Modelling in Mixed Integer Linear Programming

sophie.demassey@mines-paristech.fr

October 16, 2023

1 Model examples

1.1 Integer Knapsack Problem

Input: n items, value c_{j} and weight $w_{j} \geq 0$ for each item j, a capacity $K \geq 0$.
Output: a maximum value subset of items whose total weight does not exceed capacity K.

$$
\begin{aligned}
\max & \sum_{j=1}^{n} c_{j} x_{j} \\
\text { s.t. } & \sum_{j=1}^{n} w_{j} x_{j} \leq K \\
& x_{j} \in\{0,1\} \quad j=1 . . n
\end{aligned}
$$

with $x_{j}=1$ iff item j is selected

1.2 Uncapacitated Facility Location Problem

Input: n facility locations, m customers, cost c_{j} to open facility j, cost $d_{i j}$ to serve customer i from facility on location j.
Output: a minimum (opening and service) cost assignment of the customers to the open facilities.

$$
\begin{aligned}
& \min \sum_{j=1}^{n} c_{j} x_{j}+\sum_{j=1}^{n} \sum_{i=1}^{m} d_{i j} y_{i j} \\
& \text { s.t. } \sum_{j=1}^{n} y_{i j}=1 \quad i=1 . . m \\
& y_{i j} \leq x_{j} \quad j=1 . . n, i=1 . . m \\
& x_{j} \in\{0,1\} \quad j=1 . . n \\
& y_{i j} \in\{0,1\} \quad j=1 . . n, i=1 . . m
\end{aligned}
$$

where $x_{j}=1$ iff a facility is open at location j and $y_{i j}=1$ iff customer i is served from facility j.

1.3 Scheduling Problem

Input: n tasks and one machine, duration p_{i} for each task i.
Output: a minimum makespan schedule of the tasks on the machine.

$$
\begin{array}{ll}
\min s_{n+1} & \\
\text { s.t. } s_{n+1} \geq s_{j}+p_{j} & j=1 . . n \\
s_{j}-s_{i} \geq M x_{i j}+\left(p_{i}-M\right) & i, j=1 . . n \\
x_{i j}+x_{j i}=1 & i, j=1 . . n ; i<j \\
s_{j} \in \mathbb{Z}_{+} & j=1 . . n+1 \\
x_{i j} \in\{0,1\} & i, j=1 . . n
\end{array}
$$

where $x_{i j}=1$ iff task i precede task j, s_{i} is the starting time of task i, s_{n+1} is the makespan, and $M \geq \sum_{i=1}^{n} p_{i}$.

1.4 K-median Problem

Input: n data points, distance $d_{i j}$ between each pair of points (i, j), a number $0<k<n$.
Output: a selection of k points, the centers, minimizing the sum of the distances between each point and the nearest center.

$$
\begin{array}{ll}
\min & \sum_{i=1}^{n} \sum_{j=1}^{n} d_{i j} y_{i j} \\
\text { s.t. } & \sum_{j=1}^{n} y_{i j}=1 \\
& i=1 . . n \\
& y_{i j} \leq x_{j} \\
& i, j=1 . . n \\
& y_{j=1}^{n} x_{j}=k \\
& y_{i j} \in\{0,1\}, x_{j} \in\{0,1\} \\
i, j=1 . . n
\end{array}
$$

where $y_{j}=1$ iff point j is a center and $x_{i j}=1$ if j is the nearest center of i.

1.5 Market Split Problem

Input: 1 company with 2 divisions, m products, n retailers, availability d_{j} for each product j, demand $a_{i j}$ of each retailer i for each product j.
Output: an assignement of the retailers to the divisions approaching a 50/50 production split for each product.

$$
\begin{array}{ll}
\min & \sum_{j=1}^{m} s_{j}^{+}+s_{j}^{-} \\
\text {s.t. } \sum_{i=1}^{n} a_{i j} x_{i}+s_{j}^{+}-s_{j}^{-}=\frac{d_{j}}{2} & j=1 . . m \\
& x_{i} \in\{0,1\} \\
s_{j}^{+} \geq 0, s_{j}^{-} \geq 0 & i=1 . . n \\
& j=1 . . m
\end{array}
$$

where $x_{i}=1$ iff retailer i is assigned to division $1, s_{j}^{+}-s_{j}^{-}$is the slack value (s_{j}^{+}is the positive part and s_{j}^{-}is the negative part) between the volume produced by division 1 and the desired volume ($d_{j} * 50 \%$).

