DECOMPOSITION & HYBRIDISATION
"OR COMBINATORIAL OPTIMISATION

X X
OUR FIELD HASBEEN || STRUGGLE NO MORE! rSIX MONTHS LATER:
STRUGGLING UTHTHIS [[T™M HERE TO SOLVE WO, THIS PROBLEM
PROBLEM FOR YEARS. | | 1T \UITH ALGORIFIMS/ 5 REPuY HARD.

SAY
\ You a:wr

AT

ACP Summer School, Vienna, 3 July 2019 1 Sophie Demassey, CMA Mines ParisTech, France

LOMBINATORIAL OPTIMISATION

» maximise a real-valued objective function over a discrete set of solutions defined
descriptively maxf(s), SC2%f:2 >R

seS

» satisfaction problem if objective is constant
» solving = find an algorithm better than brute-force enumeration
- efficient = fast, scalable, exact/near-optimal

- practical = evolutive, flexible and robust to changes

MANY PARADIGMS, MANY ALGORITHM

Integer Programming (Finite-Domain)
Constraint Programming

Global Optimisation Formal Verification
Graph Theory

Metaheuristics . .
Dynamic Programming Formal Langages

Yiamati s Bl NONE TO RULE THEM ALL

SMT

. . Control
Functional Analysis

Calculus

Discrete Algebra Signal Processing

Logic

PROBLEM/ALGOR

whic

some formalisms are more suitable to some problems

some algorithms are more efficient for some problems

N d

1M AD

gorithm for

some algorithms are less/more efficient but more/less flexible

many problems are composite, different subsystems, different articulations, e.g.:

- several subsystems sharing decisions or constraints
- one basic system with complicating side constraints

my

QUALY

oroblem ?

3 examples...

EXample 1

REALT\ME DATACENTER RESOURCE MANEENT

place & move Virtual Machines, Sat|sfy the resource capacities and user requirements
_ I T e b |

challenges:

- anintegrated packing/scheduling problem: where to place ? when to move ?

-3 non-conventional cumulative scheduling problem induced by live-migrations

- various user constraints: isolate/security, spread/fault tolerance, gather/performance, clear/maintenance....

- flexibility: the problem - resource usage & user constraints - is dynamic and evolutive

asagnachwhesto ever emp|oyeevery Ume cover the Ioad ahsfy the worhmg rules

PO T — S B N N Y T i e e T e T N T T
——— - . = - S < -

challenges:
- two orthogonal problems: schedule activities for each employee / assign employees to each activity
- various working rules: forbidden activities/sequences, min/max delays/lengths, fixed/sliding period, hard/soft

- the problem - data, objective & constraints - varies with the context

EXample 3

PUMP DES\GN N WATER D\STR\BUT\ON NETWORKS
T — ’ka . I-/—»

ﬁ/

N | - B =g t *‘"""
]

‘::'\- - - o .; ~ -
—~ - .

- -
-
"N

————

choose pumps,satisfythe demaﬂd mniise ﬂvestmeﬂtmperation COStS
T al —m M A5

challenges:

- investment/long-term: investment, maintenance, ageing, uncertain demand/price/availability
- operation/short-term: pump scheduling, non-convex hydraulic constraints

- various networks: looped/branched, fixed/variable-speed pumps, different Rinds of valves

2 4

HYBRID DECOMPOSITION PRINCIPLE

in contrast to monolithic algorithms: one model, one search

split a problem into coherent substructures by breaking their links

apply algorithms from different paradigms to each substructure

recover the broken links: iterate on the components and let them communicate together

get an optimal/feasible/approximated solution depending of the recovery

AP

-CTATIONS

one major drawback: naive implementations have slow rates of convergence

« flexibility: exhibit/isolate the substructures
» modularity: adaptable/reusable algorithmic/software components

» efficiency: dedicated algorithm for each substructure

» applicability: generic de-composition frameworRs S@ement techniq@

- scalability (dynamic generation): solve subproblemg(repeatedly) 22 k' + 21> ¥ 27+ 24
k

. scalability: symmetry breaking m r

« quality: @optl@ve o00d relaxations/approximations (better than when breaking the links)

2 4

2 4

2

PRACTICAL QUESTIONS

how to decompose ? which algorithm for which block ?

how deep the decomposition ? breaRing strong links makes the subproblems easier but the

convergence slower

how to combine different algorithms ? how to make the communication efficient ?

proof of convergence? speed of convergence ? what if incomplete search ?

