
 1

DECOMPOSITION & HYBRIDISATION
FOR COMBINATORIAL OPTIMISATION

ACP Summer School, Vienna, 3 July 2019 Sophie Demassey, CMA Mines ParisTech, France

XKCD
#1831

COMBINATORIAL OPTIMISATION

maximise a real-valued objective function over a discrete set of solutions defined

descriptively

satisfaction problem if objective is constant

solving = find an algorithm better than brute-force enumeration

efficient = fast, scalable, exact/near-optimal

practical = evolutive, flexible and robust to changes

max
s∈S

f(s), S ⊆ 2A, f : 2A → ℝ

 2

MANY PARADIGMS, MANY ALGORITHMS

Integer Programming (Finite-Domain)
Constraint Programming

Metaheuristics

SAT

Global Optimisation
Graph Theory

Logic Programming

Logic

Functional Analysis

Discrete Algebra
Calculus

Formal Langages

Machine Learning

Formal Verification

Signal Processing

Control

NONE TO RULE THEM ALL
Dynamic Programming

 3

SMT

PROBLEM/ALGORITHM ADEQUACY

some formalisms are more suitable to some problems

some algorithms are more efficient for some problems

some algorithms are less/more efficient but more/less flexible

many problems are composite, different subsystems, different articulations, e.g.:

several subsystems sharing decisions or constraints

one basic system with complicating side constraints

 4

which algorithm for my problem ?

3 examples...

Example 1
REAL-TIME DATACENTER RESOURCE MANAGEMENT

place & move Virtual Machines, satisfy the resource capacities and user requirements

 5

challenges:

• an integrated packing/scheduling problem: where to place ? when to move ?

• a non-conventional cumulative scheduling problem induced by live-migrations

• various user constraints: isolate/security, spread/fault tolerance, gather/performance, clear/maintenance,...

• flexibility: the problem – resource usage & user constraints – is dynamic and evolutive

Example 2
ROSTERING

assign activities to every employee every time, cover the load, satisfy the working rules

challenges:

• two orthogonal problems: schedule activities for each employee / assign employees to each activity

• various working rules: forbidden activities/sequences, min/max delays/lengths, fixed/sliding period, hard/soft

• the problem – data, objective & constraints – varies with the context

 6

Example 3
PUMP DESIGN IN WATER DISTRIBUTION NETWORKS

choose pumps, satisfy the demand, minimise investment+operation costs

 7

challenges:

• investment/long-term: investment, maintenance, ageing, uncertain demand/price/availability

• operation/short-term: pump scheduling, non-convex hydraulic constraints

• various networks: looped/branched, fixed/variable-speed pumps, different kinds of valves

HYBRID DECOMPOSITION PRINCIPLE

in contrast to monolithic algorithms: one model, one search

split a problem into coherent substructures by breaking their links

apply algorithms from different paradigms to each substructure

recover the broken links: iterate on the components and let them communicate together

 get an optimal/feasible/approximated solution depending of the recovery

 8

EXPECTATIONS

flexibility: exhibit/isolate the substructures

modularity: adaptable/reusable algorithmic/software components

efficiency: dedicated algorithm for each substructure

applicability: generic de-composition frameworks & refinement techniques

scalability (dynamic generation): solve subproblems repeatedly

scalability: symmetry breaking

quality: if not optimal, give good relaxations/approximations (better than when breaking the links)

 9

22n ≫ K(2n+ 2n) ≫ ∑
k

(2n+ 2k)

one major drawback: naive implementations have slow rates of convergence

PRACTICAL QUESTIONS

how to decompose ? which algorithm for which block ?

how deep the decomposition ? breaking strong links makes the subproblems easier but the

convergence slower

how to combine different algorithms ? how to make the communication efficient ?

proof of convergence? speed of convergence ? what if incomplete search ?