1.6 Capacitated Transhipment Problem

Input: directed graph $G=(V, A)$, demand or supply b_{i} at each node n, capacity $h_{i j}$ and unit flow $\operatorname{cost} c_{i j}$ on each arc (i, j).
Output: a minimum cost integer flow to satisfy the demand.

$$
\begin{array}{ll}
\min & \sum_{(i, j) \in A} c_{i j} x_{i j} \\
\text { s.t. } & \sum_{j \in \delta^{+}(i)} x_{i j}-\sum_{j \in \delta^{-}(i)} x_{i j}=b_{i} \\
& i \in V \\
& x_{i j} \leq h_{i j} \\
& x_{i j} \in \mathbb{Z}_{+}
\end{array}
$$

where $x_{i j}$ the flow on $\operatorname{arc}(i, j)$

1.7 Traveling Salesman Problem

Input: a set V of cities, $E=V^{2}$, a distance $c_{i j}=c_{j i}$ between each cities i and j.
Output: a tour visiting every city exactly once.

$$
\begin{array}{ll}
\min & \sum_{e \in E} c_{e} x_{e} \\
\text { s.t. } \sum_{e \in E \mid i \in e} x_{e}=2 & i \in V \\
& \sum_{\delta(Q)} x_{e} \geq 2 \\
& \varnothing \subset Q \subsetneq V \\
& x_{e} \in\{0,1\}
\end{array}
$$

where $x_{e}=1$ iff the edge e belongs to the tour.

1.8 Uncapacitated Lot Sizing Problem

Input: n time periods, fix production $\operatorname{cost} f_{t}$, unit production $\operatorname{cost} p_{t}$, unit storage $\operatorname{cost} h_{t}$ at period t, demand d_{t} at each period t.
Output: a minimum (production and storage) cost production plan that satsify the demand.

$$
\begin{array}{ll}
\min \sum_{t=1}^{n} f_{t} y_{t}+\sum_{t=1}^{n} p_{t} x_{t}+\sum_{t=1}^{n} h_{t} s_{t} & \\
\text { s.t. } s_{t-1}+x_{t}=d_{t}+s_{t} & t=1 . . n \\
x_{t} \leq M_{t} y_{t} & t=1 . . n \\
y_{t} \in\{0,1\} & t=1 . . n \\
s_{t}, x_{t} \geq 0 & t=1, \ldots, n \\
s_{0}=0 &
\end{array}
$$

where $y_{t}=1$ iff production occurs during period t, x_{t} is the amount produced during period t, y_{t} is the amount stored at the beginning of period t, and where $M_{t} \geq \sum_{i=t}^{n} d_{i}$ for each period t.

$$
\begin{array}{ll}
\min \sum_{t=1}^{n} f_{t} y_{t}+\sum_{i=1}^{n} \sum_{t=i}^{n} p_{i} z_{i t}+\sum_{i=1}^{n} \sum_{t=i+1}^{n} \sum_{j=i}^{t-1} h_{j} z_{i t} & \\
\text { s.t. } \sum_{i=1}^{t} z_{i t}=d_{t} & t=1 . . n \\
z_{i t} \leq d_{t} y_{i} & i=1 . . n ; t=i . . n \\
y_{t} \in\{0,1\} & t=1 . . n \\
z_{i t} \geq 0 & i=1 . . n ; t=i . . n
\end{array}
$$

where $z_{i t}$ is the amount produced in period i to satisfy demand of period t.

1.9 Bin Packing Problem

Input: n items, weight $w_{j} \geq 0$ for each item j, m containers each of capacity $K \geq 0$.
Output: an assignment of the items to a minimum number of containers.

$$
\begin{array}{lll}
\min & \sum_{i=1}^{n} y_{i} & \\
\text { s.t. } & \sum_{j=1}^{m} w_{j} x_{i j} \leq K y_{i} & i=1 . . n \\
& \sum_{i=1}^{n} x_{i j}=1 & j=1 . . m \\
& x_{i j} \in\{0,1\} & \\
& y_{i} \in\{0,1\} & \\
& i=1 . . n ; j=1 . . m
\end{array}
$$

where $y_{i}=1$ iff container i is used and $x_{i j}=1$ iff item j is assigned to container i. The Dantzig-Wolfe formulation (can be solved by delayed column generation):

$$
\begin{array}{ll}
\min & \sum_{s \in \mathscr{S}} x_{s} \\
\text { s.t. } & \sum_{s \in \mathscr{S}} a_{j s} x_{s}=1 \\
& x_{s} \in\{0,1\}
\end{array}
$$

where $\mathscr{S}=\left\{s \subset\{1, \ldots, n\} \mid \sum_{j \in s} w_{j} \leq K\right\}$ is the set of all possible arrangements of items to one container, and $x_{s}=1$ iff all the items in s (and no others) are assigned to the same container.