10

TRIS TALK 1> ABOUT

« hybrid models, not hybrid techniques (portfolio, CBLS, CP+nogoods, ML & CP/MP....)

« semantic decomposition, not structural decomposition (tree search, graph splitting....)

» algorithm composition... because decomposition is the easy part

« 3 bit of theory, more about applications... on problems | have worked on (not exhaustive)

« two contexts for hybrid decom

. global constraints in (P & hy

osition (not exhaustive):

oridisations with automata & LP

|. decomposition methods in MP & hybridisations with (P & global optimisation

1

JGRAMMING
ONSTRAINTS

12

CONSTRAINT PROGRAMM
THE ESSENCE OF DECOMPOS

N(:
TION

separate a model in constraints, 'solve the constraints (filter non-solutions) independently

the constraints communicate through the variable domains

the consistency algorithm is a generic cooperation scheme gluing the constraint models

convergent scheme if strong n-consistency

otherwise, backtracking is required and applied globally, but decomposition can be fully

enforced by a multistage branching strategy and

by delaying the subproblem constraint propagators branch on X

% 2 O O deactlvateconstralnts(Y)

% O O branchon Y

e)e

13

EXample 1

REHME DATACEI\ITER RESOURCE MANEENT

[é@tr?lace il

place & move Virtual Machines, Sat|5fy the resource capacities and user requwemeﬂts

challenges:

- an integrated packing/scheduling problem: where to place/how to collocate ? how and when to move ?
-3 non-conventional producer-consumer cumulative scheduling problem induced by live-migrations
- various user constraints: isolate/security, spread/fault tolerance, gather/performance, clear/maintenance,...

- flexibility: the model - resource usage & user constraints - is dynamic and evolutive
14

Fxample 1: datacenter resource management

assign . VMs — PMs

Z DEMAND(VM, RES) < CAPACITY(PM, RES),Y(PM, RES)
VMEassign='(PM)
possible objectives:
- minimise the number of PMs (energy saving)
- maximise the number of PMs (performance%
- minimise the average load over all PMs

VECTOR PACKING

CPU RAM Disk Card bUt dynamic...

15

Fxample 1: datacenter resource management

- new VM9
- change VM4, VM5
- failure on PM4

I PM3

possible actions:

VM8
- launch VM/PM
M2 - stop VM/PM

- resize \M/PM
- stop/relaunch VM
- live/direct migrate VM

VECTOR REPACKING

but actions are not all immedia’te...16

Fxample 1: datacenter resource management
start - vs — actions x puts x 7es PRODUCER-CONSUMER SCHEDULING

) DEMAND(start(VMs), PM,RES,T) < CAPACITY(PM, RES, T),Y(PM, RES, T)
VM

VM4
PM1 VM2

VM3 L

\ migrate: consumes (PU and RAM on 2 PMs

M4 VM8
PM2

objective (performance):
. minimize the sum of

the action durations
> 17

PM4

Fxample 1: datacenter resource management
USER SIDE CONSTRAINTS
assign(VM1) N assign(VMs\VM1) = &
| performance
security (gather)
— card(assign(VM3)) = 1

(isolate)

fault tolerance

(spread)
alldifferent(assign(VM?2))

PM3

maintenance T

(offline)
assign(VMs) N PM3 = @&

18

Fxample 1: datacenter resource management
OPPORTUNITY OF DECOMPOSITION

« We need a fast (<10min), scalable solution, not necessary optimal

» we need to freely & automatically compose side constraints in a flexible non-intrusive way
.e. without altering the global structure