 10

THIS TALK IS ABOUT

hybrid models, not hybrid techniques (portfolio, CBLS, CP+nogoods, ML & CP/MP,...)

semantic decomposition, not structural decomposition (tree search, graph splitting,...)

algorithm composition... because decomposition is the easy part

a bit of theory, more about applications... on problems I have worked on (not exhaustive)

two contexts for hybrid decomposition (not exhaustive):

I. global constraints in CP & hybridisations with automata & LP

II. decomposition methods in MP & hybridisations with CP & global optimisation

 11

I. CONSTRAINT PROGRAMMING
WITH GLOBAL CONSTRAINTS

 12

CONSTRAINT PROGRAMMING:
THE ESSENCE OF DECOMPOSITION

separate a model in constraints, "solve the constraints" (filter non-solutions) independently

the constraints communicate through the variable domains

the consistency algorithm is a generic cooperation scheme gluing the constraint models

convergent scheme if strong n-consistency

otherwise, backtracking is required and applied globally, but decomposition can be fully

enforced by a multistage branching strategy and

by delaying the subproblem constraint propagators branch on X
deactivate constraints(Y)

branch on Y

 13

Example 1
REAL-TIME DATACENTER RESOURCE MANAGEMENT

place & move Virtual Machines, satisfy the resource capacities and user requirements

challenges:

• an integrated packing/scheduling problem: where to place/how to collocate ? how and when to move ?

• a non-conventional producer-consumer cumulative scheduling problem induced by live-migrations

• various user constraints: isolate/security, spread/fault tolerance, gather/performance, clear/maintenance,...

• flexibility: the model – resource usage & user constraints – is dynamic and evolutive
 14

Example 1: datacenter resource management

VECTOR PACKING

VM1PM1

PM4PM3

PM2

VM2

VM3 VM4

VM8

VM7 VM6

VM5

∑
VM∈assig n−1(PM)

DEMAND(VM, RES) ≤CAPACITY(PM, RES), ∀(PM, RES)

assig n: VMs → PMs

CPU RAM Disk Card

PM4

VM2

VM8

but dynamic...

possible objectives:
• minimise the number of PMs (energy saving)
• maximise the number of PMs (performance)
• minimise the average load over all PMs

 15

VECTOR REPACKING

VM1

PM1

PM4

PM3

PM2

VM2

VM3 VM4

VM8

VM7 VM6

VM5

VM1PM1

PM4PM3

PM2

VM2

VM3

VM4

VM8

VM7 VM6

VM5

VM9

VM9

• new VM9

• change VM4, VM5

• failure on PM4

but actions are not all immediate...

Example 1: datacenter resource management

possible actions:

• launch VM/PM

• stop VM/PM

• resize VM/PM

• stop/relaunch VM

• live/direct migrate VM

 16

PRODUCER-CONSUMER SCHEDULING
Example 1: datacenter resource management

∑
VM

DEMAND(start(VMs), PM, RES, T) ≤CAPACITY(PM, RES, T), ∀(PM, RES, T)

start : VMs → ACTIONs × PMs × TIMEs

objective (performance):
• minimize the sum of

the action durations

PM1

VM3

PM4

VM9PM3

VM8

PM2

VM1

VM2

VM2
VM4

 VM5

 VM8 VM4

t

launch

resize

stop

relaunch

migrate: consumes CPU and RAM on 2 PMs

 17 17

USER SIDE CONSTRAINTS
Example 1: datacenter resource management

VM3.1

PM4PM3

PM2

VM1.1

VM2.1
VM1.2

VM3.3VM3.2

PM1

VM2.2

fault tolerance
(spread)

security

(isolate)

maintenance
(offline)

performance
(gather)

assig n(VM1) ∩ assig n(VMs∖VM1) = ∅

card(assig n(VM3)) = 1

assig n(VMs) ∩ PM3 = ∅

alldifferent(assig n(VM2))

spread,
among,
ban,
fence,
gather,
root,
lonely,
quarantine,
capacity,
splitAmong,
preserve,
overSubscription,
offline,
noIdles,
mostlySpread,... 18

OPPORTUNITY OF DECOMPOSITION
Example 1: datacenter resource management

we need a fast (<10min), scalable solution, not necessary optimal

we need to freely & automatically compose side constraints in a flexible non-intrusive way

i.e. without altering the global structure

identified components: (packing + ∑side constraints) <----> scheduling

 19

A CP-BASED APPROACH
Example 1: datacenter resource management

CP fits well with both non-conventional packing and scheduling components

CP/consistency is appropriate to integrate any kind/any number of side constraints without

impacting the two main component models or the search algorithm (no need to expose

extra variables)

side constraints: concise models relying on an extensive evolutive catalog of predicates

