIPJobs', u'DisplayInterval',
 u'DualReductions', u'IISMethod', u'InfUnbdInfo', u'LogFile', u'LogToConsole', u'MIQCPMeth
od', u'NumericFocus', u'QCPDual', u'PreCrush', u'PreDepRow', u'PreMIQPMethod', u'PreQLinea
rize', u'PrePasses', u'Presolve', u'PreSOS1BigM', u'PreSOS2BigM', u'PreSparsify', u'Result
File', u'Seed', u'Threads', u'NonBlocking', u'LazyConstraints', u'FeasRelaxBigM', u'Improv
eStartTime', u'ImproveStartGap', u'ImproveStartNodes', u'TuneTimeLimit', u'TuneResults', u
'TuneTrials', u'TuneOutput', u'TuneJobs', u'Dummy', u'OutputFlag']
None

Solution 0 has objective 1
Solution 1 has objective 53

33

Primal Heuristics

accelerate the search a little

appeal to the practitioner a lot

rounding LP solution
diving at some nodes

local search in the incumbent neighbourhood
e.g.: feasibility pump, RINS

34

limits

- highly heuristic (branching decisions, cut generation)

- floating-point errors and optimality tolerance (0.01%)

- generic features

- less effective on general integers (ex: scheduling)

- hard to model (and solve) non-linear structures

- NP-hard

35

how to tune

modern solvers
play with Gurobi

36

use as a heuristic

set a time limit
MIPFocus=1
ImproveStartGap=0.1

x22 1
x23 1
x26 1
x27 1
x28 1
x34 1
x35 1
x38 1
x39 1
[sofdem:~/Documents/Code/gurobi]$ gurobi.sh mymip.py markshare_5_0.mps.gz
Optimize a model with 5 rows, 45 columns and 203 nonzeros
Found heuristic solution: objective 5335
Presolve time: 0.00s
Presolved: 5 rows, 45 columns, 203 nonzeros
Variable types: 0 continuous, 45 integer (40 binary)

Root relaxation: objective 0.000000e+00, 15 iterations, 0.00 seconds

 Nodes | Current Node | Objective Bounds | Work
 Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

 0 0 0.00000 0 5 5335.00000 0.00000 100% - 0s
H 0 0 320.0000000 0.00000 100% - 0s
 0 0 0.00000 0 6 320.00000 0.00000 100% - 0s
 0 0 0.00000 0 5 320.00000 0.00000 100% - 0s
 0 0 0.00000 0 6 320.00000 0.00000 100% - 0s
 0 0 0.00000 0 5 320.00000 0.00000 100% - 0s
H 0 0 239.0000000 0.00000 100% - 0s
 0 0 0.00000 0 5 239.00000 0.00000 100% - 0s
* 36 0 29 96.0000000 0.00000 100% 2.7 0s
* 99 32 34 58.0000000 0.00000 100% 2.1 0s
H 506 214 53.0000000 0.00000 100% 1.9 0s
H30682 442 1.0000000 1.00000 0.00% 2.1 0s

Cutting planes:
 Cover: 26

Explored 30682 nodes (65348 simplex iterations) in 0.70 seconds
Thread count was 4 (of 4 available processors)

Optimal solution found (tolerance 1.00e-04)
Best objective 1.000000000000e+00, best bound 1.000000000000e+00, gap 0.0%
Optimal objective: 1
Matching parameters: [u'Cutoff', u'IterationLimit', u'NodeLimit', u'SolutionLimit', u'Time
Limit', u'FeasibilityTol', u'IntFeasTol', u'MarkowitzTol', u'MIPGap', u'MIPGapAbs', u'Opti
malityTol', u'PSDTol', u'Method', u'PerturbValue', u'ObjScale', u'ScaleFlag', u'SimplexPri
cing', u'Quad', u'NormAdjust', u'SiftMethod', u'Sifting', u'BarIterLimit', u'BarConvTol',
u'BarCorrectors', u'BarHomogeneous', u'BarOrder', u'BarQCPConvTol', u'Crossover', u'Crosso
verBasis', u'BranchDir', u'Disconnected', u'Heuristics', u'MinRelNodes', u'MIPFocus', u'No
defileStart', u'NodefileDir', u'NodeMethod', u'NoRelHeuristic', u'PumpPasses', u'RINS', u'
SolutionNumber', u'SubMIPNodes', u'Symmetry', u'VarBranch', u'ZeroObjNodes', u'Cuts', u'Cu
tPasses', u'CliqueCuts', u'CoverCuts', u'CutAggPasses', u'FlowCoverCuts', u'FlowPathCuts',
 u'GomoryPasses', u'GUBCoverCuts', u'ImpliedCuts', u'MIPSepCuts', u'MIRCuts', u'NetworkCut
s', u'SubMIPCuts', u'ZeroHalfCuts', u'ModKCuts', u'ServerPool', u'ServerPassword', u'Aggre
gate', u'AggFill', u'PreDual', u'ConcurrentMIP', u'ConcurrentMIPJobs', u'DisplayInterval',
 u'DualReductions', u'IISMethod', u'InfUnbdInfo', u'LogFile', u'LogToConsole', u'MIQCPMeth
od', u'NumericFocus', u'QCPDual', u'PreCrush', u'PreDepRow', u'PreMIQPMethod', u'PreQLinea
rize', u'PrePasses', u'Presolve', u'PreSOS1BigM', u'PreSOS2BigM', u'PreSparsify', u'Result
File', u'Seed', u'Threads', u'NonBlocking', u'LazyConstraints', u'FeasRelaxBigM', u'Improv
eStartTime', u'ImproveStartGap', u'ImproveStartNodes', u'TuneTimeLimit', u'TuneResults', u
'TuneTrials', u'TuneOutput', u'TuneJobs', u'Dummy', u'OutputFlag']
None

