MINES-07 PSL week

combinatorial \& stochastic optimization

sophie.demassey@minesparis.psl.eu

decision is optimization

select the best/optimum

of all possible alternatives/solutions
regarding a quantitative criterion/objective

select the best solution regarding the objective
decision: operation/strategy, static/dynamic, short/long-term solution: plan/schedule, path/flow/routing, assignment/layout/design objective: duration, distance/space, cost/profit/preference, amount/level

a tool for decision support: mathematical optimization aka operational research

some historical FR players:

scientist in optimization:
understand the business, do maths/cs, solve problems

mathematical optimization for decision

1. build an abstract model of a concrete system
2. derive a mathematical formulation: relationships/unknowns
3. apply an algorithm to solve the model
4.

derive practical solutions

$$
\begin{aligned}
& \min z=\sum_{i=1}^{n} \sum_{\substack{j=1 \\
i \neq j}}^{n} d_{i j} x_{i j} \\
& \sum_{\substack{j=1 \\
j \neq i}}^{n} x_{i j}=1, \quad \forall i \in N \\
& \sum_{\substack{i=1 \\
i \neq j}}^{n} x_{i j}=1, \quad \forall j \in N
\end{aligned}
$$

solve? theory/practice

feasibility?

- models are approximate
- data are uncertain
- calculations are truncated

optimality?

- finite time \neq reasonable time
- provable with a gap tolerance
- provable locally vs. globally

mathematical optimization \neq decision support

math optimization also works for:

machine learning find a best model/data match: min empirical risk (supervised), maxreward (reinforcement), min distance (clustering), max homogeneity (decision tree), max margin (svm), max likelihood (markov process).

Control find a command $u(t)$ to optimize trajectory $x(t)$ s.t. $x^{\prime}(t)=g(x(t), u(t))$
game theory, economics, calculus,...

other advanced options for decision:

simulation
given a reliable model but no good math formulation
machine learning given historical data but no good reliable model
hybridations evaluate computed solutions by simulation (e.g. black-box optimization), learn mathematical models

math opt for decision (specs 1)

- reliable models: how accurate? close to reality?
- optimality certificates: how good is the solution?
- versatile algorithms: if the problem changes?
- efficient algorithms: solution times for complex/large problems?

math opt for decision (specs 2)

- discrete decisions and logical relationships (switch on or off? if off then no process)

combinatorial optimization

- uncertain data (approximations and forecasts)

> stochastic optimization

this PSL week: a quick overview of

monday-wednesday morning combinatorial optimization

Welington de Oliveira (Mines/CMA) https://www.oliveira.mat.br

Sophie Demassey (Mines/CMA)
https://sofdem.github.io wednesday afternoon-friday

mixed integer linear programming (MLIP)

 -combinaterial optinization
combinatorial optimization: beyond MILP

NOT in this course:

- graph theory and combinatorial structures
- metaheuristics and approximation algorithms
- Logic or Constraint Programming
- Linear or Nonlinear Programming (just a glimpse)
- advanced theoretic topics in MI(N)LP

focus on practical MILP

$\mathbb{I N}$ this course: a practical approach how to model and solve

- MILP modeling techniques
- some applications
- notions of complexity
- main techniques to solve MLLPs: bounding, branching, cutting
- modern MLLP solvers (aka algorithms) and their usage
- steps towards reformulation, duality-based decomposition, and convex MINLP
- technical results without theoretical proofs (see the bibliography to learn more)

why the MILP lense?

broad applicability:

- logical conditions as binary variables and linear inequalities
- nonlinear relations (physic/economic) as piecewise-linear fits
- convex NonLP \approx LP \Longrightarrow convex MINLP \approx MLLP (theoretically) versatility:
- generic form = generic solvers fruit of many research works
- specific problem = specific model + generic solver + specific options efficiency:
- easy LP + partial enumeration
- sophisticated strategies and algorithmic components

learning goals

after this course, you should be able to:

- identify if an optimization problem is eligible to MLLP
- formulate it as a MLLP, identify its complexities, and implement the model
- run an off-the-shelf MLLP solver, understand the solution process and ways to improve it
- describe main applications of combinatorial optimization: domains and problems
- describe the principle of advanced solution methods and their usage

evaluation \& practice

validation be there and participate
retake the code of the mini-project (to send by email before march 15)

project:
 powergeneration

- deterministic \& stochastic variants
proposed dev environment: Jupyter Notebook, Google Colab, Gurobi solver, python APl: code + report directly through your browser
goals: model as a MLLP, implement and call a solver
correctness >> completeness

course schedule

	course	project
Mon AM	modeling	model (1)
Mon PM	complexity	model (2)
Tue AM	algorithms	code (1)
Tue PM	modern solvers	code (2)
Wed AM	decomposition	code (3)

ASK for explanations and breaks

how to model?

-

how to solve?
how to model?

Mathematical Program

program = plan (e.g. military)
minimize $\quad f(x)$
subject to: $g(x) \leq 0$

$$
x \in X \subseteq \mathbb{R}^{n}
$$

Definition

$x \in \mathbb{R}^{n}$
$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$
$g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ constraints

Remark

- $\max f(x)=-\min (-f)(x)$
- $g(x) \geq b \equiv-g(x)+b \leq 0$
- sign $<$ or \neq not allowed in MP (this and beyond: see CLP)

Mixed Integer Linear Program

$\min \left\{f(x) \mid g(x) \leq 0, x \in \mathbb{Z}^{p} \times \mathbb{R}^{n-p}\right\}$

with linear functions f and g :

$$
\begin{array}{ll}
\min & c^{\top} x \\
\text { s.t.: } & A x \geq b \\
\qquad x \in \mathbb{Z}^{p} \times \mathbb{R}^{n-p}
\end{array}
$$

$$
\begin{aligned}
& \min \sum_{j=1}^{n} c_{j} x_{j} \quad \text { s.t.: } \\
& \sum_{j=1}^{n} a_{i j} x_{j} \geq b_{i} \forall i=1, \ldots, m \\
& x_{j} \in \mathbb{Z} \quad \forall j=1, \ldots, p \\
& x_{j} \in \mathbb{R} \quad \forall j=p+1, \ldots, n
\end{aligned}
$$

$c \in \mathbb{R}^{n}, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$

Mixed Integer Linear Program

terminology
objective
linear constraints
$A x \geq b$
integrity constraints $x_{1}, \ldots, x_{p} \in \mathbb{Z}$
right hand side (rhs) $\quad b \in \mathbb{R}^{m}$
cost vector
$c^{\top} \in \mathbb{R}^{n}$
coefficient matrix $\quad A \in \mathbb{R}^{m \times n}$
solution space $\quad\left\{x \in \mathbb{R}^{n}\right\}$
feasible set $\quad\left\{x \in \mathbb{Z}^{p} \times \mathbb{R}^{n-p} \mid A x \geq b\right\}$

waste management

2 types of nuclear waste A, B with different unit profit/processing time going through 3 processes I, II and III with limited availability

$$
\begin{aligned}
& \max 4 a+8 b \\
& \text { s.t.: } a+3 b \leq 450 \\
& 2 a+b \leq 300 \\
& a+b \leq 200 \\
& a, b \in \mathbb{Z}_{+}
\end{aligned}
$$

a, b number of processed units of A and B resp.
objective: maximize the profit.

trye or false

- is item j selected?
- is item j assigned to item i ?
- at most n available items
- $z \in \mathbb{R}_{+}$is it greater than a ?

$$
x_{j} \in\{0,1\}
$$

$$
x_{i j} \in\{0,1\}
$$

$$
x_{1}, \ldots, x_{n} \in\{0,1\}
$$

$$
x \in\{0,1\}, z \in \mathbb{R}, z \geq a x
$$

binary variables to model true/false conditions on objects

Integer Knapsack Problem

$$
\begin{aligned}
\max & \sum_{j=1}^{n} c_{j} x_{j} \\
\text { s.t. } & \sum_{j=1}^{n} w_{j} x_{j} \leq K \\
& x_{j} \in\{0,1\}
\end{aligned}
$$

Input n items, value c_{j} and weight W_{j} for each item j, capacity K.
Output a maximum value subset of items whose total weight does not exceed K.

