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a practical view
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practical decision is  
combinatorial optimization

scheduling packing

routingassignment

planning

design

allocation

cover
sizing



MILP perks

declarative

expressive
flexible

fast
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create the model, 
apply a solver

based on LP + enumeration 
+ advanced features

change the model,  
not the solver

logic, nonlinear, discrete 
many decision problems 

generic & specific
algorithms

optimality
primal-dual bounds



1how to model ?

2how di!cult ?

3how to solve ?
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techniques & applications

complexity & distance to LP

main techniques & modern solvers 
decomposition methods



1how to model ?
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Mixed Integer Linear Program 

min cx
Ax ≥ b
x ∈ ℤp × ℝn−p

c ∈ ℝn, A ∈ ℝm×n, b ∈ ℝm

objective              
linear constraints 
integrity constraints  
right hand side 
cost vector 
solution space 
feasible set

 
   

 
 
 

 

cx
Ax ≥ b
xj ∈ ℤ
b
c
ℝn
{x ∈ ℤp × ℝn−p |Ax ≥ b}



modeling with 𝔹
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- select item j

- associate item j to resource i 

- variable  greater than constant  ?y ≥ 0 a
- select at most  itemsn

true or false01

9

x1, …, xn ∈ {0,1}
y ≥ ax, x ∈ {0,1}
xij = 1, xij ∈ {0,1}
xj = 1, xj ∈ {0,1}



Input n items, value cj and 
weight wj for each item j, 
capacity K.
Output a maximum value subset 
of items whose total weight 
does not exceed K.

Integer Knapsack 
Problem

Mixed Integer Linear Programming

Course Note
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max

nX

j=1

c j x j

s.t.

nX

j=1

w j x j ∑ K

x j 2 {0,1} j = 1..n

min

nX

j=1

c j x j +
nX

j=1

mX

i=1

di j yi j

s.t.

nX

j=1

yi j = 1 i = 1..m

yi j ∑ x j j = 1..n, i = 1..m

x j 2 {0,1} j = 1..n

yi j 2 {0,1} j = 1..n, i = 1..m

  is item j packed ?xj 10



- either x or y 

- if x then y 

- if x then f ≤ a 

- at most 1 out of n 

- at least k out of n

logic with binaries
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c j x j +
nX
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mX
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nX

j=1
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yi j ∑ x j j = 1..n, i = 1..m
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y ∏ x

x1 +·· ·+xn ∑ 1

x1 +·· ·+xn ∏ k
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f ∑ ax +M(1°x)

1||Cmax

min sn+1

s.t. sn+1 ∏ s j +p j j = 1..n

s j ° si ∏ M xi j + (pi °M) i , j = 1..n

xi j +x j i = 1 i , j = 1..n; i < j

s j 2Z+ j = 1..n +1

xi j 2 {0,1} i , j = 1..n

min

mX

j=1

s+j + s°j

s.t.

nX

i=1

ai j xi + s+j ° s°j =
d j

2
j = 1..m

xi 2 {0,1} i = 1..n

s+j ∏ 0, s°j ∏ 0 j = 1..m

“big M” 
big enough but 
keep it tight !
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x,y binary variables; f continuous variable; a, k, n constants
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x,y binary variables; f continuous variable; a, k, n constants



Input n facility locations, m 
customers, cost cj to open 
facility j, cost dij to serve 
customer i from facility j
Output a mimimum (opening and 
service) cost assignment of 
customers to facilities.

Uncapacitated 
Facility Location 

Problem
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max

nX

j=1

c j x j

s.t.

nX

j=1

w j x j ∑ K

x j 2 {0,1} j = 1..n

min

nX

j=1

c j x j +
nX

j=1

mX

i=1

di j yi j

s.t.

nX

j=1

yi j = 1 i = 1..m

yi j ∑ x j j = 1..n, i = 1..m

x j 2 {0,1} j = 1..n

yi j 2 {0,1} j = 1..n, i = 1..m

xj is location j open ? yij is customer i served from j ?
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Input n data points, distance 
dij between each two points 
i,j, number k of clusters.
Output k centers minimizing 
the sum of distances between 
each point and its nearest 
center.

K-median clustering

xj is j a center ? yij is j the nearest center of i ?13



Output define K points as centers so as to 
minimize the sum of the distances between 
each point and its nearest center.