(alldifferent, cardinality, element, nvalue,...) with efficient implementations in CP solvers

automatic model composition: DSL + automatic translation + automatic parametrisation:

alternative algorithms

reduce the search space heuristically by fixing VMs/PMs whose current assignment does

not violate any new constraints: define checkers

 20

A CP-BASED APPROACH
Example 1: datacenter resource management

CP fits well with both non-conventional packing and scheduling components

CP/consistency is appropriate to integrate any kind/any number of side constraints without

impacting the two main component models or the search algorithm (no need to expose

extra variables)

side constraints: concise models relying on an extensive evolutive catalog of predicates

(alldifferent, cardinality, element, nvalue,...) with efficient implementations in CP solvers

automatic model composition: DSL + automatic translation + automatic parametrisation:

alternative algorithms

reduce the search space heuristically by fixing VMs/PMs whose current assignment does

not violate any new constraints: define checkers

Global Constra
ints

 20

GLOBAL CONSTRAINTS:
THE ESSENCE OF HYBRIDISATION & MODULARITY

improve consistency by composition [Regin94]

actually a perfect tool to implement hybrid decomposition [since ALICE78, CHIP88]:

expressivity: 1 substructure = 1 predicate

encapsulation: hide internal computations

hybridisation: implement any algorithm from any paradigm

modularity: reusable, adaptable, parametrable (portfolio algorithms)

additional services: propagators, checker, solver, violation counters, nogood computation,

handlers on internal information, probability,...

alldifferent(x1, …, xn) ≫ ∧i≠j xi ≠ xj

 21

Example 2
(NURSE) ROSTERING

assign activities to every employee every time, cover the load, satisfy the working rules

challenges:

• two orthogonal problems: schedule activities for each employee / assign employees to each activity

• numerous and heterogeneous working rules, hard and soft

• the model (data, objective and constraints) changes from instances to instances

 22

Example 2: nurse rostering

DAYs

assig n: NURSEs × DAYs → ACTs = {Morning , Day, Nig h t, Rest}

N N D N M M N

M M N R N N R

D N N D R R M

N D R M D N N

R R M N N D D

 23
NURSEs

cardinality

sequ encing

cover the load

working rules

 M T W T F S S

CSP & FORMAL LANGUAGES

a nurse schedule is a word on the alphabet of activities

a working rule defines a language on this alphabet: the set of words which satisfy the rule

a language is regular iff it can be represented as a finite automaton/regular expression

 24

"Rest after Nights"

RRDNRDD ∈ {D, N, R}7

"max two consecutive Nights"

¬(ND)¬(NNN)

q0 q1

R,D N

N

R

q0 q1

R,D

N

R,D

q2

NR,D

AUTOMATIC MODEL COMPOSITION
 WITH AUTOMATA

finite automata are concise and composable models: fast intersection/complement/

minimisation... algorithms, keep the model concise

the set of feasible schedules is a language resulting from intersection

automata intersection = constraint conjunction = pre-filtering

 25

"max two consecutive Nights" "Rest after Nights"∧

q0 q1

R,D N

N

R

q0 q1

R,D

N

R

q2

NR

q0 q1

R,D

N

R,D

q2

NR,D

∩ =

FILTERING WITH AUTOMATA
key ideas: (1) variable values = transition labels, assignment X1X2...Xn = word/path
(2) word length is fixed

decomposition: automaton(X1,...,Xn,π) [Beldiceanu04]

dynamic programming: regular(X1,...,Xn,π) [Pesant04]

GAC, same complexity

 26

"Rest after Nights"

q0 q1

R,D N

N

R

q0 R,D

N

q0

q1

q0R,D

N
q1

R
N

q0

q1

q0R,D

N
q1

R
N

X1 X7X2

• unfold the automaton as a layered DAG of size n
• remove the non final states in the last layer
• remove arcs which do not belong to any path from the first to the last layer
• synchronise the domain of Xi with the labels of the arc set in layer i: remove arcs or domain values