Solution 0 has objective 1
Solution 1 has objective 53

37

change the LP solver

if nbIteration(node) ≥ nbIteration(root)/2
NodeMethod=2

x22 1
x23 1
x26 1
x27 1
x28 1
x34 1
x35 1
x38 1
x39 1
[sofdem:~/Documents/Code/gurobi]$ gurobi.sh mymip.py markshare_5_0.mps.gz
Optimize a model with 5 rows, 45 columns and 203 nonzeros
Found heuristic solution: objective 5335
Presolve time: 0.00s
Presolved: 5 rows, 45 columns, 203 nonzeros
Variable types: 0 continuous, 45 integer (40 binary)

Root relaxation: objective 0.000000e+00, 15 iterations, 0.00 seconds

 Nodes | Current Node | Objective Bounds | Work
 Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

 0 0 0.00000 0 5 5335.00000 0.00000 100% - 0s
H 0 0 320.0000000 0.00000 100% - 0s
 0 0 0.00000 0 6 320.00000 0.00000 100% - 0s
 0 0 0.00000 0 5 320.00000 0.00000 100% - 0s
 0 0 0.00000 0 6 320.00000 0.00000 100% - 0s
 0 0 0.00000 0 5 320.00000 0.00000 100% - 0s
H 0 0 239.0000000 0.00000 100% - 0s
 0 0 0.00000 0 5 239.00000 0.00000 100% - 0s
* 36 0 29 96.0000000 0.00000 100% 2.7 0s
* 99 32 34 58.0000000 0.00000 100% 2.1 0s
H 506 214 53.0000000 0.00000 100% 1.9 0s
H30682 442 1.0000000 1.00000 0.00% 2.1 0s

Cutting planes:
 Cover: 26

Explored 30682 nodes (65348 simplex iterations) in 0.70 seconds
Thread count was 4 (of 4 available processors)

Optimal solution found (tolerance 1.00e-04)
Best objective 1.000000000000e+00, best bound 1.000000000000e+00, gap 0.0%
Optimal objective: 1
Matching parameters: [u'Cutoff', u'IterationLimit', u'NodeLimit', u'SolutionLimit', u'Time
Limit', u'FeasibilityTol', u'IntFeasTol', u'MarkowitzTol', u'MIPGap', u'MIPGapAbs', u'Opti
malityTol', u'PSDTol', u'Method', u'PerturbValue', u'ObjScale', u'ScaleFlag', u'SimplexPri
cing', u'Quad', u'NormAdjust', u'SiftMethod', u'Sifting', u'BarIterLimit', u'BarConvTol',
u'BarCorrectors', u'BarHomogeneous', u'BarOrder', u'BarQCPConvTol', u'Crossover', u'Crosso
verBasis', u'BranchDir', u'Disconnected', u'Heuristics', u'MinRelNodes', u'MIPFocus', u'No
defileStart', u'NodefileDir', u'NodeMethod', u'NoRelHeuristic', u'PumpPasses', u'RINS', u'
SolutionNumber', u'SubMIPNodes', u'Symmetry', u'VarBranch', u'ZeroObjNodes', u'Cuts', u'Cu
tPasses', u'CliqueCuts', u'CoverCuts', u'CutAggPasses', u'FlowCoverCuts', u'FlowPathCuts',
 u'GomoryPasses', u'GUBCoverCuts', u'ImpliedCuts', u'MIPSepCuts', u'MIRCuts', u'NetworkCut
s', u'SubMIPCuts', u'ZeroHalfCuts', u'ModKCuts', u'ServerPool', u'ServerPassword', u'Aggre
gate', u'AggFill', u'PreDual', u'ConcurrentMIP', u'ConcurrentMIPJobs', u'DisplayInterval',
 u'DualReductions', u'IISMethod', u'InfUnbdInfo', u'LogFile', u'LogToConsole', u'MIQCPMeth
od', u'NumericFocus', u'QCPDual', u'PreCrush', u'PreDepRow', u'PreMIQPMethod', u'PreQLinea
rize', u'PrePasses', u'Presolve', u'PreSOS1BigM', u'PreSOS2BigM', u'PreSparsify', u'Result
File', u'Seed', u'Threads', u'NonBlocking', u'LazyConstraints', u'FeasRelaxBigM', u'Improv
eStartTime', u'ImproveStartGap', u'ImproveStartNodes', u'TuneTimeLimit', u'TuneResults', u
'TuneTrials', u'TuneOutput', u'TuneJobs', u'Dummy', u'OutputFlag']
None