1.10 Multi 0-1 Knapsack Problem

Input: n items, value c_{j} and weight $w_{j} \geq 0$ for each item j, m containers, capacity $K_{i} \geq 0$ for each container i.
Output: a maximum value subset of items to assign to the containers such that the capacity of each container is not exceeded.

$$
\begin{array}{rr}
\max & \sum_{i=1}^{m} \sum_{j=1}^{n} c_{j} x_{i j} \\
\text { s.t. } & \sum_{j=1}^{n} w_{j} x_{i j} \leq K_{i} \\
& \sum_{i=1}^{m} x_{i j} \leq 1 \\
& i=1 . . m \\
x_{i j} \in\{0,1\} & j=1 . . n \\
& j=1 . . n, i=1 . . m
\end{array}
$$

with $x_{i j}=1$ iff item j is assigned to container i
The lagrangian dual:

$$
\begin{array}{lr}
\min z_{\pi} \\
\text { s.t. } \pi_{i} \geq 0 & i=1 . . m \\
z_{\pi}=\quad \max \sum_{i=1}^{m} \sum_{j=1}^{n} c_{j} x_{i j}-\sum_{i=1}^{m} \pi_{i}\left(\sum_{j=1}^{n} w_{j} x_{i j}-K_{i}\right) & \\
\text { s.t. } \sum_{i=1}^{m} x_{i j} \leq 1 & j=1 . . n \\
x_{i j} \in\{0,1\} & j=1 . . n, i=1 . . m
\end{array}
$$

where π_{i} is the penalty for violating the capacity of container i
An other relaxation (dualization of the coupling constraints):

$$
\begin{array}{rcr}
\min & \sum_{i=1}^{m} z_{u}^{j} & +\sum_{j=1}^{n} u_{j} \\
\text { s.t. } u_{j} \geq 0 & j=1 . . n \\
z_{u}^{i}= & \max \sum_{j=1}^{n}\left(c_{j}-u_{j}\right) x_{i j} & \\
& \text { s.t. } \sum_{j=1}^{n} w_{j} x_{i j} \leq K_{i} & i=1 . . m \\
& x_{i j} \in\{0,1\} \quad j=1 . . n, i=1 . . m
\end{array}
$$

2 Outline

2.1 Modeling booleans with binary variables

indicator	linearization
$\delta=1 \Longrightarrow y \geq a$	$y \geq L+(a-L) \delta$
$\delta=0 \Longrightarrow y \geq a$	$y \geq L+(a-L)(1-\delta)$
$y<a \Longrightarrow \delta=1$	$y \geq L+(a-L)(1-\delta)$
$\delta=1 \Longrightarrow y>a$	$y \geq L+(a+\epsilon-L) \delta$
$\delta=1 \Longrightarrow y \leq a$	$y \leq U+(a-U) \delta$
$\delta=1 \Longleftrightarrow y>a$	$m+(a+\epsilon-m) \delta \leq y \leq a+(U-a) \delta$
$\delta=1 \Longrightarrow y \geq x$ with $x \in[m, M], m \geq L$	$y \geq x+(L-M)(1-\delta)$

where $\delta \in\{0,1\}, y \in[L, U] \subseteq \mathbb{R}, L<a<U, \epsilon>0$ small

- Given the optimization sense, it is often enough to enforce implication instead of equivalence, ex: $\min \{y \mid \delta \in \Delta, \delta=1 \Longleftrightarrow y>a\}=\min \{y \mid \delta \in \Delta, \delta=1 \Longrightarrow y>a\}$

2.2 Modeling logic/numeric relations with binary variables

condition	example	linearization
exclusive disjunction	either or $\neg c$	$\delta=1 \Longleftrightarrow c$
exclusive disjunction	either c_{1} or c_{2}	$\delta_{1}+\delta_{2}=1$
disjunction	c_{1} or c_{2}	$\delta_{1}+\delta_{2} \geq 1$
dependency	if c_{1} then c_{2}	$\delta_{2} \geq \delta_{1}$
exclusive alternative	exactly out ofn	$\sum_{i=1}^{n} \delta_{i}=1$
counter	exactly k out ofn	$\sum_{i=1}^{n} \delta_{i}=k$
bound	at least k out ofn	$\sum_{i=1}^{n} \delta_{i} \geq k$
bound	at most k out of n	$\sum_{i=1}^{n} \delta_{i} \leq k$

2.3 Modeling non-linear functions with binary variables

set-up value:
$f:[0, U] \subseteq \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$
$f(x)= \begin{cases}0 & \text { if } x=0 \\ a x+b & \text { if } 0<x \leq U\end{cases}$
$f(x)=a x+b \delta$
$\epsilon \delta \leq x \leq U \delta$
$\delta \in\{0,1\}$

discrete value:
$f(x)=f_{i}$ if $x=i$
$f(x)=\sum_{i} \delta_{i} f_{i}$
$\sum_{i} i \delta_{i}=x$
$\sum_{i} \delta_{i}=1$
$\delta_{i} \in\{0,1\} i=0 . . n$

piecewise linear:

$f(x)=\sum_{i} \lambda_{i} f\left(a_{i}\right)$
$\sum_{i} a_{i} \lambda_{i}=x$
$\sum_{i} \lambda_{i}=1$
$\lambda_{i} \in[0,1] i=0 . . n$ with $\operatorname{SOS} 2\left(\lambda_{i}\right)$