O(n× |Transitions |)

Berge-acyclic:
 AC = GACState variables

GENERALISATION TO WEIGHTED AUTOMATA
add weights on the transitions and a bounded variable Z: a solution (Z,X1,...,Xn) is an
accepted word X1X2...Xn with the sum of the transition weights equal to Z

increase the expressivity or make the model more compact

filtering with decomposition [Beldiceanu04]

dynamic programming cost-regular(Z,X1,...,Xn,(π,w))[Demassey05]

same complexity, no GAC, not comparable, ex: 27

occurrence counter
of pattern S*M

s [2,2]

a [0]

b [2]
b [2]

c [1]

a [0]

21

assignment costs
a=0, b=2, c=1

quadratic violation penalty for:
between 3 and 5 consecutive Nights

maintain the shortest and longest paths:
• label the nodes in the layered graph: min/max lengths from the first layer/to the last layer
• synchronise the bounds of Z with the min/max path length values
• backpropagation: remove arcs not belonging to any path of length within the bounds of Z

(Si, Xi, Si+ 1, Wi) ∈ Weig h tedTransitions

∑
i

Wi = Z{

s [2,2]

a [0]

b [2]
b [2]

c [1]

a [0]

21 3s

1

2

a [1]

b [0]

a [1]

[0,1]
b [0]

MULTICOST-REGULAR
vectors of weights: to combine different counters/penalties/costs

composition algorithms for finite automata can be efficiently extended [Menana10]

underlying optimisation problem: resource-constrained shortest/longest paths are NP-hard

filtering: extend automaton

or apply cost-regular independently on each dimension

 or consider a tighter relaxation: lagrangian relaxation (filtering by dynamic programming would
require to maintain too many labels)

adapt lagrangian relaxation-based variable fixing to constraint filtering [Sellmann04]

 28

occurrences of a
and of sequences of b

(Si, Xi, Si+ 1, W0
i , …, WK

i) ∈ Weig h tedTransitions

∑
i

Wk
i = Zk, ∀k{

∧k costreg u lar(Zk, X, (Π, wk))
save memory & time vs. posting k costregular constraints

LAGRANGIAN RELAXATION-BASED FILTERING
resource constrained shortest path ILP model:

dualisation = relax and penalise violations lagrangian subproblem with multipliers u

a shortest path problem providing a lower bound:

then filtering:

and back-propagation: filter arc a in layer i

this is cost-regular filtering with weights: 29

z0(u) ≤z0, ∀u ≥ 0

xai = 1 ⟺ Xi = label(a), ∀arc a inlayer i

z0 = minf 0(x) = ∑
a,i

w0
aixai

Zk ≤∑
a,i

wk
aixai ≤Zk, ∀k = 1..K

x ∈ Path s ⊆ {0,1}A×n

z0(u) = minx∈Path s f 0
u (x) = ∑

a,i
w0

aixai

+ ∑
k

u −
k (Zk −∑

a,i
wk

aixai)

+ ∑
k

u +
k (∑

a,i
wk

aixai −Zk)

w0
ai + ∑

k
(u +

k −u −
k)wk

ai, ∀a, i

z0(u) ≤z0 ≤Z0 ⇒ Z0 := max(Z0, z0(u))

z0(u)xai= 1 > Z0 ⇒ z0
xai= 1 > Z0 ⇒

complicating constraints

MULTICOST-REGULAR ALGORITHM
apply cost-regular filtering for different values of k and u

for a given k, gives the best lower bound, thus the best filtering for but

not necessary the best back-propagation:

default parameters in the Choco implementation: fix for all , solve maximum 30

iterations of the subgradient algorithm to maximise

not GAC, not even monotonic, parameter-dependant, a rather high complexity,... but it works:

 30

zk(u) ≥ zk(u ′�) ⇏ zk(u)xei= 1 ≥ zk(u ′�)xei= 1
max zk(u) Zk

u = 0 k ≥ 1
z0(u)

 solved proof(s) best(s) #nodes solved proof(s) best(s) #nodes

cost-regular + GCC multicost-regular

a

p

l

a

o o

a aa

a

b bb

b

b

p
l

b

o

a

o

l ll

15 (#act=1) to 505 (#act=50) transitions

n=96 variables, 20 instances/#act, 10 min

#act

TO GO FURTHER WITH LANGUAGES & CP

expose internal informations to derive branching strategies. ex: regret(Xi=v) = length

difference between a shortest path through an arc labelled v in layer i and a shortest path