logic with binaries

x, y binary variables; z continuous variable; a, k, n constants

- either x or y
$x+y=1$
- if x then y
$y \geq x$
- if x then $z \leq a$

$$
\begin{array}{r}
z \leq a+(M-a)(1-x) \text { "big M constraint" } \\
\text { big enough but keep it tight! }
\end{array}
$$

linear constraints on binary variables to model logical relations between objects

logic with binaries

x, y binary variables; z continuous variable; a, k, n constants

- either x or y
$x+y=1$
- ifx then y

$$
\begin{gathered}
y \geq x \\
z \leq a+(M-a)(1-x) \\
z \geq a-(M+a) x \\
x_{1}+\cdots+x_{n} \leq 1 \\
x_{1}+\cdots+x_{n} \geq k
\end{gathered}
$$

linear constraints on binary variables to model logical relations between objects

Uncapacitated Facility Location Problem

$$
\min \sum_{j=1}^{n} c_{j} x_{j}+\sum_{j=1}^{n} \sum_{i=1}^{m} d_{i j} y_{i j}
$$

Input n facility locations, m customers, cost c_{j} to open facility j, cost $d_{i j}$ to serve customer i from facility j
Output a mimimum (opening and service) cost assignment of customers to facilities.
x_{j} is location j open ? y_{ij} is customer i served from j ?

$$
\begin{array}{lll}
\min & \sum_{i=1}^{n} \sum_{j=1}^{n} d_{i j} y_{i j} & \\
\text { s.t. } & \sum_{j=1}^{n} y_{i j}=1 & i=1 . . n \\
& y_{i j} \leq x_{j} & i, j=1 . . n \\
& \sum_{j=1}^{n} x_{j}=k & \\
& y_{i j} \in\{0,1\}, x_{j} \in\{0,1\} & i, j=1 . . n
\end{array}
$$

K-median clustering

 Input n data points, distance $d_{i j}$ between each two points i, j, number k of clusters. Output k centers minimizing the sum of distances between each point and its nearest center.x_{j} is j a center ? Y_{ij} is j the nearest center of i ?

Input n data points $m_{j} \in \mathbb{R}^{p}$, a number K of clusters. Euclidean distance.

K-median clustering

Output define K points as centers so as to minimize the sum of the distances between each point and its nearest center.

K-mean clustering

Output partition the points into K sets so
as to minimize the sum of the distances
between each point and the mean of points
in its cluster.
x_{jk} is j assigned to cluster k ?
y_{k} coordinates of the center of k ?
$d_{j k}$ distance from j to the center of k ?

K-mean clustering

```
djk distance from j to the center of its cluster k ?
```

"convexify"
without the integrity constraints the feasible set it convex
symmetry breaking (fix an arbitrary order) bounding

$$
\begin{aligned}
& \min \sum_{k=1}^{K} \sum_{j=1}^{n} d_{j k} \\
& \text { s.t. } d_{j k} \geq \sum_{i=1}^{p}\left(m_{j}^{i}-y_{k}^{i}\right)^{2}-\bar{d}_{j k}\left(1-x_{j k}\right) \quad \forall j, k
\end{aligned}
$$

$$
\sum^{K} x_{j k}=1 \quad \forall j
$$

$$
\min _{j} m_{j}^{i} \leq y_{k}^{i} \leq \max _{j} m_{j}^{i} \quad \forall i, k
$$

improve the model b
reducing the search space

$$
x_{j k} \in\{0,1\}, y_{k}^{i} \in \mathbb{R}, d_{j k} \geq 0
$$

exact reformulation as a convex MINLP... still slower than specialized heuristics

modelling nonlinear functions

$f(x) \underbrace{\text { Setup value }}_{x}$

setup value

$$
\begin{aligned}
& f(x)=a x+b \delta \\
& \epsilon \delta \leq x \leq U \delta \\
& \delta \in\{0,1\}
\end{aligned}
$$

discrete values

$$
\begin{aligned}
& f(x)=\sum_{i} \delta_{i} f_{i} \\
& \sum_{i} i \delta_{i}=x \\
& \sum_{i} \delta_{i}=1 \\
& \delta_{i} \in\{0,1\} i=0 . . n
\end{aligned}
$$

Special Ordered Set of type 1:
ordered set of variables, all zero except at most one

discrete values

$$
\begin{aligned}
& f(x)=\sum_{i} \delta_{i} f_{i} \\
& \sum_{i} i \delta_{i}=x \\
& \sum_{i} \delta_{i} \geqq 1 \\
& \delta_{i} \in\{0,1\} i=0 . . n \\
& S O S 1(\delta)
\end{aligned}
$$

Special Ordered Set of type 2:

ordered set of variables, all zero except at most two consecutive

piecewise linear

$f(x)=\sum_{i} \lambda_{i} f\left(a_{i}\right)$
$\sum_{i} a_{i} \lambda_{i}=x$
$\sum_{i} \lambda_{i}=1$
$\lambda_{i} \in[0,1] i=0 . . n$
SOS2(入)

$$
\left.\lambda_{i} \text { is } x=a_{i} \text { ? (then } \lambda_{i} a_{i}+\lambda_{i+1} a_{i+1} \text { ign }\left[a_{i}, a_{i+1}\right] \text { if } \lambda_{i}+\lambda_{i+1}=1\right)
$$

$$
x_{i}=5
$$

to order isthestititen

to count 5 items ree selected
to measure time taski starts at time 5
to measure space item is located on floor 5

$$
\simeq \delta_{i 5}=1
$$

Binary Integer Linear Program (BIP) \{0,1\}n
 Integer Linear Program (IP) \mathbb{Z}^{n}
 Mixed Integer Linear Program (MIP) Znu © ${ }^{n}$

Input

demand D_{p} (MW) for each period $p \in\{0, \ldots, P-1\}$ of length $\Delta_{p}(\mathrm{~h})$, N_{t} units of each type $t \in T$ with power output range $\left[\underline{L}_{t} \bar{L}_{t}\right]$ (MW). Base cost $C_{t}^{b}(€ / \mathrm{h})$ to operate a unit at its min level + cost $C_{t}^{r}(€ / \mathrm{MWh})$ per each extra MWh.

1/ basic power generation problem

Output
a number of units to commit and their production level to meet the demand on each period and minimize the operation costs.

- no need to know the activity of each individual unit
- be careful with equations in power (MW) or in energy (MWh)
- keep the same order of magnitude for data

Input

demand D_{p} (MW) for each period $p \in\{0, \ldots, P-1\}$ of length Δ_{p} (h), N_{t} units of each type $t \in T$ with power output range $\left[\underline{L}_{t} \bar{L}_{t}\right]$ (MW). Base cost $C_{t}^{b}(\epsilon / h)$ to operate a unit at its min level
$+\operatorname{cost} C_{t}^{r}(€ / M W h)$ per each extra MWh.

$X_{\text {tp }}$ number of units of type t to commit on period p $l_{t p}$ extra output $(M W)$ of the $u_{45} i t s$ of type t on period p

\therefore how to model?

waste management

$$
\begin{aligned}
\max 4 a & +8 b \\
a+3 b & \leq 450 \\
2 a+b & \leq 300 \\
a+b & \leq 200 \\
a, b & \in \mathbb{Z}_{+}
\end{aligned}
$$

2 types of nuclear waste A, B with different unit profit/processing time going through 3 processes 1 , II and III with limited availability

	I	II	III	profit
A	1 h	2 h	1 h	$4 \mathrm{k} €$
B	3 h	1 h	1 h	$8 k €$
available	450 h	300 h	200 h	

objective: maximize the profit.

waste management

$$
\begin{array}{rl}
\max & 4 a+8 b \\
a+3 b & \leq 450 \text { active } \\
2 a+b & \leq 300 \\
a+b & \leq 200 \text { active } \\
a, b \geq 0 \\
a, b & \mathbb{Z} \\
\text { LP relaxation }
\end{array}
$$

LP solution: $\quad a^{*}+3 b^{*}=450, a^{*}+b^{*}=200 \Rightarrow\left(a^{*}, b^{*}\right)=\left(\frac{150}{2}, \frac{250}{2}\right)$

Linear Programming cheat sheet

- MILP without hategrality = LP-relaxation
- linear inequadity = halfspace
- LP feasible set = polyhedron
- convex optimization

- ifLP is feasible and bounded, at least one vertex is optimal
- primal simplex algorithm: visit adjacent vertices as cost decreases
- interior point method runs in polynomial time (but simplex often faster)
- strong duality: $\min _{x}\{c x \mid A x \geq b, x \geq 0\}=\max _{u}\{u b \mid u A \leq c, u \geq 0\}$

