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1 Model examples

1.1 Integer Knapsack Problem

Input: 7 items, value ¢; and weight w; = 0 for each item j, a capacity K = 0.
Output: a maximum value subset of items whose total weight does not exceed capacity K.

n
max ) ¢;x;

j=1

n
st. ) wix; <K
j=1
x;€{0,1} j=1l.n
with x; = 1iff item j is selected

1.2 Uncapacitated Facility Location Problem

Input: 7 facility locations, m customers, cost ¢; to open facility j, cost d;; to serve customer i from facility

on location j.
Output: a minimum (opening and service) cost assignment of the customers to the open facilities.

. n n m
min Z ij]' + Z Z dl]yl]
j=1

j=1i=1
n
sty y=1 i=1.m
j=1
YVij < X; j=l.n,i=1.m
x;€{0,1} j=1l.n
i €1{0,1} j=l.n,i=1lm

where x; = 1iff a facility is open at location j and y;; = 1 iff customer i is served from facility j.
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1.3 Scheduling Problem

Input: n tasks and one machine, duration p; for each task i.
Output: a minimum makespan schedule of the tasks on the machine.

min s,
St S =Si+p; j=1l.n

Sj—SiZMxij+(pi_M) lr]:In

X+ x5 =1 Lj=1l.mi<j
S;€Z, j=1l.n+1
xl‘jE{O,l} i,j: l.n

where x;; = 1 iff task i precede task j, s; is the starting time of task i, s,,,, is the makespan, and M > }_7"_ | p;.

1.4 K-median Problem

Input: n data points, distance d;; between each pair of points (i,), anumber 0 < k < n.
Output: a selection of k points, the centers, minimizing the sum of the distances between each point and

the nearest center.

min ) Y d;y;;
i=1j=1
n
st. ) yi=1 i=1.n

j=1

Yij = X; L,j=1l.n
n

2 xj=k

j=1

yUE{O, 1},x]€{0, 1} l,]: l.n

where y; = 1iff point j is a center and x;; = 1 if j is the nearest center of i.

1.5 Market Split Problem

Input: 1 company with 2 divisions, m products, n retailers, availability d] for each product j, demand a;j of

each retailer i for each product j.
Output: an assignement of the retailers to the divisions approaching a 50/50 production split for each prod-

uct.

m
. .

min .ZSJ' +5;
j=1
: @

e .

s.t. za,-jx,-+sj =5 = j=l.m
i=1
x; €{0,1} i=1.n
sj+20,sj‘20 j=1l.m

where x; = 1 iff retailer i is assigned to division 1, str —s; is the slack value (sj+ is the positive part and s;” is
the negative part) between the volume produced by division 1 and the desired volume (d; * 50%).
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1.6 Capacitated Transhipment Problem

Input: directed graph G = (V, A), demand or supply b; at each node n, capacity h;; and unit flow cost ¢;; on

each arc (i,j).
Output: a minimum cost integer flow to satisfy the demand.

min ) c;X;

(i,))eA

St Xj— ) X;=b ieV
Jjed+ jed= ()
xij < hy (i,j)eA
X;€Z, (i,j)eA

where x;; the flow on arc (i, )

1.7 Traveling Salesman Problem

Input: a set V of cities, E = V2, a distance ¢;j = ¢j; between each cities i and j.
Output: a tour visiting every city exactly once.

min ) ¢,x,

eeE

st Y, x,=2 ieVv
eeE|ice
Y x,=2 PEQSV
6(Q)
x,€{0,1} eeE

where x, = 1 iff the edge e belongs to the tour.

1.8 Uncapacitated Lot Sizing Problem

Input: n time periods, fix production cost f;, unit production cost p,, unit storage cost h, at period ¢, demand
d, at each period ¢.
Output: a minimum (production and storage) cost production plan that satsify the demand.

n n n
min Zlftyt + letxt + Zi h,s,
= = =

st. S +x,=d, +s; t=1.n
xX; =My, t=1.n
¥, €{0,1} t=1.n
$Hx; =0 t=1,...,n
=0

where y, = 1 iff production occurs during period ¢, x, is the amount produced during period ¢, y, is the
amount stored at the beginning of period ¢, and where M, = Y, d; for each period ¢.

min 3 v+ 5 Yy - 5 ¥ e

i=1t=i

s.t. iz”:dt t=1.n
i=1
z; < d,y; i=l.mt=i.n
¥ €{0,1} t=1
z;; =20 i=l.n;t=i.n
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where z;, is the amount produced in period i to satisfy demand of period ¢.