Solution 0 has objective 1
Solution 1 has objective 53

38

init with a feasible solution

if built-in heuristics fail
PumpPasses,MinRelNodes,ZeroObjNodes
model.read(‘initSol.mst’)
model.cbSetSolution(vars, newSol)

x22 1
x23 1
x26 1
x27 1
x28 1
x34 1
x35 1
x38 1
x39 1
[sofdem:~/Documents/Code/gurobi]$ gurobi.sh mymip.py markshare_5_0.mps.gz
Optimize a model with 5 rows, 45 columns and 203 nonzeros
Found heuristic solution: objective 5335
Presolve time: 0.00s
Presolved: 5 rows, 45 columns, 203 nonzeros
Variable types: 0 continuous, 45 integer (40 binary)

Root relaxation: objective 0.000000e+00, 15 iterations, 0.00 seconds

 Nodes | Current Node | Objective Bounds | Work
 Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

 0 0 0.00000 0 5 5335.00000 0.00000 100% - 0s
H 0 0 320.0000000 0.00000 100% - 0s
 0 0 0.00000 0 6 320.00000 0.00000 100% - 0s
 0 0 0.00000 0 5 320.00000 0.00000 100% - 0s
 0 0 0.00000 0 6 320.00000 0.00000 100% - 0s
 0 0 0.00000 0 5 320.00000 0.00000 100% - 0s
H 0 0 239.0000000 0.00000 100% - 0s
 0 0 0.00000 0 5 239.00000 0.00000 100% - 0s
* 36 0 29 96.0000000 0.00000 100% 2.7 0s
* 99 32 34 58.0000000 0.00000 100% 2.1 0s
H 506 214 53.0000000 0.00000 100% 1.9 0s
H30682 442 1.0000000 1.00000 0.00% 2.1 0s

Cutting planes:
 Cover: 26

Explored 30682 nodes (65348 simplex iterations) in 0.70 seconds
Thread count was 4 (of 4 available processors)

Optimal solution found (tolerance 1.00e-04)
Best objective 1.000000000000e+00, best bound 1.000000000000e+00, gap 0.0%
Optimal objective: 1
Matching parameters: [u'Cutoff', u'IterationLimit', u'NodeLimit', u'SolutionLimit', u'Time
Limit', u'FeasibilityTol', u'IntFeasTol', u'MarkowitzTol', u'MIPGap', u'MIPGapAbs', u'Opti
malityTol', u'PSDTol', u'Method', u'PerturbValue', u'ObjScale', u'ScaleFlag', u'SimplexPri
cing', u'Quad', u'NormAdjust', u'SiftMethod', u'Sifting', u'BarIterLimit', u'BarConvTol',
u'BarCorrectors', u'BarHomogeneous', u'BarOrder', u'BarQCPConvTol', u'Crossover', u'Crosso
verBasis', u'BranchDir', u'Disconnected', u'Heuristics', u'MinRelNodes', u'MIPFocus', u'No
defileStart', u'NodefileDir', u'NodeMethod', u'NoRelHeuristic', u'PumpPasses', u'RINS', u'
SolutionNumber', u'SubMIPNodes', u'Symmetry', u'VarBranch', u'ZeroObjNodes', u'Cuts', u'Cu
tPasses', u'CliqueCuts', u'CoverCuts', u'CutAggPasses', u'FlowCoverCuts', u'FlowPathCuts',
 u'GomoryPasses', u'GUBCoverCuts', u'ImpliedCuts', u'MIPSepCuts', u'MIRCuts', u'NetworkCut
s', u'SubMIPCuts', u'ZeroHalfCuts', u'ModKCuts', u'ServerPool', u'ServerPassword', u'Aggre
gate', u'AggFill', u'PreDual', u'ConcurrentMIP', u'ConcurrentMIPJobs', u'DisplayInterval',
 u'DualReductions', u'IISMethod', u'InfUnbdInfo', u'LogFile', u'LogToConsole', u'MIQCPMeth
od', u'NumericFocus', u'QCPDual', u'PreCrush', u'PreDepRow', u'PreMIQPMethod', u'PreQLinea
rize', u'PrePasses', u'Presolve', u'PreSOS1BigM', u'PreSOS2BigM', u'PreSparsify', u'Result
File', u'Seed', u'Threads', u'NonBlocking', u'LazyConstraints', u'FeasRelaxBigM', u'Improv
eStartTime', u'ImproveStartGap', u'ImproveStartNodes', u'TuneTimeLimit', u'TuneResults', u
'TuneTrials', u'TuneOutput', u'TuneJobs', u'Dummy', u'OutputFlag']
None

Solution 0 has objective 1
Solution 1 has objective 53

39

tighten the model

if the bound stagnates
Cuts=3
Presolve=3
model.cbCut(lhs, sense, rhs)

x22 1
x23 1
x26 1
x27 1
x28 1
x34 1
x35 1
x38 1
x39 1
[sofdem:~/Documents/Code/gurobi]$ gurobi.sh mymip.py markshare_5_0.mps.gz
Optimize a model with 5 rows, 45 columns and 203 nonzeros
Found heuristic solution: objective 5335
Presolve time: 0.00s
Presolved: 5 rows, 45 columns, 203 nonzeros
Variable types: 0 continuous, 45 integer (40 binary)