MLLP \neq LP-relaxation

MILP \neq round LP-relaxation

general MLIP is NP-hard

- small problems are easy
- some specific problems are easy

1||Cmax Scheduling Problem

$$
\begin{array}{cl}
\min s_{n+1} \quad=\mathrm{P} \mathrm{I}^{+} \ldots+\mathrm{Pn} & \\
\text { s.t. } s_{n+1} \geq s_{j}+p_{j} & j=1 . . n \\
s_{j}-s_{i} \geq M x_{i j}+\left(p_{i}-M\right) & i, j=1 . . n \\
x_{i j}+x_{j i}=1 & i, j=1 . . n ; i<j \\
s_{j} \in \not \mathbb{Z}_{+} \geq 0 & j=1 . . n+1 \\
x_{i j} \in\{0,1\} & i, j=1 . . n
\end{array}
$$

[^0]j

Capacitated Transhipment Problem

$$
\min \sum_{(i, j) \in A} c_{i j} x_{i j}
$$

s.t. $\sum_{j \in \delta^{+}(i)} x_{i j}-\sum_{j \in \delta^{-}(i)} x_{i j}=b_{i} \quad i \in V$

$$
\begin{array}{ll}
x_{i j} \leq h_{i j} & (i, j) \in A \\
x_{i j} \in \not Z_{+} \geq 0 & (i, j) \in A
\end{array}
$$

Input digraph (V, A), demand or supply b_{i} at each node i, capacity $h_{i j}$ and unit flow cost $c_{i j}$ for each arc (i,j)
Output a mimimum cost integer flow to satisfy the demand

LP = ILP sometimes

totally unimodular matrix (theory)

$$
(P)=\max \left\{c x \mid A x \leq b, x \in \mathbb{Z}_{+}^{n}\right\}
$$

- basic feasible solutions of the LP relaxation (\bar{P}) take the form: $\bar{x}=\left(\bar{x}_{B}, \bar{x}_{N}\right)=\left(B^{-1} b, 0\right)$ where B is a square submatrix of $\left(A, I_{m}\right)$
- Cramer's rule: $B^{-1}=B^{*} / \operatorname{det}(B)$ where B^{*} is the adjoint matrix (made of products of terms of B)
- Proposition: if (P) has integral data (A, b) and if $\operatorname{det}(B)= \pm 1$ then \bar{x} is integral

Definition

A matrix A is totally unimodular (TU) if every square submatrix has determinant +1 , -1 or 0 .

Proposition

If A is TU and b is integral then any optimal solution of (\bar{P}) is integral.

totally unimodular matrix (practice)

How to recognize TU ?

Sufficient condition

A matrix A is TU if

- all the coefficients are $+1,-1$ or 0

■ each column contains at most 2 non-zero coefficient
■ there exists a partition (M_{1}, M_{2}) of the set M of rows such that each column j containing two non zero coefficients satisfies

$$
\sum_{i \in M_{1}} a_{i j}-\sum_{i \in M_{2}} a_{i j}=0 .
$$

Proposition

A is $\mathrm{TU} \Longleftrightarrow A^{t}$ is $\mathrm{TU} \Longleftrightarrow\left(A, I_{m}\right)$ is TU
where A^{t} is the transpose matrix, I_{m} the identitiy matrix

Interlude

Showthat the Transhipment upisideal shour tatatteScheduling Ilis NOT ideal

Input electric power demand D_{p} for each time period $p \in\{0, \ldots, P-1\}$ of Δ_{p} hours, N_{t} power generation units of each type $t \in T$ with power output range $\left[\underline{L}_{t} \bar{L}_{t}\right]$. A reserve factor F. A base hourly cost C_{t}^{b} to operate a unit at its min level + a cost C_{t}^{r} per extra MWh.

a basic power generation problem

Output a number of units to commit and their production level to meet both the demand and the reserve on each period so as to minimize the operation costs.

- no need to know the activity of each individual unit
- be careful with equations in power or in energy
- choose units to enforce the homogeneity of the values

Input electric power demand $D_{p}(M W)$ for each time period $p \in\{0, \ldots, P-1\}$ of Δ_{p} hours, N_{t} power generation units of each type $t \in T$ with power output range $\left[\underline{L}_{t}, \bar{L}_{t}\right]$ (MW). A reserve factor $F \in[0,1]$. A base hourly cost C_{t}^{b} (eur/h/unit) to operate a unit at its min level + a cost C_{t}^{r} (eur/ MWh) per extra MWh.

$$
\begin{aligned}
& \min \sum_{t, p}\left(\Delta_{p} C_{t}^{b} x_{t p}+\Delta_{p} C_{t}^{r} l_{t p}\right) \\
& \sum_{t}\left(\underline{L}_{t} x_{t p}+l_{t p}\right) \geq D_{p} \forall p \\
& \sum_{t} \bar{L}_{t} x_{t p} \geq(1+F) * D_{p} \forall p \\
& 0 \leq l_{t p} \leq\left(\bar{L}_{t}-\underline{L}_{t}\right) x_{t p} \forall t, p \\
& 0 \leq x_{t p} \leq N_{t} \forall t, p \\
& x_{t p} \in \mathbb{Z} \forall t, p
\end{aligned}
$$

$X_{t p}$ number of committed units of type t on period p $l_{\text {tp }}$ extra load (MW) of all units of type t on period p

startup costs

Input the number A_{t} of active units at time 0 , a positive startup cost C_{t}^{s} to turn a unit on.

$$
\begin{aligned}
& y_{t p} \geq \max \left(0, x_{t p}-x_{t p-1}\right) \text { in any feasible solution and } \\
& y_{t p} \leq \max \left(0, x_{t p}-x_{t p-1}\right) \text { in any optimal solution (prove it) }
\end{aligned}
$$

hydro power generation

Input hydro units $h \in H$ with fixed power output L_{h} (MW), hourly reservoir depth reduction $R_{h}(\mathrm{~m} / \mathrm{h})$ and hourly cost C_{h}^{b} (eur $/ \mathrm{h}$) when on, and with startup cost C_{h}^{s} (eur); A_{h} the commitment status (true/false) of the unit before time 0 . At end, the unique reservoir must be replenished to its initial level; pumping electric consumption E (MWh/ m) for 1 meter depth increase.
X_{hp} hydro unit h committed on period p
yhp hydro unit h started on period p
u_{p} reservoir depth increase (m / h) by pumping on period p

hydro power generation

$$
\begin{aligned}
& \min \ldots+\sum_{h, p}\left(\Delta_{p} C_{h}^{b} x_{h p}+C_{h}^{s} y_{h p}\right) \\
& \sum_{t}\left(\underline{L}_{t} x_{t p}+l_{t p}\right)+\sum_{h} L_{h} x_{h p} \geq D_{p}+E u_{p} \forall p \\
& \sum_{t} \bar{L}_{t} x_{t p}+\sum_{h} L_{h} \geq(1+F) * D_{p} \forall p \\
& \sum_{p} \sum_{h} R_{h} \Delta_{p} x_{h p}=\sum_{p} \Delta_{p} u_{p} \\
& y_{h p} \geq x_{h p}-x_{h p-1} \forall h, p \\
& x_{h(-1)}=A_{h} \\
& u_{p} \in \mathbb{R}_{+} \forall p \\
& x_{h p}, y_{h p} \in\{0,1\} \forall h, p
\end{aligned}
$$

```
Input (noncyclic)
up/down times: minimum time }\mp@subsup{\Delta}{t}{+},\mp@subsup{\Delta}{t}{-}(\textrm{h})\mathrm{ unit }t\inT\mathrm{ may remain on or off;
time }\mp@subsup{\Delta}{0it}{+}\mp@subsup{\Delta}{0it}{-
ramp rates: maximum power increase/decrease }\mp@subsup{L}{t}{+},\mp@subsup{L}{t}{-} (MW) between two
consecutive periods; maximum power }\mp@subsup{L}{t}{S}\mathrm{ (MW) when turned on; maximum power
Lt}\mp@subsup{L}{t}{E}\mathrm{ (MW) before turned off; load }\mp@subsup{L}{0it}{}\mathrm{ (MW) for ith unit of type }t\inT\mathrm{ before
period 0.
Input (cyclic)
the status before period 0 ( }\mp@subsup{\Delta}{0it}{+},\mp@subsup{\Delta}{0it}{-},\mp@subsup{L}{0it}{})\mathrm{ are duplicated from period P-1.
```


Physical limits of the units: minimum up/down times and maximum ramp up/down rates

commitment must be monitored for units individually

minimum uptime

Let $P_{t}^{+}(p)=\left\{0 \leq p^{\prime} \leq p \mid \sum_{k=p^{\prime}}^{p-1} \Delta_{k}<\Delta_{t}^{+}\right\}$.
Show that an unit of type t cannot been turned on more than once during $P_{t}^{+}(p)$.
Show that if an unit of type t is off at time p then it has not been turned on at any time $p^{\prime} \in P_{t}^{+}(p)$.