K-median clustering
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K-mean clustering
Output partition the points into K sets so 
as to minimize the sum of the distances 
between each point and the mean of points 
in its cluster.

Input n data points , a number K of 
clusters. Euclidean distance.

mj ∈ ℝp



K-mean clustering
xjk is j assigned to cluster k ?
yk coordinates of the center of k ?
djk distance from j to the center of k ?

15

cannot precompute the distance to the centers 
anymore: modeled with nonlinear constraints

min
K

∑
k=1

n

∑
j=1

xjkdjk

s . t . djk =
p

∑
i=1

(mi
j − yi

k)2 ⊤j, k

K

∑
k=1

xjk = 1 ⊤j

xjk ∈ {0,1}, yi
k ∈ ℝ, djk ≥ 0

non 
convex



K-mean clustering
xjk is j assigned to cluster k ?
yk coordinates of the center of k ?
djk distance from j to the center of its cluster k ?

16
convexify the nonlinear constraints using big-M (optimization is still nonconvex because of integrality)

min
K

∑
k=1

n

∑
j=1

djk

s . t . djk ≥
p

∑
i=1

(mi
j − yi

k)2 − djk(1 − xjk) ⊤j, k

K

∑
k=1

xjk = 1 ⊤j

xjk ∈ {0,1}, yi
k ∈ ℝ, djk ≥ 0



non-linear functions

setup value
piecewise linear

discrete values

17



setup value
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set-up value:

f : [0,U ] µR+ !R+

f (x) =
(

0 if x = 0

ax +b if 0 < x ∑U

f (x) = ax +b±
≤±∑ x ∑U±
± 2 {0,1}

discrete values:

f (x) = fi if x = i

f (x) =P
i ±i fi

with SOS1(±i )

piecewise linear:

linear on [ai°1, ai ]

f (x) =P
i ±i f (ai )

with SOS2(±i )

U𝜖
𝛿 is x positive ? 18



discrete values
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set-up value:

f : [0,U ] µR+ !R+

f (x) =
(

0 if x = 0

ax +b if 0 < x ∑U

f (x) = ax +b±
≤±∑ x ∑U±
± 2 {0,1}

discrete values:

f (x) = fi if x = i

f (x) =P
i ±i fiP

i i±i = xP
i ±i = 1

±i 2 {0,1} i = 0..n

piecewise linear:

linear on [ai°1, ai ]

f (x) =P
i ±i f (ai )

with SOS2(±i )

𝛿i is x=i (and f(x)=fi) ?
19



discrete values

Mixed Integer Linear Programming
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set-up value:

f : [0,U ] µR+ !R+

f (x) =
(

0 if x = 0

ax +b if 0 < x ∑U

f (x) = ax +b±
≤±∑ x ∑U±
± 2 {0,1}

discrete values:

f (x) = fi if x = i

f (x) =P
i ±i fiP

i i±i = xP
i ±i = 1

±i 2 {0,1} i = 0..n

piecewise linear:

linear on [ai°1, ai ]

f (x) =P
i ±i f (ai )

with SOS2(±i )

Special Ordered Set of type 1:  
ordered set of variables, all zero except at most one

𝛿i is x=i (and f(x)=fi) ?

SOS1(𝜹)≥

19



piecewise linear

Special Ordered Set of type 2:  
ordered set of variables, all zero except at most two consecutive

𝞴i is x=ai ? (then 𝜆iai +𝜆i+1ai+1 in [ai,ai+1] if 𝜆i +𝜆i+1 =1)

SOS2(𝞴)
20



modeling with ℤ
21



xi = 5
to order    i is the 5th item 

to count    5 items are selected 

to measure time     task i starts at time 5 

to measure space  item i is located on floor 5

≃ 𝜹i5 = 1
22



Binary Integer Linear Program (BIP)    {0,1}n 

Integer Linear Program (IP)     ℤn 

Mixed Integer Linear Program (MIP)       ℤn  U Qn

23



1how to model ?

2how di!cult ?

3how to solve ?
24



Linear Programming cheat sheet

- MILP without integrality = LP relaxation 
- LP feasible set = polyhedron 
- convex optimization 
- if LP is feasible and bounded, at least one vertex is optimal 
- primal simplex algorithm: visit adjacent vertices as cost decreases 

- strong duality:  

- interior point method runs in polynomial time (simplex can be better in practice)
min{cx |Ax ≥ b, x ≥ 0} = max{ub |uA ∀ c, u ≥ 0}

25

LP is easy



Input 1 company, 2 divisions, m 
products with availabilities dj, 
n retailers with demands aij in 
each product j.
Output an assignment of the 
retailers to the divisions 
approaching a 50/50 production 
split.