(how to compose branching strategies ?)

automata are for automatic models: algorithms to generate multi-weighted automata with a DSL

dedicated to nurse rostering, to compose/filter automata, to relax (soft constrs) [Menana11]

beyond CP: automatic linearisation [Côté13]

meta-constraint: automata can not only model sequencing/counting rules but CSP solution

sets, i.e. global constraints, see >300 constraints of the global constraint catalog

(automaton model is dependant on the order of the variables)

alternative models and algorithms: grammar constraint (free-context languages) and multi-
valued decision diagrams (concise models)

 31

https://sofdem.github.io/gccat/

https://sofdem.github.io/gccat/

OPEN QUESTIONS

 32

branch on packing then on scheduling vars

deactivate heavy scheduling ctr while packing

packing scheduling

one multicost-regular for each employee

one global-cardinality for each day, for each act

better integration ? also with objective ?

2. DECOMPOSITION METHODS
IN MATHEMATICAL PROGRAMMING

 33

INTEGER LINEAR PROGRAMMING
IN A TINY NUTSHELL

integer linear program ILP (mixed MILP if not all variables are integer)

 are the integer points of a polyhedron

Weyl-Minkowski: for some (extreme points) (extreme

rays):

solving the LP relaxation is easy:

 34

z = min{cx | Ax ≥ b, x ∈ ℤn}, c ∈ ℝn, A ∈ ℝm × ℝn, b ∈ ℝm

X = {x ∈ ℤn | Ax ≥ b} X = {x ∈ ℝn | Ax ≥ b}

x1, …, xp ∈ ℝn r1, …, rq ∈ ℝn

X = {∑
s

λsxs + ∑
t

μtrt | ∑
s

λs = 1,λ ∈ ℝp
+ , μ ∈ ℝq

+ }

z̄ = min{cx | x ∈ X} = −∞ or mins cxs

INTEGER LINEAR PROGRAMMING
IN A TINY NUTSHELL

integer linear program ILP (mixed MILP if not all variables are integer)

 are the integer points of a polyhedron

Weyl-Minkowski: for some (extreme points) (extreme

rays):

solving the LP relaxation is easy:

strong duality occurs in LP

LP bound to prune nodes in branch-and-bound

different models, different bounds

ideal model, tightest bound:
 34

z = min{cx | Ax ≥ b, x ∈ ℤn}, c ∈ ℝn, A ∈ ℝm × ℝn, b ∈ ℝm

X = {x ∈ ℤn | Ax ≥ b} X = {x ∈ ℝn | Ax ≥ b}

x1, …, xp ∈ ℝn r1, …, rq ∈ ℝn

X = {∑
s

λsxs + ∑
t

μtrt | ∑
s

λs = 1,λ ∈ ℝp
+ , μ ∈ ℝq

+ }

z̄ = min{cx | x ∈ X} = −∞ or mins cxs

z = max{u b | u A = c, u ∈ ℝm
+ }

X = conv(X)

z ≤z

LAGRANGIAN RELAXATION
& COLUMN GENERATION

 35

z

z̄

w

c

Example 2 (continuation)
NURSE SCHEDULING

assign activities to every employee every time, cover the load, satisfy the working rules

challenges:

• two orthogonal problems: schedule activities for each employee / assign employees to each activity

• numerous and heterogeneous working rules, hard and soft

• the model (data, objective and constraints) changes from instances to instances