Reformulate these assertions as a linear relation between the binary variables modelling the unit status and status change at appropriate periods.

minimum uptime (noncyclic case)

If unit i of type t has been on for exactly $\Delta_{0 i t}^{+}>0$ hours before time 0 , what can you say about its status and status change at any period in

$$
P_{i t}^{+}=\left\{p \geq 0 \mid \sum_{k=0}^{p-1} \Delta_{k}<\Delta_{t}^{+}-\Delta_{0 i t}^{+}\right\} ?
$$

Fix binary variables modelling the status and status change of a unit at given periods according to this assertion.

MILP with p binaries

$$
\min \left\{c x \mid A x \geq b, x \in\{0,1\}^{p} \times \mathbb{R}^{n-p}\right\} \quad=2 P \text { LPs to solve }
$$

Combinatorial explosion

Combinatorial explosion

Two options

evaluate partial solutions progressively

Cut Generation

Branch\&BOUnd evaluate partial solutions progressively

modern Branch\&Cut
 mix up+presolve+heuristics

Cut valid inequality that separates a relaxed LP solution
Farkas Lemma cuts are linęar combinations of constraints

cutting plane algorithm

1. solve the LP relaxation of (P), get \bar{x}
2. if \bar{x} is integral STOP: feasible then optimal for (P)
3.) find cuts C for (P, \bar{x}) from template T
3. add constraints C to (P) then 1.
separation subproblem

templates

general-purpose
mixed integer rounding, split, Chvátal-Gomory

structure-based

clique, cover, flow cover, zero half

Chvátal-Gomory cuts

(P) : $\max \left\{c x \mid A x \leq b, x \in \mathbb{Z}_{+}\right\}$

For any $u \in \mathbb{R}_{+}^{m}$ the following inequalities are valid:

variants in the choice of u, ex: Gomory or MIR cuts

Cover cuts

ex

$$
S=\left\{y \in\{0,1\}^{7} \mid 11 y_{1}+6 y_{2}+6 y_{3}+5 y_{4}+5 y_{5}+4 y_{6}+y_{7} \leq 19\right\}
$$

- $\left(y_{3}, y_{4}, y_{5}, y_{6}\right)$ is a minimal cover for
$11 y_{1}+6 y_{2}+6 y_{3}+5 y_{4}+5 y_{5}+4 y_{6}+y_{7} \leq 19$ as $6+5+5+4>19$ then $y_{3}+y_{4}+y_{5}+y_{6} \leq 3$ is a cover inequality
- we can derive a stronger valid inequality
$y_{1}+y_{2}+y_{3}+y_{4}+y_{5}+y_{6} \leq 3$ by noting that y_{1}, y_{2} has greater coefficients than any variable in the cover
- note furthermore that $\left(y_{1}, y_{i}, y_{j}\right)$ is a cover $\forall i \neq j \in\{2,3,4,5,6\}$ then $2 y_{1}+y_{2}+y_{3}+y_{4}+y_{5}+y_{6} \leq 3$ is also valid
separation: solve knapsack $\min \left\{\sum\left(1-\bar{y}_{j}\right) x_{j} \mid \sum a_{j} x_{j} \geq b+\epsilon, x \in\{0,1\}^{n}\right\}$ get coefficients x^{*} of the cover inequablity $\sum x_{j}^{*} y_{j} \leq \sum x_{j}^{*}-1$ if $\sum\left(1-\bar{y}_{j}\right) x_{j}^{*}<1$ then it is s a cut (not satisfied by current LP solution \bar{y})

Subtour for TSP
ex

Subtour for TSP

Subtour for TSP

ex

separation: solve min s-t cut in (V, \vec{E}, \bar{x}) for some fixed s and for each $t \in V \backslash\{s\}$ to find a cutset $\delta(Q)$ of capacity < 2 or prove that none exists

limits

- the algorithm may stop prematurely
- the algorithm may not converge
- the algorithm may converge slowly
- the separation procedure may be NP-hard
- the LP relaxation grows
- the LP relaxation structure changes

Search tree

 divide/evaluate/prune
LP-based branch and bound

1. evaluate by solving the LP relaxation and compare bounds
2. divide with variable bounding (hyperplanes)
```
oracle(S) = FALSE if either:
    - the LP relaxation is unfeasible on S
    - the relaxed LP solution \overline{X}}\mathrm{ is not better than
    the best integer solution found so far x*
    -\overline{x}}\mathrm{ is integer (then update x*)
```


branching

node selection

which order to visit nodes?

variable selection
 how to separate nodes?

constraint branching

versus variable branching

node selection

Best Bound First Search explore less nodes, manages larger trees
Depth First Search sensible to bad decisions at or near the root
DFS (up to n solutions) + BFS (to prove optimality)

variable selection

most fractional easy to implement but not better than random
strong branching best improvement among all candidates (impractical)
pseudocost branching record previous branching success for each var (inaccurate at root) reliability branching pseudocosts initialised with strong branching

constraint branching

example: GUB dichotomy

- if (P) contains a GUB constraint $\sum_{C} x_{i}=1, x \in\{0,1\}^{n}$
- choose $C^{\prime} \subseteq C$ s.t. $0<\sum_{C^{\prime}} \bar{x}_{i}<1$
- create two child nodes by setting either $\sum_{C^{\prime}} x_{i}=0$ or $\sum_{C^{\prime}} x_{i}=1$

■ enforced by fixing the variable values

- leads to more balanced search trees

SOS1 branching in a facility location problem

choose a warehouse depending on its size/cost:

$$
\begin{aligned}
\mathrm{COST} & =100 x_{1}+180 x_{2}+320 x_{3}+450 x_{4}+600 x_{5} \\
\text { SIZE } & =10 x_{1}+20 x_{2}+40 x_{3}+60 x_{4}+80 x_{5} \\
(\mathrm{SOS}) & : x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=1
\end{aligned}
$$

■ let $\bar{x}_{1}=0.35$ and $\bar{x}_{5}=0.65$ in the LP solution then $\mathrm{SIZE}=55.5$

- choose $C^{\prime}=\{1,2,3\}$ in order to model $\mathrm{SIZE} \leq 40$ or $\mathrm{SIZE} \geq 60$

bounding: the dual simplex algorithm

- primal-dual problem pair: $\min _{x}\left\{c^{\top} x \mid A x=b, x \geq 0\right\}=\max _{u}\left\{u^{\top} b \mid A^{\top} u \leq c\right\}$
- primal-dual basic solutions: $x=\left(x_{B}, x_{N}\right)$ with $x_{N}=0, x_{B}=A_{B}^{-1} b$ and $u^{\top}=c_{B}^{\top} A_{B}^{-1}$,
- primal basic feasible solutions are the extreme points of polyhedron $P=\{x \geq 0 \mid A x \geq b\}$
- if both are feasible ($x_{B} \geq 0$ and $c^{\top}-u^{\top} A \geq 0$) then both are optimal ($u^{T} b=c_{B}^{\top} x_{B}=c x$)
- primal simplex algorithm: iterate over bases, maintain primal feasibility, stop when achieving dual feasibility
- dual simplex algorithm: iterate over bases, maintain dual feasibility, stop when achieving primal feasibility
- branching \Longrightarrow updating $b \Longrightarrow$ the dual basic solution remains feasible
- we can warm-start the dual simplex algorithm to solve the LP-relaxation at a search node with the dual basic solution of the parent node
- great impact on the running time of the LP-B\&B algorithm
- convex MINLP: NLP-B\&B algorithm does usually not perform well (OA-based cutting-plane algorithms are usually better) mostly because no such warm-start algorithm exists for NLP

Input (noncyclic)
up/down times: minimum time $\Delta_{t}^{+}, \Delta_{t}^{-}$unit $t \in T$ may remain on or off; time $\Delta_{0 i t}^{+} \Delta_{0 i t}^{-}$the i th unit of type $t \in T$ has been on/off before period 0 .
ramp rates: maximum power increase/decrease L_{t}^{+}, L_{t}^{-}between two consecutive periods; maximum power L_{t}^{S} when turned on; maximum power L_{t}^{E} before turned off; load $L_{0 i t}$ for i th unit of type $t \in T$ before period 0 . Input (cyclic)
the status before period $0\left(\Delta_{0 i t}^{+}, \Delta_{0 i t}^{-}, L_{0 i t}\right)$ are duplicated from period P-1.