Market Split Problem

Mixed Integer Linear Programming

Course Note

OSE 2014: Optimization

sophie.demassey@mines-paristech.fr

October 6, 2014

min

mX

j=1

s+j + s°j

s.t.

nX

i=1

ai j xi + s+j ° s°j =
d j

2
j = 1..m

xi 2 {0,1} i = 1..n

s+j ∏ 0, s°j ∏ 0 j = 1..m

xi is retailer i assigned to division 1 ? 
sj gap to the 50% split goal for product j26



Input 5 products, 40 retailers
Output . . . . . . . . . . . . . 
. . . . . (hold the line 
please) . . . . 

Int Opt = 1
Solution time = 20 minutes
Proof time = > 1 hour

MIPLIB 
markshare_5_0

27
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ILP ≠ LP relaxation

28
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ILP ≠ round LP relaxation



general ILP is NP-hard

30

small problems are easy
some specific problems are easy



1||Cmax Scheduling 
Problem

Mixed Integer Linear Programming
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1||Cmax

min sn+1

s.t. sn+1 ∏ s j +p j j = 1..n

s j ° si ∏ M xi j + (pi °M) i , j = 1..n

xi j +x j i = 1 i , j = 1..n; i < j

s j 2Z+ j = 1..n +1

xi j 2 {0,1} i , j = 1..n

min

mX

j=1

s+j + s°j

s.t.

nX

i=1

ai j xi + s+j ° s°j =
d j

2
j = 1..m

xi 2 {0,1} i = 1..n

s+j ∏ 0, s°j ∏ 0 j = 1..m

= p1+…+pn

≥ 0

32

Input n tasks, duration pi 
for each task i, 1 machine 
Output a minimal makespan 
schedule of the tasks on the 
machine without overlap



Input digraph (V,A), demand 
or supply bi at each node i, 
capacity hij and unit flow 
cost cij for each arc (i,j)
Output a mimimum cost integer 
flow to satisfy the demand

Capacitated 
Transhipment 

Problem

Mixed Integer Linear Programming

Course Note
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f ∑ ax +M(1°x)

min

X

(i , j )2A
ci j xi j

s.t.

X

j2±+(i )

xi j °
X

j2±°(i )

xi j = bi i 2V

xi j ∑ hi j (i , j ) 2 A

xi j 2Z+ (i , j ) 2 A

1||Cmax

min sn+1

s.t. sn+1 ∏ s j +p j j = 1..n

s j ° si ∏ M xi j + (pi °M) i , j = 1..n

xi j +x j i = 1 i , j = 1..n; i < j

s j 2Z+ j = 1..n +1

xi j 2 {0,1} i , j = 1..n

min

mX

j=1

s+j + s°j

s.t.

nX

i=1

ai j xi + s+j ° s°j =
d j

2
j = 1..m

xi 2 {0,1} i = 1..n

s+j ∏ 0, s°j ∏ 0 j = 1..m

≥ 0

xij flow on arc (i,j)
33



LP = ILP sometimes

integral polyhedra 
= 

convex hull 
= 

ideal formulation

34



totally unimodular matrix

alternative models

improving models

good IP models

better models ?

formulation strength

easy problems

criteria for good models

a good model

small-size: polynomial number of constraints/variables

flexible: about slight changes of the problem

easy LP: the LP relaxation is solved fast

structured: call for decomposition

effective LP: the LP relaxation value is close to the optimum

Sophie Demassey, TASC, EMN-INRIA/LINA Université de Nantes / M2 ORO / Advanced Integer Programming / L3: modeling

alternative models

improving models

good IP models

better models ?

formulation strength

easy problems

formulation strength

Let X ⇤ Zn
a discrete set, e.g. the feasible solution set of an IP.

formulation strength

a formulation for X is any polyhedron P ⇤ Rn
such that X = P � Zn

conv(X) is the strongest formulation of X:

the optimum of a linear program over conv(X) is at an extreme point

the extreme points of conv(X) all lie in X
max{cx | x � X} = max{cx | x � conv(X)}
the second program can be solved in polynomial time

characterizing conv(X) is as hard as solving the IP

Sophie Demassey, TASC, EMN-INRIA/LINA Université de Nantes / M2 ORO / Advanced Integer Programming / L3: modeling

alternative models

improving models

good IP models

better models ?