1.9 Bin Packing Problem

Input: n items, weight w; = 0 for each item j, m containers each of capacity K = 0.
Output: an assignment of the items to a minimum number of containers.

n
min )y
i=1
m
s.t. ) wix; <Ky i=1l.n
=1
n
> x;=1 j=1.m
i=1
x;; €1{0,1} i=l.n;j=1.m
¥;€{0,1} i=1l.n

where y; = 1iff container i is used and x;; = 1 iff item j is assigned to container i.

The Dantzig-Wolfe formulation (can be solved by delayed column generation):

min Y x,
seS
st ) ajx =1 j=1.n
seS
x, €{0,1} SeES

where & ={s < {1,...,n} | Lje; wj < K} is the set of all possible arrangements of items to one container, and
x, = 1l iffall the items in s (and no others) are assigned to the same container.

1.10 Multi 0-1 Knapsack Problem

Input: n items, value ¢; and weight w; = 0 for each item j, m containers, capacity K; = 0 for each container
i.

Output: a maximum value subset of items to assign to the containers such that the capacity of each container

is not exceeded.

m n
max ) ) cjX;

i=1j=1
n

S.t wix; < K; i=1.m
j=1
m
i=1
x;; €1{0,1} j=l.n,i=1.m

with x;; = 1iff item j is assigned to container i
The lagrangian dual:
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stm;=0 i=1.m

m n m n
Z;=  max) Y cx;—y () wix;—K;)
i=1j=1 =1 j=1
m
sty x<1 j=l.n
i=1
x;; €1{0,1} j=l.ni=1.m

where 7; is the penalty for violating the capacity of container i
An other relaxation (dualization of the coupling constraints):

m . n
min )z, +Y u
i=1 =

st.u;z0 j=1l.n

n
zl = max ) (c; — u;)x;;
j=1
n
st ) wix; <K; i=l.m
j=1
xl]€{0,1} jzl..n,i: 1.m
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2 Qutline

2.1 Modeling booleans with binary variables

linearization

y=L+(a-L)o
y=zL+(a-L)(1-96)
yzL+(a-L)(1-6)
y=zL+(a+e-L)o
y=U+(a-U)s
m+(a+e-m)d<sy<a+((U-a)d
yzx+(L-M)(1-9)

indicator

6=1=y=a

6=0=y=a

y<a=d=1

0=1=y>a

0=1=y=<a

=1 y>a

6=1 = y=zxwithxe[mM], m=L

where 6 € {0,1}, y e [L,U] <R, L<a< U, e >0small

 Given the optimization sense, it is often enough to enforce implication instead of equivalence, ex:
min{y |0 €A, =1 < y>al=min{y |6 €A,d=1 = y>a}

2.2 Modeling logic/numeric relations with binary variables

condition example linearization
exclusive disjunction either c or —c 6=1=c¢
exclusive disjunction either c, or c, 6,+0,=1
disjunction corc, 6,+06,=1
dependency ifc, thenc, 6,=6,;
exclusive alternative exactly 1 outof n r.0:=1
counter exactly k out of n T0i=k
bound at least k out of n T0:=zk
bound at most k out of n m10:<k

2.3 Modeling non-linear functions with binary variables

- e

T 0 1 2 3 4 ST

set-up value: discrete value: S
Fi[0,U]<R, —R, Fx)=fifx=i piecewise linear:
f(x) = i f(x)zzlélf; Ziai/li:x

ax+b if0<x<U Y;ib;=x YA =1
f(x)=ax+bs T0i=1 A e[01]i=0.n
€ed<x<Ub 6,€{0,1}i=0..n with SOS2(A,)
5 €{0,1} ’
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