 36

A MIXED INTEGER LINEAR PROGRAM (MILP)
assignment cost cai and minimum cover dai for each activity a and period i,

xeai=1 if employee e is assigned to activity a in period i

not a good formulation: hard to linearise the working rules, in a compact way, many

symmetries, potentially weak LP bound

lagrangian relaxation : for any solving is to find a schedule for each employee e of

minimum assignment costs one multicost-regular
 37

z = minf(x) = ∑
e,a,i

caixeai

∑
e

xeai ≥ dai ∀a, i

xe ∈ Sch edu les ⊆ {0,1}A×n ∀e

z(u)u ≥ 0
(cai −u ai)

coupling constraints

z(u) = minfu (x) = ∑
e,a,i

caixeai

+ ∑
a,i

u ai(dai −∑
e

xeai)

xe ∈ Sch edu les ⊆ {0,1}A×n ∀e

LAGRANGIAN RELAXATION
solve z(u) gives a lower bound and a near-feasible solution: some cover constraints may not be
satisfied. If the solution is feasible then it is not necessary optimal for z.

the lagrangian dual is the problem to find the best lower bound

is w far from z (dual gap)? how to get feasible solutions from z(u) ? how to compute w ?

 with

what to dualise: (1) coupling constraints so that z(u) decomposes

(2) not all complicating constraints so that LR bound > LP bound

 38

z(u) = min{cx + u (d −Dx) | x ∈ X} = mins= 1..p{cxs + u (d −Dxs)}

w = max{z(u) | u ≥ 0}

w = maxu ≥0z(u) = maxu ≥0,y{y | y ≤cxs + u (d −Dxs), ∀s = 1..p}

= min{cx | Dx ≥ d, x ∈ conv(X)}

z = min{cx | Dx ≥ d, x ∈ X} X = {x ∈ ℤn | Ax ≥ b}, conv(X) = conv(xs)s= 1..passume:

= minλ≥0{∑ λscxs | ∑ λs(d −Dxs) ≤0,∑ λs = 1} (strong duality in LP)

z̄ ≤w ≤z z̄ = w if X = conv(X)

HOW TO COMPUTE FEASIBLE SOLUTIONS

1. replace the LP relaxation in branch-and-bound by lagrangian relaxation

2. repair the constraint violations in the subproblem solutions with local search:

ex (rostering): subproblem solution = valid schedule for every employee

try to repair the violated covers by swapping activities

 39

∑
e

xeai < dai

HOW TO SOLVE ?
 IN THE DUAL SPACE

the lagrangian function is concave non-smooth (piecewise linear)

maximise by computing iteratively

subgradient algorithm:

follow a possible ascent direction (subgradient)

simple to implement but lack of ascent, slow convergence, no stopping test

Kelley cutting-plane algorithm:

simple to implement, better (finite) convergence but instable and the LP becomes huge

bundle methods: stabilisation and aggregation to remedy these drawbacks, e.g. (proximal):

ellipsoid/analytic center, in-out,...

 40

cxs + u (d −Dxs)

u
z(u)

u K+ 1 ∈ arg maxu ≥0,y{y | y ≤cxk + u (d −Dxk), ∀k ≤K}

u K+ 1 = max(0, u K + tK(d −DxK))

u K+ 1 ∈ arg maxu ≥0,y{y + μK∥u −u *K∥ | y ≤cxk
* + u (d −Dxk

*) + ϵk}

z(u k), k = 0,…, K

u ↦ z(u) = mins= 1..p{cxs + u (d −Dxs)}

0 ∈ δz

 41

Dantzig-Wolfe decomposition

LP relaxation: huge number of variables, most being 0 in any optimal solution (non-basic)

simplex: iteratively find the largest negative reduced cost

column generation: the same but the non-basic variables are not all made explicit

LP bound = LR dual, column generation/primal = Kelley cutting plane algorithm/dual

z = minf(x) = ∑
e,a,i

caixeai

∑
e

xeai ≥ dai ∀a, i

xe ∈ Sch edu les ⊆ {0,1}A×n ∀e

z = minf(x) = ∑
s,e,a,i

λescaixs
ai

∑
s,e

λesxs
ai ≥ dai ∀a, i

λes ∈ {0,1}∀e, ∀s ∈ S

∑
s

λes = 1 ∀e

(separate convexity for each e)