Physical limits of the units: minimum up/down times and maximum ramp up/down rates

commitment must be monitored for units individually

minimum uptime

Let $P_{t}^{+}(p)=\left\{0 \leq p^{\prime} \leq p \mid \sum_{k=p^{\prime}}^{p-1} \Delta_{k}<\Delta_{t}^{+}\right\}$.
Show that an unit of type t cannot been turned on more than once during $P_{t}^{+}(p)$.
Show that if an unit of type t is off at time p then it has not been turned on at any time $p^{\prime} \in P_{t}^{+}(p)$.

Reformulate these assertions as a linear relation between the binary variables modelling the unit status and status change at appropriate periods.

minimum uptime (noncyclic case)

If unit i of type t has been on for exactly $\Delta_{0 i t}^{+}>0$ hours before time 0 , what can you say about its status and status change at any period in

$$
P_{i t}^{+}=\left\{p \geq 0 \mid \sum_{k=0}^{p-1} \Delta_{k}<\Delta_{t}^{+}-\Delta_{0 i t}^{+}\right\} ?
$$

Fix binary variables modelling the status and status change of a unit at given periods according to this assertion.

maximum ramp

If unit i of type t starts at $\mathrm{p}\left(y_{i t h p}=1\right)$ then $l_{i t p}-l_{i t p-1} \leq L_{i t}^{S}$ Otherwise either unit i is on at $p-1$ and on at p and $l_{i t p}-l_{i t p-1} \leq L_{i t}^{+}$

$$
\text { or unit i is on at } p-1 \text { and off at } p \text { and } l_{i t p}-l_{i t p-1}<0
$$

$$
\text { or unit i is off at } p-1 \text { and off at } p \text { and } l_{i t p}-l_{i t p-1}=0
$$

modern solvers

$\underset{\text { var branching }}{\text { Simplex }}$
Preprocessing

Branch\&Cut

Heuristics
Parallelism

Slideefrom Martin Grötschel Co@W Berlin 2015

Component Impact CPLEX 12.5 Summary

MIP Evolution, Cplex numbers

- Bob Bixby (Gurobi) \& Tobias Achterberg (IBM) performed the following interesting experiment comparing Cplex versions from Cplex 1.2 (the first one with MIP capability) up to Cplex 11.0.
- 1,734 MIP instances, time limit of $30,000 \mathrm{CPU}$ seconds, computing times as geometric means normalized wrt Cplex 11.0 (equivalent if within 10%).

Cplex versions	year	better	worse	time
11.0	2007	0	0	1.00
10.0	2005	201	650	1.91
9.0	2003	142	793	2.73
8.0	2002	117	856	3.56
7.1	2001	63	930	4.59
6.5	1999	71	997	7.47
6.0	1998	55	1060	21.30
5.0	1997	45	1069	22.57
4.0	1995	37	1089	26.29
3.0	1994	34	1107	34.63
2.1	1993	13	1137	56.16
1.2	1991	17	1132	67.90

From Andrea Lodi's MIP course (Wien 2012)

From Robert Bixby (1000x MP Tricks 2012)

CPLEX 20.1

GUROBI 7.5 - 10.0

Here are descriptions of the cuts implemented in CPLEX exception of implied bound cuts. Implied bound cuts ca

- Boolean Quadric Polytope (BQP) cuts
- Clique cuts
- Cover cuts
- Disjunctive cuts
- Flow cover cuts
- Flow path cuts
- Gomory fractional cuts
- Generalized upper bound (GUB) cover cuts
- Implied bound cuts: global and local.
- Lift-and-project cuts
- Mixed integer rounding (MIR) cuts
- Multi-commodity flow (MCF) cuts
- Reformulation Linearization Technique (RLT) cuts

[^1]CliqueCuts
CoverCuts
FlowCoverCuts
FlowPathCuts
GUBCoverCuts
ImpliedCuts
MIPSepCuts
MIRCuts
StrongCGCuts
ModKCuts
NetworkCuts
ProjlmpliedCuts
SubMIPCuts
ZeroHalfCuts
InfProofCuts

Clique cut generation
Cover cut generation
Flow cover cut generation
Flow path cut generation
GUB cover cut generation Implied bound cut generation MIP separation cut generation
MIR cut generation
Strong-CG cut generation
Mod-k cut generation
Network cut generation
Projected implied bound cut generation
Sub-MIP cut generation
Zero-half cut generation Infeasibility proof cut generation

reduce size

remove redundancies $\quad x+y \leq 3$, binaries
substitute variables $\quad x+y-z=0$
fix variables by duality $c_{j} \geq 0, A_{j} \geq 0 \Rightarrow x=x_{\text {min }}$
fix variables by probing $x=1$ infeas $\Rightarrow x=0$

strengthen LP relaxation

adjust bounds $2 x+y \leq 1$, binaries $\Rightarrow x=0$
lift coefficients $2 x-y \leq 1$, binaries $\Rightarrow x-y \leq 1$

identify/exploit properties

detect implied integer $3 x+y=7, x$ int $\Rightarrow y$ int build the conflict graph detect disconnected components remove symmetries

MIPLIB markshare_5_0

```
Changed value of parameter Presolve to 0
    Prev. 又 verault: -1
    Optimize a model with 5 rows, 45 columns and 203 nonzeros
    Found heuristic solution: objective 5335
    Variable types: 5 continuous, 40 integer (40 binary)
    Root relaxation: objective 0.000000e+00, 15 iterations, 0.00 seconds
    Nodes | Current Node | Objective Bounds | Work
    Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
    *62706364 28044 38 1.0000000 0.00000 100% 2.1 1241s
Explor(d 233848403 Dodes (460515864 simplex iterations) ir 3883.5 seconds
Thread count won, (of 4 available processors)
Optimal solution found (tolerance 1.00e-04)
    Best objective 1.000000000000e+00, best bound 1.000000000000e+00, gap 0.0%
    Optimal objective: 1
```

```
[sofdem:~/Documents/Code/gurobi]$ gurobi.sh mymip.py markshare_5_0.mps.gz
```

Optimize a model with 5 rows, 45 columns and 203 nonzeros
Found heuristic solution: objective 5335
Presolve time: 0.00s
Presolved: 5 rows, 45 columns, 203 nonzeros
Variable types: 0 continuous, 45 integer (40 binary)

Root relaxation: objective $0.000000 \mathrm{e}+00,15$ iterations, 0.00 seconds

Explored 30682 nodes (65348 simplex iterations) i 0.70 seconds Thread count wac (of 4 available processors)

Optimal solution found (tolerance 1.00e-04)
Best objective $1.000000000000 \mathrm{e}+00$, best bound $1.000000000000 \mathrm{e}+00$, gap 0.0%
Optimal objective: 1

accelerate the search a little appeal to the practitioner a lot

limits

- highly heuristic (branching decisions, cut generation)
- floating-point errors and optimality tolerance (0.01%)
- generic features
- less effective on general integers (ex: scheduling)
- hard to model (and solve) non-linear structures
- NP-hard

how to tune modern solvers

play with Gurobi

Root relaxation: objective $0.000000 \mathrm{e}+00,15$ iterations, 0.00 seconds

$$
\begin{aligned}
& \text { set a time limit } \\
& \text { MIPFocus=1 } \\
& \text { ImproveStartGap=0.1 }
\end{aligned}
$$

```
Root relaxation: objective 0.000000e+0, 15 iterations, 0.00 seconds
```