Root relaxation: objective 0.000000e+00, 15 iterations, 0.00 seconds

 Nodes | Current Node | Objective Bounds | Work
 Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

 0 0 0.00000 0 5 5335.00000 0.00000 100% - 0s
H 0 0 320.0000000 0.00000 100% - 0s
 0 0 0.00000 0 6 320.00000 0.00000 100% - 0s
 0 0 0.00000 0 5 320.00000 0.00000 100% - 0s
 0 0 0.00000 0 6 320.00000 0.00000 100% - 0s
 0 0 0.00000 0 5 320.00000 0.00000 100% - 0s
H 0 0 239.0000000 0.00000 100% - 0s
 0 0 0.00000 0 5 239.00000 0.00000 100% - 0s
* 36 0 29 96.0000000 0.00000 100% 2.7 0s
* 99 32 34 58.0000000 0.00000 100% 2.1 0s
H 506 214 53.0000000 0.00000 100% 1.9 0s
H30682 442 1.0000000 1.00000 0.00% 2.1 0s

Cutting planes:
 Cover: 26

Explored 30682 nodes (65348 simplex iterations) in 0.70 seconds
Thread count was 4 (of 4 available processors)

Optimal solution found (tolerance 1.00e-04)
Best objective 1.000000000000e+00, best bound 1.000000000000e+00, gap 0.0%
Optimal objective: 1
Matching parameters: [u'Cutoff', u'IterationLimit', u'NodeLimit', u'SolutionLimit', u'Time
Limit', u'FeasibilityTol', u'IntFeasTol', u'MarkowitzTol', u'MIPGap', u'MIPGapAbs', u'Opti
malityTol', u'PSDTol', u'Method', u'PerturbValue', u'ObjScale', u'ScaleFlag', u'SimplexPri
cing', u'Quad', u'NormAdjust', u'SiftMethod', u'Sifting', u'BarIterLimit', u'BarConvTol',
u'BarCorrectors', u'BarHomogeneous', u'BarOrder', u'BarQCPConvTol', u'Crossover', u'Crosso
verBasis', u'BranchDir', u'Disconnected', u'Heuristics', u'MinRelNodes', u'MIPFocus', u'No
defileStart', u'NodefileDir', u'NodeMethod', u'NoRelHeuristic', u'PumpPasses', u'RINS', u'
SolutionNumber', u'SubMIPNodes', u'Symmetry', u'VarBranch', u'ZeroObjNodes', u'Cuts', u'Cu
tPasses', u'CliqueCuts', u'CoverCuts', u'CutAggPasses', u'FlowCoverCuts', u'FlowPathCuts',
 u'GomoryPasses', u'GUBCoverCuts', u'ImpliedCuts', u'MIPSepCuts', u'MIRCuts', u'NetworkCut
s', u'SubMIPCuts', u'ZeroHalfCuts', u'ModKCuts', u'ServerPool', u'ServerPassword', u'Aggre
gate', u'AggFill', u'PreDual', u'ConcurrentMIP', u'ConcurrentMIPJobs', u'DisplayInterval',
 u'DualReductions', u'IISMethod', u'InfUnbdInfo', u'LogFile', u'LogToConsole', u'MIQCPMeth
od', u'NumericFocus', u'QCPDual', u'PreCrush', u'PreDepRow', u'PreMIQPMethod', u'PreQLinea
rize', u'PrePasses', u'Presolve', u'PreSOS1BigM', u'PreSOS2BigM', u'PreSparsify', u'Result
File', u'Seed', u'Threads', u'NonBlocking', u'LazyConstraints', u'FeasRelaxBigM', u'Improv
eStartTime', u'ImproveStartGap', u'ImproveStartNodes', u'TuneTimeLimit', u'TuneResults', u
'TuneTrials', u'TuneOutput', u'TuneJobs', u'Dummy', u'OutputFlag']
None

Solution 0 has objective 1
Solution 1 has objective 53

40

/documentation/current/refman/index.html

/resource-center/

http://www.gurobi.com/

41

https://www.gurobi.com/documentation/current/refman/index.html
https://www.gurobi.com/resource-center/

you know your problem better

than your solver does

42

tighten
the

model
43

Input n facility locations, m
customers, cost cj to open facility
j, cost dij to serve customer i from
facility j
Output a mimimum (opening and
service) cost assignment of
customers to facilities.

Uncapacitated

Facility Location

Problem

Mixed Integer Linear Programming

Course Note

OSE 2014: Optimization

sophie.demassey@mines-paristech.fr

October 3, 2014

max

nX

j=1

c j x j

s.t.

nX

j=1

w j x j ∑ K

x j 2 {0,1} j = 1..n

min

nX

j=1

c j x j +
nX

j=1

mX

i=1

di j yi j

s.t.

nX

j=1

yi j = 1 i = 1..m

yi j ∑ x j j = 1..n, i = 1..m

x j 2 {0,1} j = 1..n

yi j 2 {0,1} j = 1..n, i = 1..m

Mixed Integer Linear Programming

Course Note

OSE 2014: Optimization

sophie.demassey@mines-paristech.fr

October 8, 2014

min

nX

j=1

c j x j +
nX

j=1

mX

i=1

di j yi j

s.t.

nX

j=1

yi j = 1 i = 1..m

mX

i=1

yi j ∑ mx j j = 1..n

x j 2 {0,1} j = 1..n

yi j 2 {0,1} j = 1..n, i = 1..m

x + y = 1

y ∏ x

x1 +·· ·+xn ∑ 1

x1 +·· ·+xn ∏ k

min

X

e2E
ce xe

s.t.