formulation strength

easy problems

explicit convex hull

There are a number of problems for which conv(X) can easily be

characterized

assignment problem

spanning tree problem

matching problem

Sophie Demassey, TASC, EMN-INRIA/LINA Université de Nantes / M2 ORO / Advanced Integer Programming / L3: modeling

alternative models

improving models

good IP models

better models ?

formulation strength

easy problems

totally unimodular matrix

(P ) = max{ cx | Ax ⌅ b, x � Zn
+ }

basic feasible solutions of the LP relaxation (P̄ ) take the form:

x̄ = (x̄B , x̄N ) = (B�1b, 0) where B is a square submatrix of (A, Im)

Cramer’s rule: B�1 = B⇤/det(B) where B⇤
is the adjoint matrix

(made of products of terms of B)

Proposition: if (P ) has integral data (A, b) and if det(B) = ±1 then x̄
is integral

Definition

A matrix A is totally unimodular (TU) if every square submatrix has

determinant +1, �1 or 0.

Proposition

If A is TU and b is integral then any optimal solution of (P̄ ) is integral.

Sophie Demassey, TASC, EMN-INRIA/LINA Université de Nantes / M2 ORO / Advanced Integer Programming / L3: modeling

(theory)

35



totally unimodular matrix
alternative models

improving models

good IP models

better models ?

formulation strength

easy problems

totally unimodular matrix

How to recognize TU ?

Sufficient condition

A matrix A is TU if

all the coefficients are +1, �1 or 0

each column contains at most 2 non-zero coefficient

there exists a partition (M1,M2) of the set M of rows such that

each column j containing two non zero coefficients satisfiesP
i⌅M1

aij �
P

i⌅M2
aij = 0.

Proposition

A is TU ⌃⌥ At
is TU ⌃⌥ (A, Im) is TU

where At
is the transpose matrix, Im the identitiy matrix

Sophie Demassey, TASC, EMN-INRIA/LINA Université de Nantes / M2 ORO / Advanced Integer Programming / L3: modeling

alternative models

improving models

good IP models

better models ?

formulation strength

easy problems

Quizz: easy problems

Capacitated Transhipment Problem

Given a digraph G = (V,A) with either (positive) demand or (negative)

supply bi at each node i � V , arc capacities hij , and unit flow costs cij
for all (i, j) � A. Find a feasible integer flow that satisfies all the

demands at minimum cost.

1 model as an IP

2 analyze this problem

Sophie Demassey, TASC, EMN-INRIA/LINA Université de Nantes / M2 ORO / Advanced Integer Programming / L3: modeling

alternative models

improving models

good IP models

better models ?

formulation strength

easy problems

Answer

Capacitated Transhipment Problem

min
X

(i,j)⌅A

cijxij

s.t.

X

j⌅�+(i)

xij �
X

j⌅��(i)

xij = bi i � V

xij ⌅ hij (i, j) � A

xij � Z+ (i, j) � A

xij = 1 is the flow value on arc (i, j) � A

�+(i) and ��(i) are the sets of successors and predecessors of

i � V , resp.

Sophie Demassey, TASC, EMN-INRIA/LINA Université de Nantes / M2 ORO / Advanced Integer Programming / L3: modeling

alternative models

improving models

good IP models

better models ?

formulation strength

easy problems

Answer

Capacitated Transhipment Problem

The matrix is

✓
M
IA

◆
with M � {0, 1,�1}V ⇥A

the incidence matrix

of the graph and IA the identity matrix

each column xij in M has coefficients:

arij =

8
><

>:

1 in row r = i

�1 in row r = j

0 in all other rows r

the rows of M can be partitioned as M1 = M and M2 = ⌦ such

that:
P

r⌅M1
arij �

P
r⌅M2

arij = (1+ (�1))� 0 = 0 for all column xij

M is TU then the matrix of the IP is TU

if demands b and capacities h are all integral then any optimum

network flow is integral.

Sophie Demassey, TASC, EMN-INRIA/LINA Université de Nantes / M2 ORO / Advanced Integer Programming / L3: modeling

(practice)
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Show that the Transhipment ILP is ideal 
Show that theScheduling ILP is NOT ideal 

Interlude
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