Nodes			Current Node			Objective Bounds			Work	
Expl Unexpl			Obj Dep	In		Incumbent	BestBd	Gap	It/No	Time
H	0	0	0.00000	0	5	5335.00000	0.00000	100\%	-	0 s
	0	0				320.0000000	0.00000	100\%	-	0 s
	0	0	0.00000	0	6	320.00000	0.00000	100\%	-	0 s
	0	0	0.00000	0	5	320.00000	0.00000	100\%	-	0 s
	0	0	0.00000	0	6	320.00000	0.00000	100\%	-	0 s
	0	0	0.00000	0	5	320.00000	0.00000	100\%	-	0 s
H	0	0	239.0000000				0.00000	100\%	-	0 s
	0	0	0.00000	0	5	239.00000	0.00000	100\%	-	0 s
*	36	0		29		96.0000000	0.00000	100\%	2.7	0 s
*	99	32		34		58.0000000	0.00000	100\%	2.1	0 s
H	506	214				53.0000000	0.00000	100\%	1.9	0 s
	30682	442				1.0000000	1.00000	0.00\%	2.1	0 s

change the LP solver

if nblteration(node) \geq nblteration(root)/2
NodeMethod=2

Root relaxation: objective $0.000000 \mathrm{e}+00,15$ iterations, 0.00 seconds

Nodes		Current Node			Ohjective Bounds		Gap	Work	
Expl	expl	Obj Dep	In		Incumben	BestBd		It/No	Time
0	0	0.00000	0	5	5335.00000	0.00000	100\%	-	0 s
H 0	0				320.0000000	0.00000	100\%	-	0 s
0	0	0.00000	0	6	320.00000	0.00000	100\%	-	0 s
0	0	0.00000	0	5	320.00000	0.00000	100\%	-	0 s
0	0	0.00000	0	6	320.00000	0.00000	100\%	-	0 s
0	0	0.00000	0	5	320.00000	0.00000	100\%	-	0 s
H 0	0				239.0000000	0.00000	100\%	-	0 s
0	0	0.00000	0	5	239.00000	0.00000	100\%	-	0 s
* 36	0		29		96.0000000	0.00000	100\%	2.7	0 s
* 99	32		34		58.0000000	0.00000	100\%	2.1	0 s
H 506	214				53.0000000	0.00000	100\%	1.9	0 s
H30682	442				1.0000000	1.00000	0.00\%	2.1	0 s

init with a feasible solution

if built-in heuristics fail

PumpPasses, MinRelNodes, ZeroObjNodes model.read('initSol.mst') model.cbSetSolution(vars, newSol)

Root relaxation: objective $0.000000 \mathrm{e}+00,15$ iterations, 0.00 seconds

Nodes		Current Node			Objectivo Dounds			Work	
Expl Unexpl		Obj De	In		Incumbe	BestBd	Gap	It/No	Time
0	0	0.00000	0	5	5335.00000	0.00000	100\%	-	0 s
H 0	0				320.0000000	0.00000	100\%	-	0 s
0	0	0.00000	0	6	320.00000	0.00000	100\%	-	0 s
0	0	0.00000	0	5	320.00000	0.00000	100\%	-	0 s
0	0	0.00000	0	6	320.00000	0.00000	100\%	-	0 s
0	0	0.00000	0	5	320.00000	0.00000	100\%	-	0 s
H 0	0				239.0000000	0.00000	100\%	-	0 s
0	0	0.00000	0	5	239.00000	0.00000	100\%	-	0 s
* 36	0		29		96.0000000	0.00000	100\%	2.7	0 s
* 99	32		34		58.0000000	0.00000	100\%	2.1	0 s
H 506	214				53.0000000	0.00000	100\%	1.9	0 s
H30682	442				1.0000000	1.00000	0.00\%	2.1	0s

tighten the model

$$
\begin{aligned}
& \text { if the bound stagnates } \\
& \text { Cuts=3 } \\
& \text { Presolve=3 } \\
& \text { model.cbCut(lhs, sense, rhs) }
\end{aligned}
$$

http://www.gurobi.com/

/documentation/current/refman/index.html
/resource-center/

you know your problem better than your solver does

tignten the
 mode

$\min \sum_{j=1}^{n} c_{j} x_{j}+\sum_{j=1}^{n} \sum_{i=1}^{m} d_{i j} y_{i j}$

14 hours

s.t. $\sum_{j=1}^{n} y_{i j}=1 \quad i=1$.. m

pacitated ty Location roblem

$x_{j} \in\{0,1\}$
$y_{i j} \in\{0,1\}$
$y_{i j} \in\{0,1\}$

$$
j=1 . . n
$$

$$
j=1 . . n
$$

$$
j=1 . . n, i=1 . . m
$$

$i=1 . . m$
$j=1 . . n, i=1 . . m$
$j=1 . . n$
$j=1 . . n, i=1 . . m$

$z_{i t}$ production in period i to 45satisfy demand of period t
project:
power generation
https://colab.research.google.com/drive/19WNriomOnD12aScfm.JRxQZZgdxwsL_3ehc

Input (noncyclic)
up/down times: minimum time $\Delta_{t}^{+}, \Delta_{t}^{-}$unit $t \in T$ may remain on or off; time $\Delta_{0 i t}^{+} \Delta_{0 i t}^{-}$the i th unit of type $t \in T$ has been on/off before period 0 .
ramp rates: maximum power increase/decrease L_{t}^{+}, L_{t}^{-}between two consecutive periods; maximum power L_{t}^{S} when turned on; maximum power L_{t}^{E} before turned off; load $L_{0 i t}$ for i th unit of type $t \in T$ before period 0 . Input (cyclic)
the status before period $0\left(\Delta_{0 i t}^{+}, \Delta_{0 i t}^{-}, L_{0 i t}\right)$ are duplicated from period P-1.

Physical limits of the units: minimum up/down times and maximum ramp up/down rates

commitment must be monitored for units individually

minimum uptime

Let $P_{t}^{+}(p)=\left\{0 \leq p^{\prime} \leq p \mid \sum_{k=p^{\prime}}^{p-1} \Delta_{k}<\Delta_{t}^{+}\right\}$.
Show that an unit of type t cannot been turned on more than once during $P_{t}^{+}(p)$.
Show that if an unit of type t is off at time p then it has not been turned on at any time $p^{\prime} \in P_{t}^{+}(p)$.

Reformulate these assertions as a linear relation between the binary variables modelling the unit status and status change at appropriate periods.

minimum uptime

$$
\text { Let } P_{t}^{+}(p)=\left\{0 \leq p^{\prime} \leq p \mid \sum_{k=p^{\prime}}^{p-1} \Delta_{k}<\Delta_{t}^{+}\right\} \text {. }
$$

If an unit of type t is off at time $p\left(x_{i t p}=0\right)$ then it has not been turned on at any time

$$
p^{\prime} \in P_{t}^{+}(p)\left(\sum_{p^{\prime} \in P_{t}^{+}(p)} y_{i t p}^{+}=0\right)
$$

$$
\begin{aligned}
& \sum_{\varepsilon \cos \operatorname{cosen}} \\
& p^{\prime} \in P_{t}^{+}(p)
\end{aligned}
$$

minimum uptime (noncyclic case)

If unit i of type t has been on for exactly $\Delta_{0 i t}^{+}>0$ hours before time 0 , what can you say about its status and status change at any period in

$$
P_{i t}^{+}=\left\{p \geq 0 \mid \sum_{k=0}^{p-1} \Delta_{k}<\Delta_{t}^{+}-\Delta_{0 i t}^{+}\right\} ?
$$

Fix binary variables modelling the status and status change of a unit at given periods according to this assertion.

minimum uptime (noncyclic case)

If unit i of type t has been on for exactly $\Delta_{0 i t}^{+}>0$ hours before time 0 , what can you say about its status and status change at any period in

$$
P_{i t}^{+}=\left\{p \geq 0 \mid \sum_{k=0}^{p-1} \Delta_{k}<\Delta_{t}^{+}-\Delta_{0 i t}^{+}\right\} ?
$$

the unit must remain on, then it will not be turned on/off, on these periods

$$
x_{i t p}=1, y_{i t p}^{+}=0, y_{i t p}^{-}=0 \forall i, t, p \in P_{i t}^{+}
$$

minimum up/down-time
 $$
\begin{aligned} & \sum_{i} x_{i t p}=x_{t p}, \forall t, p \\ & \sum_{p^{\prime} \in P_{t}^{+}(p)} y_{i t p^{\prime}}^{+} \leq x_{i t p} \forall i, t, p \\ & x_{i t p}=1, y_{i t p}^{+}=0, y_{i t p}^{-}=0 \forall i, t, p \in P_{i t}^{+} \end{aligned}
$$

$$
\sum_{p^{\prime} \in P_{t}^{-}(p)} y_{i t p^{\prime}}^{-} \leq 1-x_{i t p} \forall i, t, p
$$

$$
x_{i t p}=0, y_{i t p}^{+}=0, y_{i t p}^{-}=0 \forall i, t, p \in P_{i t}^{-}
$$

$$
y_{i t p}^{+}+y_{i t p}^{-} \leq 1 \forall i, t, p
$$

$$
x_{i t p}-x_{i t p-1}=y_{i t p}^{+}-y_{i t p}^{-} \forall i, t, p
$$

$$
x_{i t p}, y_{i t p}^{+}, y_{i t p}^{-} \in\{0,1\} \forall i, t, p
$$

minimum up/down-time

$$
\sum_{p^{\prime} \in P_{t}^{-}(p)} y_{i t p^{\prime}}^{-} \leq 1-x_{i t p} \forall i, t, p
$$