X

e2E |i2e
xe = 2 i 2V

X

±(Q)

xe ∏ 2 ;(Q (V

xe 2 {0,1} e 2 E

14 hours

2 seconds

m=n=40 44

Input n time periods, fixed
production cost ft, unit production
cost pt, unit storage cost ht, demand
dt for each period t
Output a mimimum (production and
storage) cost production plan to
satisfy the demand

Uncapacitated Lot

Sizing Problem

45

Input n time periods, fixed
production cost ft, unit production
cost pt, unit storage cost ht, demand
dt for each period t
Output a mimimum (production and
storage) cost production plan to
satisfy the demand

Uncapacitated Lot

Sizing Problem

Mixed Integer Linear Programming

Course Note

OSE 2014: Optimization

sophie.demassey@mines-paristech.fr

October 9, 2014

min

nX

t=1

ft yt +
nX

t=1

pt xt +
nX

t=1

ht st

s.t. st°1 +xt = dt + st t = 1..n

xt ∑ M yt t = 1..n

yt 2 {0,1} t = 1..n

st , xt ∏ 0 t = 1, . . . ,n

s0 = 0

min

nX

t=1

ft yt +
nX

i=1

nX

t=i
pi zi t +

nX

i=1

nX

t=i+1

t°1X

j=i
h j zi t

s.t.

tX

i=1

zi t = dt t = 1..n

zi t ∑ dt yi i = 1..n; t = i ..n

yt 2 {0,1} t = 1..n

zi t ∏ 0 i = 1..n; t = i ..n

min

X

e2E
ce xe

s.t.

X

e2E |i2e
xe = 2 i 2V

X

±(Q)

xe ∏ 2 ;(Q (V

xe 2 {0,1} e 2 E

45

Input n time periods, fixed
production cost ft, unit production
cost pt, unit storage cost ht, demand
dt for each period t
Output a mimimum (production and
storage) cost production plan to
satisfy the demand

Uncapacitated Lot

Sizing Problem

Mixed Integer Linear Programming

Course Note

OSE 2014: Optimization

sophie.demassey@mines-paristech.fr

October 9, 2014

min

nX

t=1

ft yt +
nX

t=1

pt xt +
nX

t=1

ht st

s.t. st°1 +xt = dt + st t = 1..n

xt ∑ M yt t = 1..n

yt 2 {0,1} t = 1..n

st , xt ∏ 0 t = 1, . . . ,n

s0 = 0

min

nX

t=1

ft yt +
nX

i=1

nX

t=i
pi zi t +

nX

i=1

nX

t=i+1

t°1X

j=i
h j zi t

s.t.

tX

i=1

zi t = dt t = 1..n

zi t ∑ dt yi i = 1..n; t = i ..n

yt 2 {0,1} t = 1..n

zi t ∏ 0 i = 1..n; t = i ..n

min

X

e2E
ce xe

s.t.

X

e2E |i2e
xe = 2 i 2V

X

±(Q)

xe ∏ 2 ;(Q (V

xe 2 {0,1} e 2 E

zit production in period i to satisfy demand of period t

LP=ILP

45

Output define K points as centers
so as to minimize the sum of the
distances between each point and
its nearest center.

K-median clustering

62

K-mean clustering

Output partition the points into
K sets so as to minimize the sum
of the distances between each
point and the mean of points in
its cluster.

Input n data points , a
number K of clusters. Euclidean
distance.

mj ∈ ℝp

project:

power generation

https://colab.research.google.com/drive/19WNrTomQnD12aScfmJRxQZGdxwsL3ehc

https://colab.research.google.com/drive/19WNrTomQnD12aScfmJRxQZGdxwsL3ehc

63

Physical limits of the units:

minimum up/down times and

maximum ramp up/down rates

Input (noncyclic)
up/down times: minimum time unit may remain on or off; time

 the th unit of type has been on/off before period 0.
ramp rates: maximum power increase/decrease between two
consecutive periods; maximum power when turned on; maximum power
before turned off; load for th unit of type before period 0.
Input (cyclic)
the status before period 0 () are duplicated from period P-1.

Δ+
t , Δ−

t t ∈ T
Δ+

0it, Δ−
0it i t ∈ T

L+
t , L−

t
LS

t LE
t

L0it i t ∈ T

Δ+
0it, Δ−

0it, L0it

commitment must be monitored for units individually

64

minimum uptime

Let .

Show that an unit of type cannot been turned on more than once during .

Show that if an unit of type is off at time then it has not been turned on at any time

 .

Reformulate these assertions as a linear relation between the binary variables modelling the unit

status and status change at appropriate periods.