= minλ≥0{∑
s

λscxs | ∑
s

λs(d −Dxs) ≤0,∑
s

λs = 1}
w = maxu ≥0z(u) = maxu ≥0,y{y | y ≤cxs + u (d −Dxs), ∀s = 1..p}

x ∈ arg min cx + u k(d −Dx) −wk

HOW TO SOLVE ?
 IN THE PRIMAL SPACE

COLUMN GENERATION & BRANCH-AND-PRICE

 42

the basic algorithm may be slow to converge and suffers from instability

improvement techniques:

do not solve the subproblem at optimality: find a negative reduced cost

add several columns at each iteration / remove inactive columns

stabilisation techniques (similar to bundle methods)

provides a way to break symmetries

how to compute feasible (integral) solutions:

try rounding

branch-and-bound on the restricted LP

branch-and-price: generate columns at each node

like with LR, branch on the x decisions not on the master variables

unlike with LR, the primal (fractional) solution can be used for cut generation

z = min f(x) = ∑
s,a,i

λscaixs
ai

∑
s

λsxs
ai ≥ dai ∀a, i

λs ∈ ℕ ∀s ∈ S

∑
s

λs = |E |

BENDERS DECOMPOSITION
& BRANCH-AND-CHECK

 43

Example 1 (continuation)
REAL-TIME DATACENTER RESOURCE MANAGEMENT

challenge: integrated packing/scheduling problem

the scheduling decisions depend on the final packing

but the final packing depends also on the scheduling decisions:

packing can be proved unfeasible or suboptimal

 44

 44
action schedulingVM packing

1 2

VM migrates live
or migrates off

1 2 1 2

INTEGRATE PACKING/SCHEDULING
current approach: branch first on the packing variables and deactivate the heavy scheduling

constraints in this phase, then solve scheduling. If unfeasible or suboptimal, then backtrack:

idea: identify a (minimal) partial assignment that causes unfeasibility/suboptimality, and

generate a nogood constraint to discard it:

branch-and-check [Hooker00, Thorsteinsson01]. Remark that activating scheduling
propagation allows to infer inconsistencies from partial assignments (but may be too costly)

logic-based Benders decomposition [Hooker00]: solve packing at optimality before calling the

scheduling subproblem (usually more efficient if the subproblem is hard)

 nogoods are often problem-specific but can be generated from conflict analysis

 45

assig n(VMs) ≠ pack(VMs)

assig n(V) ≠ pack(V), V ⊆ VMs
ex : du ration(mig ration(VM1)) > incu mbent ⇒ action(VM1) ∈ {stay, stop}

⇒ assig n(VM1) ∈ {initialpack(VM1), noPM}

BENDERS DECOMPOSITION IN MP

variable decomposition: delay the evaluation of the slave subproblem then tighten the master

decomposition scheme from integer linear programming [Benders63] and convex

programming [Geoffrion72] when strong duality applies to the subproblem (ex LP or convex

NLP): use duality information to generate nogoods

different implementations: can evaluate the slave at optimal master solutions (traditional), at

integer solutions (if the subproblem is easy to check), at fractional solutions (if the

subproblem can be formulated from partial master solutions)

 easy to implement in modern branch-and-cut solvers with callback constraints

successful on stochastic programming (called the L-shaped method)

 46

BENDERS DECOMPOSITION FOR MILP

 remember the lagrangian dual ?

solve restricted master Mp: get yp. Solve slave f(yp): get dual up+1 if feasible (rq+1 otherwise).

Tighten master: Mp+1 then iterate if

 47

M = max {cx + dy | Ax + By ≤b, x ≥ 0,y ∈ Y}
= maxy∈Y{dy + f(y)}, f(y) = max{cx | Ax ≤b −By, x ≥ 0}

= min{u (b −By) | u A ≥ c, u ≥ 0}

M = maxy∈Y{dy + z | z ≤u p(b −By) ∀p, 0 ≤rq(b −By) ∀q}
{u A ≥ c, u ≥ 0} = conv((u p)p) + cone((rq)q)

u p(b −By)

y
f(y)

exercise: dualise the coupling constraints
difference: here Y can be integral

maxp (dyp + f(yp)) = LB < UB = opt(Mp)

Example 3
PUMP DESIGN IN WATER DISTRIBUTION NETWORKS

choose pumps, satisfy the demand, minimise investment+operation costs

 48

challenges:

• two integrated decision levels:

• investment/long-term: investment, maintenance, ageing, uncertain demand/price/availability

