

Modelling in Mixed Integer Linear Programming

sophie.demassey@mines-paristech.fr

October 16, 2023

1 Model examples

1.1 Integer Knapsack Problem

Input: *n* items, value c_j and weight $w_j \ge 0$ for each item *j*, a capacity $K \ge 0$. **Output:** a maximum value subset of items whose total weight does not exceed capacity *K*.

$$\max \sum_{j=1}^{n} c_j x_j$$

s.t.
$$\sum_{j=1}^{n} w_j x_j \le K$$
$$x_j \in \{0, 1\} \qquad \qquad j = 1..n$$

with $x_j = 1$ iff item *j* is selected

1.2 Uncapacitated Facility Location Problem

Input: *n* facility locations, *m* customers, cost c_j to open facility *j*, cost d_{ij} to serve customer *i* from facility on location *j*.

Output: a minimum (opening and service) cost assignment of the customers to the open facilities.

$$\min \sum_{j=1}^{n} c_j x_j + \sum_{j=1}^{n} \sum_{i=1}^{m} d_{ij} y_{ij}$$
s.t.
$$\sum_{j=1}^{n} y_{ij} = 1$$
 $i = 1..m$

$$y_{ij} \le x_j$$
 $j = 1..n, i = 1..m$

$$x_j \in \{0, 1\}$$
 $j = 1..n$

$$y_{ij} \in \{0, 1\}$$
 $j = 1..n, i = 1..m$

where $x_j = 1$ iff a facility is open at location *j* and $y_{ij} = 1$ iff customer *i* is served from facility *j*.

1.3 Scheduling Problem

Input: *n* tasks and one machine, duration p_i for each task *i*. **Output:** a minimum makespan schedule of the tasks on the machine.

$\min s_{n+1}$	
s.t. $s_{n+1} \ge s_j + p_j$	j = 1n
$s_j - s_i \ge M x_{ij} + (p_i - M)$	i, j = 1n
$x_{ij} + x_{ji} = 1$	i, j = 1n; i < j
$s_j \in \mathbb{Z}_+$	j=1n+1
$x_{ij} \in \{0,1\}$	i, j = 1n

where $x_{ij} = 1$ iff task *i* precede task *j*, s_i is the starting time of task *i*, s_{n+1} is the makespan, and $M \ge \sum_{i=1}^{n} p_i$.

1.4 K-median Problem

Input: *n* data points, distance d_{ij} between each pair of points (i, j), a number 0 < k < n. **Output:** a selection of *k* points, the centers, minimizing the sum of the distances between each point and the nearest center.

$$\begin{split} \min \sum_{i=1}^{n} \sum_{j=1}^{n} d_{ij} y_{ij} \\ \text{s.t.} \ \sum_{j=1}^{n} y_{ij} = 1 & i = 1..n \\ y_{ij} \leq x_j & i, j = 1..n \\ \sum_{j=1}^{n} x_j = k & \\ y_{ij} \in \{0, 1\}, x_j \in \{0, 1\} & i, j = 1..n \end{split}$$

where $y_j = 1$ iff point *j* is a center and $x_{ij} = 1$ if *j* is the nearest center of *i*.

1.5 Market Split Problem

Input: 1 company with 2 divisions, *m* products, *n* retailers, availability d_j for each product *j*, demand a_{ij} of each retailer *i* for each product *j*.

Output: an assignement of the retailers to the divisions approaching a 50/50 production split for each product.

$$\min \sum_{j=1}^{m} s_{j}^{+} + s_{j}^{-}$$

s.t.
$$\sum_{i=1}^{n} a_{ij} x_{i} + s_{j}^{+} - s_{j}^{-} = \frac{d_{j}}{2} \qquad j = 1..m$$
$$x_{i} \in \{0, 1\} \qquad \qquad i = 1..n$$
$$s_{i}^{+} \ge 0, s_{j}^{-} \ge 0 \qquad \qquad j = 1..m$$

where $x_i = 1$ iff retailer *i* is assigned to division 1, $s_j^+ - s_j^-$ is the slack value (s_j^+ is the positive part and s_j^- is the negative part) between the volume produced by division 1 and the desired volume ($d_j * 50\%$).

1.6 Capacitated Transhipment Problem

Input: directed graph G = (V, A), demand or supply b_i at each node n, capacity h_{ij} and unit flow cost c_{ij} on each arc (i, j).