P+
t (p) = {0 ≤ p′ ≤ p |

p−1

∑
k=p′

Δk < Δ+
t }

t P+
t (p)

t p
p′ ∈ P+

t (p)

65

minimum uptime

Let .

If an unit of type is off at time () then it has not been turned on at any time

 .

P+
t (p) = {0 ≤ p′ ≤ p |

p−1

∑
k=p′

Δk < Δ+
t }

t p xitp = 0
p′ ∈ P+

t (p) (∑
p′ ∈P+

t (p)
y+

itp = 0)

∑
p′ ∈P+

t (p)
y+

itp′

≤ xitp ∀i, t, p

66

minimum uptime (noncyclic case)

If unit of type has been on for exactly hours before time 0, what can you say about

its status and status change at any period in

?

Fix binary variables modelling the status and status change of a unit at given periods according to

this assertion.

i t Δ+
0it > 0

P+
it = {p ≥ 0 |

p−1

∑
k=0

Δk < Δ+
t − Δ+

0it}

67

minimum uptime (noncyclic case)

If unit of type has been on for exactly hours before time 0, what can you say about

its status and status change at any period in

?

the unit must remain on, then it will not be turned on/off, on these periods

i t Δ+
0it > 0

P+
it = {p ≥ 0 |

p−1

∑
k=0

Δk < Δ+
t − Δ+

0it}

xitp = 1,y+
itp = 0,y−

itp = 0 ∀i, t, p ∈ P+
it

68

minimum up/down-time

∑
i

xitp = xtp, ∀t, p

xitp, y+
itp, y−

itp ∈ {0,1} ∀i, t, p

∑
p′ ∈P+

t (p)
y+

itp′
≤ xitp ∀i, t, p

xitp − xitp−1 = y+
itp − y−

itp ∀i, t, p
y+

itp + y−
itp ≤ 1 ∀i, t, p

∑
p′ ∈P−

t (p)
y−

itp′
≤ 1 − xitp ∀i, t, p

xitp = 1,y+
itp = 0,y−

itp = 0 ∀i, t, p ∈ P+
it

xitp = 0,y+
itp = 0,y−

itp = 0 ∀i, t, p ∈ P−
it

68

minimum up/down-time

∑
i

xitp = xtp, ∀t, p

xitp, y+
itp, y−

itp ∈ {0,1} ∀i, t, p

∑
p′ ∈P+

t (p)
y+

itp′
≤ xitp ∀i, t, p

xitp − xitp−1 = y+
itp − y−

itp ∀i, t, p
y+

itp + y−
itp ≤ 1 ∀i, t, p

∑
p′ ∈P−

t (p)
y−

itp′
≤ 1 − xitp ∀i, t, p

xitp = 1,y+
itp = 0,y−

itp = 0 ∀i, t, p ∈ P+
it

xitp = 0,y+
itp = 0,y−

itp = 0 ∀i, t, p ∈ P−
it

xitp commit status of the ith unit of type t on period p
yitp unit turned on (+) or off (-) on period p

69

maximum ramp

If unit of type starts at p () then

Otherwise either unit i is on at p-1 and on at p and

 or unit i is on at p-1 and off at p and

 or unit i is off at p-1 and off at p and

i t yitp = 1 litp − litp−1 ≤ LS
it

litp − litp−1 ≤ L+
it

litp − litp−1 < 0
litp − litp−1 = 0

70

maximum ramp

If unit of type starts at p () then

Otherwise either unit i is on at p-1 and on at p and

 or unit i is on at p-1 and off at p and

 or unit i is off at p-1 and off at p and

i t yitp = 1,xitp−1 = 0 litp − litp−1 ≤ LS
it

(yitp = 0) (xitp−1 = 1) litp − litp−1 ≤ L+
it

(xitp−1 = 1) litp − litp−1 < 0 ≤ L+
it

(xitp−1 = 0) litp − litp−1 = 0

litp − litp−1 ≤ L+
t xitp−1 + LS

t y+
itp ∀i, t, p

71

maximum ramp up/down

,

litp − litp−1 ≤ L+
t xitp−1 + LS

t y+
itp ∀i, t, p

xit(−1) = 1 if L0it > 0 else xit(−1) = 0 ∀i, t
litp−1 − litp ≤ L−

t xitp + LE
t y−

itp ∀i, t, p

∑
i

(litp − Ltxitp) = ltp, ∀t, p

Ltxitp ≤ litp ≤ Ltxitp ∈ {0,1} ∀i, t, p
lit(−1) = L0it ∀i, t

71

maximum ramp up/down

,

litp − litp−1 ≤ L+
t xitp−1 + LS

t y+
itp ∀i, t, p

xit(−1) = 1 if L0it > 0 else xit(−1) = 0 ∀i, t
litp−1 − litp ≤ L−

t xitp + LE
t y−

itp ∀i, t, p

∑
i

(litp − Ltxitp) = ltp, ∀t, p

Ltxitp ≤ litp ≤ Ltxitp ∈ {0,1} ∀i, t, p

litp load of the ith unit of type t on period p

lit(−1) = L0it ∀i, t

the MILP way
a practical view

46

(5)
Sophie Demassey 2023

decomposition methods

47

Dantzig-Wolfe/column generation/branch&price

lagrangian relaxation

Benders decomposition

cut generation/branch&cut

Input n containers, m items,
capacity c for all containers,
weight wj for each item j
Output a packing of all items in
a mimimum number of containers