« identified components: (packing +) side constraints) <----> scheduling

19

Fxample 1: datacenter resource management
A CP-BASED APPROACH

CP fits well with both non-conventional packing and scheduling components

(P/consistency is appropriate to integrate any Rind/any number of side constraints without
impacting the two main component models or the search algorithm (no need to expose
extra variables)

side constraints: concise models relying on an extensive evolutive catalog of predicates
(alldifferent, cardinality, element, nvalue,...) with efficient implementations in CP solvers

automatic model composition: DSL + automatic translation + automatic parametrisation:
alternative algorithms

reduce the search space heuristically by fixing VMs/PMs whose current assignment does
not violate any new constraints: define checkers

20

Fxample 1: datacenter resource management
A CP-BASED APPROACH

«» (P fits well with both(non-conventional packing and scheduling)components

» (P/consistency is approprizigao integrate any Rind/any number d vithout

impacting the two A\ (\’&5 pent models or the search algorithm (no need to expose

» reduce the search space heuristicallybyfixing VMs/PMs whose current assignment does
not violate any new constraintsy@efine checkers

20

GLOBAL CONSTRAINTS:
HE ESSENCE OF HYBRIDISATION & MODULARITY

- improve consistency by composition [Reging4| alldifferent(xy, ..., x,) > A X; # X;

« actually a perfect tool to implement hybrid decomposition [since ALICEZ8, CHIP88]:

- expressivity: 1 substructure = 1 predicate

- encapsulation: hide internal computations

- hybridisation: implement any algorithm from any paradigm

- modularity: reusable, adaptable, parametrable (portfolio algorithms)

- additional services: propagators, checRer, solver, violation counters, nogood computation,
handlers on internal information, probability,...

21

(NURSE) ROSTE?ING

i H’/hw.* ~ 7 K/
| -] 2 G 66| 'T g | 5 | &M

1 ‘ | : y :
| J “’ : -A" ! q k *k(‘ " @ blns‘ "?‘:'l ; r"' \"v‘ :} : n." J§ ¢
: Iy | & > 3‘ 4 4 ,' 0 r‘
| . X N A "_'."\ - e l" - ~§P :
‘;/ off t“‘ v\':;_‘- {- . 3 .t A gdqwffgc: {t l‘ ‘f\{ ’__ l :
} r": 3 2 [y ; ‘
fie.k ; ’”
:=s'.

challenges:
- two orthogonal problems: schedule activities for each employee / assign employees to each activity

- numerous and heterogeneous working rules, hard and soft

- the model (data, objective and constraints) changes from instances to instances

22

Fxample 2: nurse rostering

assign : NURSEs X DAYs — ACTs = {Morning, Day, Night, Rest}

cover the load

cardinalit
L y

\Norh|é%ruhxs

sequencing

23

(5P & FORMAL LANGUAG

« anurse schedule is a word on the alphabet of activites RRDNRDD & {D, N, R}’

+ 3WorRing rule defines a language on this alphabet: the set of words which satisfy the rule
max two consecutive Nights' "Rest after Nights’

» alanguage is regular iff it can be represented as a finite automaton/regular expression

rRD(NNN) o (ND) |
NN N
-

B

24

AUTOMATIC MODEL COMPOSITIO

WITH AUTOMA

» finite automata are concise and composable models: fast intersection/complement/
minimisation... algorithms, Reep the model concise

«» the set of feasible schedules is a [anguage resulting from intersection
'max two consecutive Nights" A "Rest after Nights’

A
@ R,D >@D
R,D N n ‘
)

R,D N

R

~» automata intersection = constraint conjunction = pre-filtering

A

25

FILTERING WITH AUTOMATA

« Rey ideas: (1) variable values = transition labels, assignment X;X,. . .X, = word/path
(Zonrd length is fixed

+ decomposition: autonaton(Xy, ... X, ™) [Beldiceanu04] Berge-acyclic:
State variables A é é AC = GAC

+ dynamic programming: regular (X, ..., X, ™) [Pesant04]

"Rest after Nights"N A A2 A7

R,D
N ’ ’ ,....:: e ’
(@& -) IIII O '
3 ()
« unfold the automaton as a layered DAG of size n
* remove the non final states in the last layer