$$
x_{i t p}=0, y_{i t p}^{+}=0, y_{i t p}^{-}=0 \forall i, t, p \in P_{i t}^{-}
$$

$$
y_{i t p}^{+}+y_{i t p}^{-} \leq 1 \forall i, t, p
$$

$$
x_{i t p}-x_{i t p-1}=y_{i t p}^{+}-y_{i t p}^{-} \forall i, t, p
$$

$$
x_{i t p}, y_{i t p}^{+}, y_{i t p}^{-} \in\{0,1\} \forall i, t, p
$$

$x_{\text {itp }}$ commit status of the ith unit of type t on period p Yitp unit turned on $(+)$ or off $f_{68}(-)$ on period p

$$
\begin{aligned}
& \sum x_{i p}=x_{p p} \forall t, p
\end{aligned}
$$

$$
\begin{aligned}
& x_{i t p}=1, y_{i t p}^{+}=0, y_{i t p}^{-}=0 \forall i, t, p \in P_{i t}^{+}
\end{aligned}
$$

maximum ramp

If unit iof type t starts at $p\left(y_{i t p}=1\right)$ then $l_{i t p}-l_{i t p-1} \leq L_{i t}^{S}$
Otherwise either uniti i on at $\mathrm{p}-1$ and on at p and $l_{i t p}-l_{i t p-1} \leq L_{i t}^{+}$

$$
\begin{aligned}
& \text { or unit i is on at } p-1 \text { and off at } p \text { and } l_{i t p}-l_{i t p-1}<0 \\
& \text { or unit i is off at } p-1 \text { and off at } p \text { and } l_{i t p}-l_{i t p-1}=0
\end{aligned}
$$

maximum ramp

If unit i of type t starts at $\mathrm{p}\left(y_{i t p}=1, x_{i t p-1}=0\right)$ then $l_{i t p}-l_{i t p-1} \leq L_{i t}^{S}$
Otherwise $\left(y_{i t p}=0\right)$ either unit is on at $p-1\left(x_{i t p-1}=1\right)$ and on at p and $l_{i t p}-l_{i t p-1} \leq L_{i t}^{+}$ or unit i is on at $\mathrm{p}-1\left(x_{i t p-1}=1\right)$ and off at pand $l_{i t p}-l_{i t p-1}<0 \leq L_{i t}^{+}$ or uniti is off at $p-1\left(x_{i t p-1}=0\right)$ and off at p and $l_{i t p}-l_{i t p-1}=0$

$$
l_{i t p}-l_{i t p-1} \leq L_{t}^{+} x_{i t p-1}+L_{t}^{S} y_{i t p}^{+} \forall i, t, p
$$

maximum ramp up/down

$$
\begin{aligned}
& \sum_{i}\left(l_{i t p}-\underline{L}_{t} x_{i t p}\right)=l_{t p}, \forall t, p \\
& l_{i t p}-l_{i t p-1} \leq L_{t}^{+} x_{i t p-1}+L_{t}^{S} y_{i t p}^{+} \forall i, t, p \\
& l_{i p-1}-l_{i t p} \leq L_{t}^{-} x_{i t p}+L_{t}^{E} y_{i t p}^{-p} \forall i, t, p \\
& x_{i t(-1)}=1 \text { if } L_{0 i t}>0 \text { else } x_{i t(-1)}=0 \forall i, t \\
& l_{i t(-1)}=L_{0 i t} \forall i, t \\
& \underline{L}_{t} x_{i t p} \leq l_{i t p} \leq \bar{L}_{t} x_{i t p} \in\{0,1\} \quad \forall i, t, p
\end{aligned}
$$

maximum ramp up/down

$$
\begin{aligned}
& \sum_{i}\left(l_{i t p}-\underline{L}_{t} x_{i t p}\right)=l_{t p}, \forall t, p \\
& l_{i t p}-l_{i t p-1} \leq L_{t}^{+} x_{i t p-1}+L_{t}^{S} y_{i t p}^{+} \forall i, t, p \\
& l_{i p-1}-l_{i t p} \leq L_{t}^{-} x_{i t p}+L_{t}^{E} y_{i t p}^{-} \forall i, t, p \\
& x_{i t(-1)}=1 \text { if } L_{0 i t}>0 \text { else } x_{i t(-1)}=0 \forall i, t \\
& l_{i t(-1)}=L_{0 i t} \forall i, t \\
& \underline{L}_{t} x_{i t p} \leq l_{i t p} \leq \bar{L}_{t} x_{i t p} \in\{0,1\} \quad \forall i, t, p
\end{aligned}
$$

$1_{\text {itp }}$ load of the ith unit of type t on period p

decomposition methods

cut generation/branch\&cut
Dantzig-Wolfe/column generation/branch\&price

lagrangian relaxation

Benders decomposition

Bin Packing Problem

$$
\begin{aligned}
& \min \sum_{i=1}^{n} y_{i} \\
& \text { s.t. } \sum_{j=1}^{m} w_{j} x_{i j} \leq c y_{i} \quad i=1 . . n \\
& \sum_{i=1}^{n} x_{i j}=1 \\
& j=1 . . m \\
& x_{i j} \in\{0,1\} \quad i=1 . . n ; j=1 . . m \\
& y_{i} \in\{0,1\} \quad i=1 . . n
\end{aligned}
$$

```
Input n containers, m}\mathrm{ items,
capacity c for all containers,
weight wj for each item j
Output a packing of all items in
a mimimum number of containers
```


how to manage the exponential number of variables?

Bin Packing Problem

$$
\left.\begin{array}{ll}
\min & \sum_{s \in \mathscr{S}} x_{s} \\
\text { s.t. } & \sum_{s \in \mathscr{S}} a_{j s} x_{s}=1 \\
& x_{s} \in\{0,1\}
\end{array} \quad j=1 . . n\right\}
$$

```
Input n containers, m}\mathrm{ items,
capacity c for all containers,
weight wj for each item j
Output a packing of all items in
a mimimum number of containers
```


Dantrig-Wolfe decomposition

all the possible arrangements of items in a bin

delayed column generation for LP

$\min \left\{c_{B} x_{B}+c_{N} x_{N} \mid A_{B} x_{B}+A_{N} x_{N}=b\right\}$ without $\left(c_{N}, A_{N}\right)$ i.e. $x_{N}=0$:
1/ solve the restricted LP with the primal simplex algorithm where the omitted columns N are implicitly non-basic variables
2/ find $j \in N$ that can profitably enter the basis $\bar{c}_{j}<0$, stop if none
= dual cut generation: (cut separation = pricing problem)

$$
\begin{array}{ll|ll}
\min c x & & \max u b \\
A_{i} x \geq b_{i}, & \forall i & u A_{j} \leq c_{j}, & \forall j \\
x_{j} \geq 0, & \forall j & u_{i} \geq 0, & \forall i
\end{array}
$$

given a basic dual solution u find j such that $\bar{c}_{j}=c_{j}-u A_{j}<0$

application to Bin Packing

$\varphi \subseteq 2^{m}$ all the possible arrangements of items in a bin

S a feasible subset (i.e. covering all the items)

1. solve the restricted LP:
$\min \left\{\sum_{s \in S} x_{s} \mid \sum_{s \in S} a_{j s} x_{s}=1 \forall j, x_{s} \geq 0 \forall s \in S\right\}$
get the corresponding dual solution $\bar{u} \in \mathbb{R}^{m}$
2. look for an improving basic direction
$=$ some $s \in \mathscr{\varphi} \backslash S$ with $\bar{c}_{s}=1-\sum a_{j s} \bar{u}_{j}<0$
e.g. by solving $\max \left\{\sum_{j} a_{j} \bar{u}_{j} \mid \sum_{j} w_{j} a_{j} \leq K, a \in\{0,1\}^{m}\right\}$
3. if $\sum a_{j}^{*} \bar{u}_{j}>1$ add column ($1, a^{*}$) to S then 1 otherwise

STOP: ($\bar{x}_{S}, 0$) solves the full LP (maybe not integer)

Branch－and－Price for MLLP

－branch－and－bound for ILP with large number of variables where the LP relaxation is solved by column generation
－the branching strategy should keep the search tree balanced without altering the LP relaxation structure

```
ex (bin packing): branch by fixing to 0 either all }\mp@subsup{x}{s}{}|{i,j}\subseteqs\mathrm{ or
all }\mp@subsup{x}{s}{}|{i,j}\not\subseteqs\mathrm{ for some pair of items (i,j) s.t. 0< 利䄱和* < 
```