Bin Packing Problem

Mixed Integer Linear Programming

Course Note

OSE 2014: Optimization

sophie.demassey@mines-paristech.fr

October 9, 2014

min

nX

i=1

yi

s.t.

mX

j=1

w j xi j ∑ c yi i = 1..n

nX

i=1

xi j = 1 j = 1..m

xi j 2 {0,1} i = 1..n; j = 1..m

yi 2 {0,1} i = 1..n

min

X

s2S

xs

s.t.

X

s2S

a j s xs = 1 j = 1..n

xs 2 {0,1} s 2S

min

X

e2E
ce xe

s.t.

X

e2E |i2e
xe = 2 i 2V

X

±(Q)

xe ∏ 2 ;(Q (V

xe 2 {0,1} e 2 E

48

Input n containers, m items,
capacity c for all containers,
weight wj for each item j
Output a packing of all items in
a mimimum number of containers

Bin Packing Problem

Mixed Integer Linear Programming

Course Note

OSE 2014: Optimization

sophie.demassey@mines-paristech.fr

October 9, 2014

min

nX

i=1

yi

s.t.

mX

j=1

w j xi j ∑ c yi i = 1..n

nX

i=1

xi j = 1 j = 1..m

xi j 2 {0,1} i = 1..n; j = 1..m

yi 2 {0,1} i = 1..n

min

X

s2S

xs

s.t.

X

s2S

a j s xs = 1 j = 1..n

xs 2 {0,1} s 2S

min

X

e2E
ce xe

s.t.

X

e2E |i2e
xe = 2 i 2V

X

±(Q)

xe ∏ 2 ;(Q (V

xe 2 {0,1} e 2 E

	S	all the possible arrangements of items in a bin

Dantzig-Wolfe decomposition

48

how to manage the exponential number of variables ?

delayed column generation for LP

49

1/ solve the restricted LP with the primal simplex algorithm where the

omitted columns are implicitly non-basic variables

2/ find that can profitably enter the basis , stop if none

N
j ∈ N cj < 0

 without i.e. :min{cBxB + cNxN |ABxB + ANxN = b} (cN, AN) xN = 0

= dual cut generation: (cut separation = pricing problem)

min cx
Aix ≥ bi, ∀i
xj ≥ 0, ∀j

max ub
uAj ≤ cj, ∀j
ui ≥ 0, ∀i

given a basic dual solution find such that u j c̄j = cj − uAj < 0

application to Bin Packing

	S 	all the possible arrangements of items in a bin⊆ 2m

50

	S a feasible subset (i.e. covering all the items)

1. solve the restricted LP:

 get the corresponding dual solution
2. look for an improving basic direction

= some with

e.g. by solving

3. if add column to then 1 otherwise

STOP: solves the full LP (maybe not integer)

min{∑
s∈S

xs |∑
s∈S

ajsxs = 1 ∀j, xs ≥ 0 ∀s ∈ S}

u ∈ ℝm

s ∈ ∖S cs = 1 − ∑
j

ajsuj < 0

max{∑
j

ajuj |∑
j

wjaj ≤ K, a ∈ {0,1}m}

∑
j

a*j uj > 1 (1,a*) S

(xS,0)

S

Branch-and-Price for MILP

51

- branch-and-bound for ILP with large number of variables where the LP relaxation

is solved by column generation

- the branching strategy should keep the search tree balanced without altering the

LP relaxation structure

- the pricing problem can be seen as an optimization problem but does not need to

be solved at optimality, except for the convergence proof.

- convenient decomposition method when additional constraints only appear in the

pricing problem

ex (bin packing): branch by fixing to 0 either all or
all for some pair of items s.t.

xs |{i, j} ⊆ s
xs |{i, j} ⊈ s (i, j) 0 < ∑

s
aisajsx*s < 1

ex (bin packing): conflict constraint ∑
j∈C

aj ≤ 1

Input n items, m bins, value cj
and weight wj for each item j,
capacity Ki for each bin i.
Output a maximum value subset of
items packed in the bins.

Multi 0-1 Knapsack

Problem

52

Input n items, m bins, value cj
and weight wj for each item j,
capacity Ki for each bin i.
Output a maximum value subset of
items packed in the bins.