* remove arcs which do not belong to any path from the first to the last layer
* synchronise the domain of Xi with the labels of the arc set in layer i: remove arcs or domain values

» GAC same complexity O(n X | Transitions |)

26

GENERALISATION T0 WEIGHTED AUTOMATA

« add weights on the transitions and a bounded variable Z: a solution (Z,%; ..., %) isan
accepted word X.¥s. . . X, with the sum of the transition weights equal to Z

~» Increase the expressmty or make the model more compact

.'._'°" -‘-°‘. a [0]

uyn e

~ - P y=0.2 a[0]
df"!\\/ /-{ A @ ol 22]

_.')] '_b” 2 '.'_ 'f l| r/ ’
W A /~ T~ Y v,/’ b[2 b [2]
/4
\{A i]])]
— \\ 4’ assignment costs quadratic violation penalty for:
occurrence counter B 4 . .
a=0, b=2, c=1 between 3 and 5 consecutive Nights

of pattern S*M

, | | ($;, X., ;1 1, W) € WeightedTransitions
» filtering with decomposition |Beldiceanu04] 2 W=7

« dynamic programming cost-regular (Z,%, ..., X, (m w)) [Demassey05]
maintain the shortest and longest paths:
- label the nodes in the layered graph: min/max lengths from the first layer/to the last layer

* synchronise the bounds of Z with the min/max path length values
* backpropagation: remove arcs not belonging to any path of length within the bounds of 7

/’\
al0] 3/[1/],>\\1/}~ é[\ﬂ\
c[1] [0,1]

~ same complexity, no GAC, not comparable, ex: A o (o 27

MULTICOST-REGULAR

vectors of weights: to combine different counters/penalties/costs

a[1,0] b[o,0]

occurrences of a
and of sequences of b

composition algorithms for finite automata can be efficiently extended [Menana10]

underlying optimisation problem: resource-constrained shortest/longest paths are NP-hard
, (S;, X, S 15 Wl.o, o WZ.K) e WeightedTransitions
filtering: extend automaton Z Wk = Z¥, Vi

or apply cost-regular independently on each dimension A, costregular(ZX, X, (IT, w))

save memory & time vs. posting k costregular constraints

or consider a.tighter relaxati?n: I:1g angian relaxation (filtering by dynamic programming would
require to maintain too many labe 55

adapt lagrangian relaxation-based variable fixing to constraint filtering [Sellmann04]

28

[AGRANGIAN R

. resource constrained shortest path ILP model:

“LAXATION-BAS

2" = min fO(x) = Z WX,

ZF < Z whx,. < Zk, Vk=1.K

a,l

x € Paths C {0,1}4%"

U FILT

x, =1 &= X =

complicating constraints

Zuk(zk Z Cll al
+Z (2 vt = 2)

« dualisation = relax and penalise violations == lagrangian subproblem vvlth multipliers u

« 3 shortest path problem providing a lower bound: z°(1) < z°,Vu > 0

~ thenfiltering:

« and back-propagation: z"(1), > 70 = z 1> 70 =

«» thisis cost-regular filtering with weights:

ZO(M) < ZO < AL = ZO = max(_ZO, Zo(u))

filter arca in layer |

+ _
WO+ Z (u, — uy Wk Va,i

“RING

= label(a), Yarc a in layer i

0 0
z (u) = min EPathsf (x) = Z Waitai

29

MULTICOST-REGULAR ALGORITHM

~ apply cost-regular filtering for different values of k and u

» foragivenk, max z5u) gives the best lower bound, thus the best filtering for Z" but
not necessary the best back-propagation: z*(u) > 2"(u) % 2"(w), _; > 2", _,

~» default parameters in the Choco implementation: fixu = 0 forall k > 1, solve maximum 30

iterations of the subgradient algorithm to maximise z°(u)

~ not GAC, not even monotonic, parameter-dependant, a rather high complexity,... but it works:

I l

cost-regular + GCC

multicost-regular

wact solved proof(s) best(s) #nodes solved proof(s) best(s) #nodes
1 [100% 0.3 0.2 225 100% 0.0 0.0 11
2 | 100% 0.6 0.3 393 100% 0.1 0.1 68
4 | 100% 2.9 2.3 1199 100% 0.2 0.1 67
8 | 100% 17.9 13.2 3597 100% 0.3 0.2 52
10 | 100% 50.0 A7.7 7615 100% 0.4 0.4 63
15 | 100% 58.1 47.1 6233 100% 0.8 0.7 63
- - 120 | 100% 58.1 44.0 4577 100% 1.2 1.0 64
= H
n=96 variables, 20 instances/#act, 1.0.m|n 30 | s0% JE% 1 Sor 4 6080 || 100% "+ s %
15 (#act=1) to 505 (#act=50) transitions | 50 | 40% 460.0 65.6 6747 || 100% 5.0 48 65

30

10 GO FURTHER WITH LANGUAGES & (P

expose internal informations to derive branching strategies. ex: regret(Xi=v) = length
difference between a shortest path through an arc labelled v in layer i and a shortest path
(how to compose branching strategies ?)

automata are for automatic models: algorithms to generate multi-weighted automata with a DSL
dedicated to nurse rostering, to compose/filter automata, to relax (soft constrs) [Menana1l]

beyond (P: automatic linearisation [(6té13]

meta-constraint: automata can not only model sequencing/counting rules but CSP solution
sets, 1.e. global constraints, see >300 constraints of the global constraint catalog
(automaton model is dependant on the order of the variables)

alternative models and algorithms: grammar constraint (free-context languages) and multi-
valued decision diagrams (concise models)

31

https://sofdem.github.io/gccat/

OPEN QUESTIONS

« branch on packing then on scheduling vars

fls deactivate heavy scheduling ctr while pacRing

« packing 69 scheduling

one multicost-regular for each employee

one global-cardinality for each day, for each act

better integration ? also with objective ?

32

METHODS
RAMMING

33

INTEGER LINEAR PROGRAMMING
IN A TINY NUTSHELL

« integer linear program ILP (mixed MILP if not all variables are integer)
z=min{cx | Ax>b,xe 7"}, ceR"AeR"XR" b e R"
o« X={x€& Z" | Ax > b} are theinteger points of a polyhedron X = {x € R" | Ax > b}

«+ Weyl-Minkowski: for some x!, ..., x? € R”(extreme points) r!, ..., 77 € R"(extreme
3ys): —{Zﬂx+2ﬂtr|2/1—1/1€[R pERY]
« solving the LP relaxation is easy: e
Z T mln{cx | X € X} = — & 0or minS CXS Polytope
3 3
2 p:

34

INTEGER LINEAR PROGRAMMING
IN A TINY NUTSHELL

« integer linear program ILP (mixed MILP if not all variables are integer)
z=min{cx | Ax>b,xe 7"}, ceR"AeR"XR" b e R"
o« X={x€& Z" | Ax > b} are theinteger points of a polyhedron X = {x € R" | Ax > b}

«+ Weyl-Minkowski: for some x!, ..., x? € R” (extreme points) !, ..., 7 € R"(extreme
r3ys): _{sz+zﬂtr|21_ueu%,ﬂew}

«» solving the LP relaxation is easy:
z=min{cx | x € X} = — o0 or ming cx*

» strong duality occurs in LP :

Z=max{ub | uA =c,u € R}
» LPbound to prune nodes in branch-and-bound
72

« different models, different bounds 1
ideal model, tightest bound: X = conv(X)

LAGRANGIAN RELAXATION
& COLUMN GENERATION

Fxample 2 (contin

. THupsoaY | v IDAY
; ;---, 4__-' Jﬂ’ ge) 'T :5 ot '

‘ fgg ') "“ - =
f)g‘ (i '\ "IL C(rﬁv H

} &z‘:: \I" "’f’ ’”"P“‘“" > 4

),

challenges:
- two orthogonal problems: schedule activities for each employee / assign employees to each activity