• operation/short-term: pump scheduling, non-convex hydraulic constraints

• various types of networks: looped/branched, fixed/variable-speed pumps,

master problem: select pumps to install: if at least n pumps of type p installed

slave problem: compute the expected minimum operational cost over the next 20 years for
configuration

evaluate over D representative days and one critical day with high demand and one pump
outage : slave decomposes in D+1 daily pump scheduling problems (non-convex MINLPs)

solve first the the critical day as a satisfaction problem: if unfeasible, at least one more pump

of any type is required: . Using dominance, we can generate other unfeasible

configurations.

otherwise solve a convex NLP relaxation of each representative day (expected to be feasible)

 49

ypn = 1

∑
p

ypn*p ≥ 1

s . t : xpnt ≤ypn∀p, n, t

(xt, qt, h t) ∈ Ft ⊆ {0,1}PN × ℝA
+ × ℝV

+

∑
i

qijt = Dd
jt + Sj(h t+ 1 −h jt), ∀t, j ∈ Tanks

fd(y) = min ∑
p,n,t

αptqpnt + βptxpnt
get the operation cost

and one subgradient

(from duals of)

fd(y)
sd(y) ∈ δfd(y)

xpnt ≤ypn

GENERALISED BENDERS WITH STABILISATION
APPLICATION TO PUMP DESIGN [BONVIN19]

y*, n*p = ∑ y*pn, ∀p

Bender's master:

with

if infeasible update LB

otherwise solve slave and possibly update UB and stabilisation center:

stop when

 with level stabilisation:

BENDERS APPLIED TO PUMP DESIGN
(CONTINUATION)

 50

s . t : ypn ≥ ypn+ 1 ∀p, n

y ∈ {0,1}PN, z ∈ ℝD

zd ≥ fd(yk) + sd(yk)(y −yk) ∀d, k = 1..K

ming (y) = ∑
p,n

Cpypn+ ∑
d

Ndzd

∑
p

yNlp
≥ 1 ∀l = 1..L

g K+ 1 := min(g K, ∑
p,n

CpyK+ 1
pn + ∑

d
Nd fd(yK+ 1)), g K+ 1 < g K ⟹ y* := yK+ 1

s . t : ypn ≥ ypn+ 1 ∀p, n

y ∈ {0,1}PN, z ∈ ℝD

g lev ≥ g (yk) + s(yk)(y −yk) ∀k = 1..K

min∥y −y*∥2
2

∑
p

yNlp
≥ 1 ∀l = 1..L

(linear because y binary)

g
K+ 1

= g lev

g lev =
g

K
+ g K

2 , g
0

= 0, g 0 = + ∞

g −g
g

< ϵ

TAKE-AWAY
decomposition methods are flexible solutions for practical composite/large-scale problems

how deep to decompose: trade-off between performance and flexibility

CP/global constraints: easy way to implement decomposition/hybridisation

 51

TAKE-AWAY
decomposition methods are flexible solutions for practical composite/large-scale problems

how deep to decompose: trade-off between performance and flexibility

CP/global constraints: easy way to implement decomposition/hybridisation

but not so easy to turn an optimisation algorithm to an efficient filtering algorithm

partial decomposition (propagation) to complement with a specialised search strategy

(sequential branching, branch-and-check)

 51

TAKE-AWAY
decomposition methods are flexible solutions for practical composite/large-scale problems

how deep to decompose: trade-off between performance and flexibility

CP/global constraints: easy way to implement decomposition/hybridisation

but not so easy to turn an optimisation algorithm to an efficient filtering algorithm

partial decomposition (propagation) to complement with a specialised search strategy

(sequential branching, branch-and-check)

MP decomposition: lagrangian relaxation, column generation, Benders decomposition

generic frameworks but their application is problem-specific (subproblem)

naive implementations may not converge well

hybrid CP & MP: complementary orientations local/global, feasibility/optimality, logic/analytic

stay curious: parts of your problem are perhaps well solved with other formalisms

 51

STAFF

 52

Fabien Hermenier

Louis-Martin Rousseau

Gilles Pesant
Julien Menana

Gratien Bonvin

Welington de Oliveira

https://sofdem.github.io/