Multi 0-1 Knapsack

Problem

lagrangian relaxation

52find the smallest upper bound

u ∈ ℝn
+

Lagrangian Relaxation

53

dualize the complicating or coupling constraints of an ILP:

(P) : z = max ∑
k

ckxk

∑
k

Dkxk ≤ ek

Akxk ≤ bk, ∀k
xk ∈ ℤp × ℝn, ∀k

(Pu) : zk
u = max ckxk − uDkxk

Akxk ≤ bk
xk ∈ ℤp × ℝn

l(u) = ue + ∑
k

zu
k

strong duality may not hold if p>0, ie the dual only provides an upper bound w ≥ z

(D) : w = min
u≥0

l(u)

is the lagrangian dual problem

 is the lagrangian suproblem with multipliers

(D)
(Pu) u

lagrangian relaxation applied to MKP

55

(P) : z = max ∑
i

∑
j

cjxij

∑
j

wjxij ≤ Ki, ∀i

∑
i

xij ≤ 1, ∀j

xij ∈ {0,1}, ∀i, j

-
function is convex and a subgradient at is where an optimal solution of

 a 0-1 knapsack with altered costs

- at each iteration, for a given , the solution is KP-feasible but some items may be assigned more than

once: remove the less profitable doublons to get a feasible solution

- if no doublon and if every item with is assigned then is optimal for

l u ≥ 0 1 − ∑
i

xu
i xu

i

(Pu
i)

u xu

j uj > 0 xu (P)

(Pu
i) : zu

i = max ∑
j

(cj − uj)xij

∑
j

wjxij ≤ Ki

xij ∈ {0,1}, ∀j

l(u) = ∑
j

uj + ∑
i

zu
i(D) : w = min

u≥0
l(u) with

lagrangian relaxation: applications

56

- in MKP: the knapsacks subproblems share the same set of items but different

capacities: helpful to speed up the solution of

- the lagrangian dual is always at least as good as the LP relaxation

- sometimes it is not better, ex: dualize the knapsack constraints instead of the

assignment constraints in MKP

- lagrangian relaxation is applied, daily and for decades, by EDF to the Unit Commitment

Problem for the french electricity production: dualize the unit coupling constraints and

generate independent commitment plans for each unit. It allows to take into account

specific technical rules (e.g. ramping) for each unit types.

- another typical application in planning: dualize time (loosely-)coupling constraints

(Pu)

Benders decomposition

57

- typically: problems coupling binary/continuous variables

where

 can be dualized

P : min{cx + dy |x ∈ P ∩ ℤp, Ax + By ≥ e}
f(x) = min{dy |By ≥ e − Ax}

- strong duality: either feasible or

infeasible and it exists a ray

f(x) = max{u(e − Ax) |uB ≤ d}
u |λuB ≤ d ∀λ, u(e − Ax) > 0

P : min{cx + z |x ∈ P ∩ ℤp, z ≥ f(x)}
- relax then at each iteration : solve the relaxation and get solution

, solve the dual subproblem get and generate a cut, either

 if feasible or otherwise

z ≥ f(x) k
xk uk

z ≥ uk(e − Ax) 0 ≥ uk(e − Ax)
- stop when lower bound is equal to best upper bound cxk + zk cxj + f(xj)

a glimpse of MINLP

58

- NLP-B&B: bound by solving the NLP relaxation with an interior point method

- OA algorithm: cutting-plane method with cuts as first-order approximation (LP outer

approximation)

- LP-NLP B&B: a branch-and-cut with an LP relaxation with OA cuts generated at each

integer node

convex continuous relaxation:

nonconvex continuous relaxation:

- spatial B&B: branch on integer variables and on nonconvex constraints

MILP perks

declarative

versatile

flexible

performance

59

models, not algorithms

sophisticated algorithms

general-purpose solvers

covers many problems

large-scale
decomposition methods

certification
primal-dual bounds

combinatorial optimization

beyond MILP

logic & constraint

programming
integer nonlinear

programming

metaheuristics

dynamic programming

60

graph algorithms

machine learning

Matteo Fischetti (2019) Introduction to Mathematical Optimization

Wolsey L. (1998) Integer Programming. Wiley

Bertsimas D., Tsitsiklis J. (1997) Introduction to Linear Optimization. Athena Scientific

Achterberg T., Berthold T., Hendel G. (2012) Rounding and propagation heuristics for MIP. In OR Proceedings 2011, 71-76.
Achterberg T., Bixby R., Gu Z., Rothberg E., Weninger D. (2016) Presolve reductions in MIP. ZIB-Report 16-44.
Bixby R. (2012) A brief history of LP and MIP computation. Documenta Mathematica, 107-121.
Cornuéjols G. (2008) Valid inequalities for MILP. Mathematical Programming, 112(1), 3-44.
Klotz E., Newman A. (2013) Practical guidelines for solving difficult MILP. Surveys in ORMS, 18(1), 18-32.
Linderoth J., Ralphs T. (2005) Noncommercial software for MILP. IP: theory and practice, 3, 253-303.
Linderoth J., Lodi A. (2010) MILP software. Wiley encyclopedia of ORMS.
Linderoth J., Savelsbergh M. (1999) A computational study of search strategies for MIP. INFORMS JoC, 11(2), 173-187.
Lodi A. (2010) MIP computation. In 50 Years of IP 1958-2008, 619-645.
Newman A., Weiss M. (2013) A survey of linear and mixed-integer optimization tutorials. INFORMS ToE, 14(1) 26-38.
Savelsbergh M. (1994) Preprocessing and probing techniques for MIP. ORSA Journal on Computing, 6(4), 445-454.
Vanderbeck F., Wolsey L. (2010) Reformulation and decomposition of IP. In 50 Years of IP 1958-2008, 431-502.

61