- numerous and heterogeneous working rules, hard and soft
. the model (data, objective and constraints) changes from instances to instances

36

AMIXED INTEGER LINEAR PROGRAM (MILP)

« assignment cost cqi and minimum cover das for each activity a and period 1,

+ Xegi=1If employee e is assigned to activity a in period i

2=min f(x) = Y CuiXen

e,a,l

Z X, >d,;Va,li

coupling constraints
(4

x, € Schedules C {0,1}" Ve

Z(u) = min f,(x) = 2 CiX oy

e.a,l
+ Z uai(dai o Z Xeai)
a,l e

x, € Schedules C {0,1}" Ve

«» not a good formulation: hard to linearise the working rules, in a compact way, many

symmetries, potentially weak LP bound

» lagrangian relaxation : forany » > 0 solving z(x) is to find a schedule for each employee e of

minimum assignment costs (¢,; — 4,

= one multicost-regular

37

| AGRANGIAN RELAXATION

» Solve z%uP %ves a lower bound and a near-feasible solution: some cover constraints may not be
satisfied. [T the solution is feasible then it is not necessary optimal for z.

» the lagrangian dual is the problem to find the best lower bound w = max{z(u) | u > 0}

« iswfar from z (dual gap)? how to get feasible solutions from z(u) ? how to compute w?

z=min{cx | Dx > d,x € X} assume: X = {x € Z" | Ax > b}, conv(X) = conv(x®)
zZ(u) = min{cx + u(d — Dx) | x € X} = min lex® + u(d — Dx%))
w = max,soz(u) = max,o 4y | y < ex’ +u(d — Dx°), Vs = 1.p}

= minys o1 Z Acx’ | Z A(d - Dx*) <0, Z A* =1} (strong duality in LP)
=min{cx | Dx > d,x € conv(X)}

s=1.p

s=1..p

o« z2Zw<z with z=wifX=convX)

« What to dualise: (1) coupling constraints so that z(u) decomposes
(2) not all complicating constraints so that LR bound > LP bound

38

1.

2.

HOW 10 COMPUT

-ASIBL

- SULUTIONS

replace the LP relaxation in branch-and-bound by lagrangian relaxation

repair the constraint violations in the subproblem solutions with local search:

e

. ex (rostering): subproblem solution = valid schedule for every employee

- try to repair the violated covers Z x,,. < d,; byswapping activities

39

HOW 10 SOLVE ¢
N THE DUAL SPACE

the lagrangian function is concave non-smooth (piecewise linear)

u > z(u) = ming_; {cx’ +u(d — Dx’)} | cx” +u(d — Dx’)
maximise by computing iteratively z(x,),k =0,...,K zZ(u)
27

subgradient algorithm:

- follow a possi
- simple toimp

Kelley cutting-plane algorithm:

le ascent direction (subgradient) .., = max(0, uy + 1,.(d — Dx)

ement but

ack of ascent, slow convergence, no stopping test 0 € sz

Ug, € argmaxuzo’y{y | y < ex*+ u(d — DxY), Vk < K)

- simple to implement, better (finite) convergence but instable and the LP becomes huge

bundle methods: stabilisation and aggregation to remedy these drawbacks, e.g. (proximal):
Uy € argmax,so Ay + pgllu —ug|l | y < cxk + u(d — Dx5) + ¢}

ellipsoid/analytic center, in-out,...

40

HOW 10 SOLVE ¢
N THE PRIMAL SPACE

W = max,soz(u) = max,so iy | v <cx’+u(ld—Dx*), Vs =1.p}
—mmm{z,ux | Z/I(d Dx*) <0, 2,1 =1)

Dantng -Wolfe decomposdmn (separate convexity for each e)

{ = min f(X) — Z Calxeaz <= min f(X) — 2 /les al ai

Z eade Vaecl” | Z’Ies=1Ve s.e,d,l

€

Ax.>d Va,i
x, € Schedules C {0,112 Ve 2 esXai = %ai V!
/fes € 10,1} Ve, Vs €S

« LP relaxation: huge number of variables, most being 0 in any optimal solution (non-basic)