Output: a minimum cost integer flow to satisfy the demand.

$$\min \sum_{(i,j)\in A} c_{ij} x_{ij}$$
s.t.
$$\sum_{j\in\delta^+(i)} x_{ij} - \sum_{j\in\delta^-(i)} x_{ij} = b_i$$

$$i \in V$$

$$x_{ij} \leq h_{ij}$$

$$(i,j) \in A$$

$$x_{ij} \in \mathbb{Z}_+$$

$$(i,j) \in A$$

where x_{ij} the flow on arc (i, j)

1.7 Traveling Salesman Problem

Input: a set *V* of cities, $E = V^2$, a distance $c_{ij} = c_{ji}$ between each cities *i* and *j*. **Output:** a tour visiting every city exactly once.

$$\begin{split} \min \sum_{e \in E} c_e x_e \\ \text{s.t.} \quad \sum_{e \in E \mid i \in e} x_e &= 2 \\ \sum_{o \in Q} x_e &\geq 2 \\ x_e &\in \{0, 1\} \\ \end{split} \qquad \begin{array}{l} i \in V \\ \emptyset \subsetneq Q \subsetneq V \\ \varphi &\subseteq Q \\ e \in E \\ \end{array}$$

where $x_e = 1$ iff the edge *e* belongs to the tour.

1.8 Uncapacitated Lot Sizing Problem

Input: *n* time periods, fix production $\cot f_t$, unit production $\cot p_t$, unit storage $\cot h_t$ at period *t*, demand d_t at each period *t*.

Output: a minimum (production and storage) cost production plan that satsify the demand.

$$\min \sum_{t=1}^{n} f_t y_t + \sum_{t=1}^{n} p_t x_t + \sum_{t=1}^{n} h_t s_t$$

s.t. $s_{t-1} + x_t = d_t + s_t$ $t = 1...n$
 $x_t \le M_t y_t$ $t = 1...n$
 $y_t \in \{0, 1\}$ $t = 1...n$
 $s_t, x_t \ge 0$ $t = 1, ..., n$
 $s_0 = 0$

where $y_t = 1$ iff production occurs during period *t*, x_t is the amount produced during period *t*, y_t is the amount stored at the beginning of period *t*, and where $M_t \ge \sum_{i=t}^n d_i$ for each period *t*.

$$\min \sum_{t=1}^{n} f_t y_t + \sum_{i=1}^{n} \sum_{t=i}^{n} p_i z_{it} + \sum_{i=1}^{n} \sum_{t=i+1}^{n} \sum_{j=i}^{t-1} h_j z_{it}$$
s.t. $\sum_{i=1}^{t} z_{it} = d_t$
 $z_{it} \leq d_t y_i$
 $y_t \in \{0, 1\}$
 $z_{it} \geq 0$
 $i = 1..n; t = i..n$
 $i = 1..n; t = i..n$

where z_{it} is the amount produced in period *i* to satisfy demand of period *t*.

1.9 Bin Packing Problem

Input: *n* items, weight $w_j \ge 0$ for each item *j*, *m* containers each of capacity $K \ge 0$. **Output:** an assignment of the items to a minimum number of containers.

$$\min \sum_{i=1}^{n} y_{i}$$
s.t. $\sum_{j=1}^{m} w_{j} x_{ij} \le K y_{i}$ $i = 1...n$

$$\sum_{i=1}^{n} x_{ij} = 1$$
 $j = 1...m$

$$x_{ij} \in \{0, 1\}$$
 $i = 1...n; j = 1...m$

$$y_{i} \in \{0, 1\}$$
 $i = 1...n$

where $y_i = 1$ iff container *i* is used and $x_{ij} = 1$ iff item *j* is assigned to container *i*. The Dantzig-Wolfe formulation (can be solved by delayed column generation):

$$\begin{split} \min \sum_{s \in \mathscr{S}} x_s \\ \text{s.t.} & \sum_{s \in \mathscr{S}} a_{js} x_s = 1 \\ & x_s \in \{0, 1\} \end{split} \qquad \begin{array}{l} j = 1 \dots n \\ s \in \mathscr{S} \end{split}$$

where $\mathscr{S} = \{s \subset \{1, ..., n\} \mid \sum_{j \in s} w_j \le K\}$ is the set of all possible arrangements of items to one container, and $x_s = 1$ iff all the items in *s* (and no others) are assigned to the same container.