－the pricing problem can be seen as an optimization problem but does not need to be solved at optimality，except for the convergence proof．
－convenient decomposition method when additional constraints only appear in the pricing problem

$$
\text { ex (bin packing) : conflict constraint } \sum_{j \in C} a_{j} \leq 1
$$

Multi 0-1 Knapsack Problem

$$
\max \sum_{i=1}^{m} \sum_{j=1}^{n} c_{j} x_{i j}
$$

$$
\text { s.t. } \sum_{j=1}^{n} w_{j} x_{i j} \leq K_{i}
$$

$$
i=1 . . m
$$

$$
\sum_{i=1}^{m} x_{i j} \leq 1
$$

$$
j=1 . . n
$$

$$
x_{i j} \in\{0,1\}
$$

$$
j=1 . . n, i=1 . . m
$$

Multi 0-1 Knapsack Problem

$$
\begin{array}{rlr}
z_{u}=\max & \sum_{i=1}^{m} \sum_{j=1}^{n} c_{j} x_{i j}+\sum_{j=1}^{n} u_{j}\left(1-\sum_{i=1}^{m} x_{i j}\right) & u \in \mathbb{R}_{+}^{n} \\
\text { s.t. } & \sum_{j=1}^{n} w_{j} x_{i j} \leq K_{i} & i=1 . . m \\
& \sum_{i=1}^{m} x_{i j} \leq 1 & j=1 . . n \\
& x_{i j} \in\{0,1\} & j=1 . . n, i=1 . . m
\end{array}
$$

$$
\begin{aligned}
& \text { Input } n \text { items, } m \text { bins, value } c_{j} \\
& \text { and weight } W_{j} \text { for each item } j \text {, }
\end{aligned}
$$

$$
\text { capacity } K_{i} \text { for each bin i. }
$$

find the smallest upper bound

Lagrangian Relaxation

dualize the complicating or coupling constraints of an ILP:

$$
\begin{array}{cc|c}
(P): z=\max \sum_{k} c_{k} x_{k} & & (D): w=\min _{u \geq 0} l(u) \\
l(u)=u e+\sum_{k} z_{k}^{u} \\
\sum_{k} D_{k} x_{k} \leq e_{k} & & \\
A_{k} x_{k} \leq b_{k}, & \forall k & \left(P_{u}\right): z_{u}^{k}=\max c_{k} x_{k}-u D_{k} x_{k} \\
x_{k} \in \mathbb{Z}^{p} \times \mathbb{R}^{n}, & \forall k & A_{k} x_{k} \leq b_{k} \\
x_{k} \in \mathbb{Z}^{p} \times \mathbb{R}^{n}
\end{array}
$$

(D) is the lagrangian dual problem
$\left(P_{u}\right)$ is the lagrangian suproblem with multipliers u
strong duality may not hold if $p>0$, ie the dual only provides an upper bound $w \geq z$.

lagrangian relaxation applied to MKP

$(P): z=\max \sum_{i} \sum_{j} c_{j} x_{i j}$ $\sum_{j} w_{j} x_{i j} \leq K_{i}$, $\sum_{i} x_{i j} \leq 1$,
$x_{i j} \in\{0,1\}$,
$\forall i$
$\forall j$
$\forall i, j$
$(D): w=\min _{u \geq 0} l(u)$ with $l(u)=\sum_{j} u_{j}+\sum_{i} z_{i}^{u}$
$\left(P_{i}^{u}\right): z_{i}^{u}=\max \sum_{j}\left(c_{j}-u_{j}\right) x_{i j}$

$$
\sum_{j} w_{j} x_{i j} \leq K_{i}
$$

$x_{i j} \in\{0,1\}, \forall j$

- function l is convex and a subgradient at $u \geq 0$ is $1-\sum_{i} x_{i}^{u}$ where x_{i}^{u} an optimal solution of (P_{i}^{u}) a0-1 knapsack with altered costs
- at each iteration, for a given u, the solution x^{u} is KP-feasible but some items may be assigned more than once: remove the less profitable doublons to get a feasible solution
- if no doublon and if every item j with $u_{j}>0$ is assigned then x^{u} is optimal for (P)

lagrangian relaxation: applications

- in MKP: the knapsacks subproblems share the same set of items but different capacities: helpful to speed up the solution of (P^{u})
- the lagrangian dual is always at least as good as the LP relaxation
- sometimes it is not better, ex: dualize the knapsack constraints instead of the assignment constraints in MKP
- lagrangian relaxation is applied, daily and for decades, by EDF to the Unit Commitment Problem for the french electricity production: dualize the unit coupling constraints and generate independent commitment plans for each unit. It allows to take into account specific technical rules (e.g. ramping) for each unit types.
- another typical application in planning: dualize time (loosely-)coupling constraints

Benders decomposition

- typically: problems coupling binary/continuous variables
$P: \min \left\{c x+d y \mid x \in P \cap \mathbb{Z}^{p}, A x+B y \geq e\right\}$ where $f(x)=\min \{d y \mid B y \geq e-A x\}$ can be dualized
- strong duality: either feasible $f(x)=\max \{u(e-A x) \mid u B \leq d\}$ or infeasible and it exists a ray $u \mid \lambda u B \leq d \forall \lambda, u(e-A x)>0$
$P: \min \left\{c x+z \mid x \in P \cap \mathbb{Z}^{p}, z \geq f(x)\right\}$
- relax $z \geq f(x)$ then at each iteration k : solve the relaxation and get solution x^{k}, solve the dual subproblem get u^{k} and generate a cut, either $z \geq u^{k}(e-A x)$ if feasible or $0 \geq u^{k}(e-A x)$ otherwise
- stop when lower bound $c x^{k}+z^{k}$ is equal to best upper bound $c x^{j}+f\left(x^{j}\right)$

a glimpse of MINLP

convex continuous relaxation:

- NLP-B\&B: bound by solving the NLP relaxation with an interior point method
- OA algorithm: cutting-plane method with cuts as first-order approximation (LP outer approximation)
- LP-NLP B\&B: a branch-and-cut with an LP relaxation with OA cuts generated at each integer node
nonconvex continuous relaxation:
- spatial B\&B: branch on integer variables and on nonconvex constraints

declarative
 models, not algorithms

large-scale
decomposition methods

MLLP perks

versatile
covers many problems
flexible
general-purpose solvers
logic \& constraint programming
integer nonlinear programming
graph algorithms
combinatorial optimization beyond MIL
machine learning
dynamic programming

Matteo Fischetti (2019) Introduction to Mathematical Optimization Wolsey L. (1998) Integer Programming. Wiley Bertsimas D., Tsitsiklis J. (1997) Introduction to Linear Optimization. Athena Scientific

Achterberg T., Berthold T., Hendel G. (_2) Rounding and propagation for MIP. In OR Proceedings 2011, 71-76.
Achterberg T., Bixby R., Gu Z., Rothberg E.,., Weninger D. (2017) reductions in MIP. ZIB-Report 16-44.
Bixby R. (2012) A brief history of LP and MIP computation. Documenta Mathematica, 107-121.
Cornuéjols G. (2008) Valid inoqualitios for MLLP. Mathematical Programming, 112(1), 3-44.
Klotz E., Newman A. (2u-) Practical guidelines for solving difficult MLIP. Surveys in ORMS, 18(1), 18-32.
Linderoth J., Ralphs T. (2005) Noncommercial software for MIIP. IP: theory and practice, 3, 253-303
Linderoth J., Lodi A. (2010) MILP software. Wiley encyclopedia of ORMS.
Linderoth J., Savelsbergh M. (1999) A computational study of search strategies for MIP. INFORMS JoC, 11(2), 173-187. Lodi A. (2010) MIP computation. In 50 Years of IP 1958-2008, 619-645.
Newman A., Weiss M. (2013) A survey of linear and mixed-integer optimization tutorials. INFORMS ToE, 14(1) 26-38.
Savelsbergh M. (1994) Preprocessing and probing techniques for MIP. ORSA Journal on Computing, 6(4), 445-454.
Vanderbeck F., Wolsey L. (2010) Reformulation and decomposition of IP. In 50 Years of IP 1958-2008, 431-502.

[^0]: $x_{i j}$ does i precede j ? s_{j} starting time of

[^1]: - Zero-half cuts