1.10 Multi 0-1 Knapsack Problem

Input: *n* items, value c_j and weight $w_j \ge 0$ for each item *j*, *m* containers, capacity $K_i \ge 0$ for each container *i*.

Output: a maximum value subset of items to assign to the containers such that the capacity of each container is not exceeded.

$$\max \sum_{i=1}^{m} \sum_{j=1}^{n} c_j x_{ij}$$

s.t. $\sum_{j=1}^{n} w_j x_{ij} \le K_i$ $i = 1..m$
 $\sum_{i=1}^{m} x_{ij} \le 1$ $j = 1..n$
 $x_{ij} \in \{0, 1\}$ $j = 1..n, i = 1..m$

with $x_{ij} = 1$ iff item *j* is assigned to container *i* The lagrangian dual:

$$\begin{aligned} \min z_{\pi} \\ \text{s.t. } \pi_{i} &\geq 0 \quad i = 1..m \\ z_{\pi} &= \max \sum_{i=1}^{m} \sum_{j=1}^{n} c_{j} x_{ij} - \sum_{i=1}^{m} \pi_{i} (\sum_{j=1}^{n} w_{j} x_{ij} - K_{i}) \\ \text{s.t. } \sum_{i=1}^{m} x_{ij} &\leq 1 \qquad j = 1..n \\ x_{ij} \in \{0, 1\} \qquad j = 1..n, i = 1..m \end{aligned}$$

where π_i is the penalty for violating the capacity of container *i* An other relaxation (dualization of the coupling constraints):

$$\min \sum_{i=1}^{m} z_{u}^{j} + \sum_{j=1}^{n} u_{j}$$

s.t. $u_{j} \ge 0$ $j = 1..n$
 $z_{u}^{i} = \max \sum_{j=1}^{n} (c_{j} - u_{j}) x_{ij}$
s.t. $\sum_{j=1}^{n} w_{j} x_{ij} \le K_{i}$ $i = 1..m$
 $x_{ij} \in \{0, 1\}$ $j = 1..n, i = 1..m$

2 Outline

2.1 Modeling booleans with binary variables

indicator	linearization
$\delta = 1 \Longrightarrow y \ge a$	$y \ge L + (a - L)\delta$
$\delta = 0 \implies y \ge a$	$y \ge L + (a - L)(1 - \delta)$
$y < a \implies \delta = 1$	$y \ge L + (a - L)(1 - \delta)$
$\delta = 1 \implies y > a$	$y \ge L + (a + \epsilon - L)\delta$
$\delta = 1 \implies y \le a$	$y \le U + (a - U)\delta$
$\delta = 1 \iff y > a$	$m + (a + \epsilon - m)\delta \le y \le a + (U - a)\delta$
$\delta = 1 \implies y \ge x$ with $x \in [m, M], m \ge L$	$y \ge x + (L - M)(1 - \delta)$

where $\delta \in \{0, 1\}$, $y \in [L, U] \subseteq \mathbb{R}$, L < a < U, $\epsilon > 0$ small

• Given the optimization sense, it is often enough to enforce implication instead of equivalence, ex: $\min\{y \mid \delta \in \Delta, \delta = 1 \iff y > a\} = \min\{y \mid \delta \in \Delta, \delta = 1 \implies y > a\}$

2.2 Modeling logic/numeric relations with binary variables

condition	example	linearization	
exclusive disjunction	either c or $\neg c$	$\delta = 1 \iff c$	
exclusive disjunction	either c_1 or c_2	$\delta_1 + \delta_2 = 1$	
disjunction	$c_1 \text{ or } c_2$	$\delta_1 + \delta_2 \ge 1$	
dependency	if c_1 then c_2	$\delta_2 \ge \delta_1$	
exclusive alternative	exactly 1 out of n	$\sum_{i=1}^{n} \delta_i = 1$	
counter	exactly k out of n	$\sum_{i=1}^{n} \delta_i = k$	
bound	at least k out of n	$\sum_{i=1}^{n} \delta_i \ge k$	
bound	at most k out of n	$\sum_{i=1}^{n} \delta_i \le k$	

2.3 Modeling non-linear functions with binary variables