» simplex: iteratively find the largest negative reduced cost x € argmin cx + w,(d — Dx) — w,
» column generation: the same but the non-basic variables are not all made explicit

« [Pbound =R dual, column generation/primal = Kelley cutting plane algorithm/dual

41

LOLUMN

improvement techniques:

GENERATION &t BRANCH-AND-PRIC

the basic algorithm may be slow to converge and suffers from instability

- do not solve the subproblem at optimality: find a negative reduced cost
- add several columns at each iteration / remove inactive columns

. stabilisation techniques (similar to bundle methoc

- try rounding
- branch-and-
. branch-and-
ike with LR,

provides a way to break symmetries

how to compute feasible (integral) solutions:

pound on the restricted LP
rice: generate columns at each node

)

A, €ENVseS

oranch on the x decisions not on the master variables
- unlike with LR, the primal (fractional) solution can be used for cut generation

42

BENDERS DECOMPOSITION
& BRANCH-AND-CHECK

Fxample 1 (continuation)

REALTIME DATACENTER RESOLRCE MANAGEMENT

L
.

VM packing 4 action scheduling

challenge: integrated packing/scheduling problem
« the scheduling decisions depend on the final packing

VM migrates ||ve
~ but the final packing depends also on the scheduling decisions: or migrates off

packing can be proved unfeasible or suboptimal I
44

2

INTEGRATE PACKING/SCH

-DULING

current approach: branch first on the pacRing variables and deactivate the heavy scheduling
constraints in this phase, then solve scheduling. If unfeasible or suboptimal, then backtrack:

assign(VMs) # pack(VMs)

idea: identify a (minimal) partial assignment that causes unfeasibility/suboptimality, and

generate a nogood constraint to discard it: assign(V) # pack(V), V C VMs

ex . duration(migration(VM1)) > incumbent = action(VM1) € {stay, stop}
= assign(VM1) € {initialpack(VM1),noPM }

branch-and-check [Hooker00, Thorsteinsson01]. Remark that activating schedulin

propagation allows to infer inconsistencies from partial assignments (

ut may be %oo costly)

logic-based Benders decomposition | Hooker00]: solve packing at optimality before calling the

scheduling subproblem (usually more efficient if the subproblem is hard)

nogoods are often problem-specific but can be generated from conflict analysis

45

BENDERS DECOMPOSITION IN MP

variable decomposition: delay the evaluation of the slave subproblem then tighten the master

decomposition scheme from integer linear programming | Benders63] and convex
programming | Geoffrion72] when strong duality applies to the subproblem (ex LP or convex
NLP): use duality information to generate nogoods

different implementations: can evaluate the slave at optimal master solutions (traditional), at
integer solutions (if the subproblem is easy to check), at fractional solutions (if the
subproblem can be formulated from partial master solutions)

easy to implement in modern branch-and-cut solvers with callbacR constraints

successful on stochastic programming (called the L-shaped method)

46

BEND

RS D

» remember the lagrangian dual ?

exercise: dualise the coupling constraints
difference: here Y can be integral

« solve restricted master My: get yp. Solve slave f(yp): get dual up. if feasible (rq.1 otherwise).

Tighten master: Mp.1 then iterate if
max, (dy, + f(y,)) = LB < UB = opt(M,)

-COMPOSITION FOR MILP

M =max {cx+dy | Ax+By<b,x>0,yeY)

= max,cy{dy + f(y)}, f(y) = max{cx [Ax <b— By, x > 0}
= min{u(b — By) | uA > c,u > 0}
{luA > c,u > 0} = conv((u,),) + cone((rq)q)

M = max,cy{dy +z | z < u,(b—By) Vp, 0 <r (b— By) Vq}

u (b — By)

J)
-y

47

EXample 3

PUMP DES\GN N WATER D\STR\BUT\ON NETWORKS
S f_&,, M ./_,

-~ S / ‘_‘,L.—B.',-:. ==

1-- R 'i'?w_'j

2 r
F = ’ .
- -3
- - = »
- =
" ! - - ~— ~ -
| e— te] 1
- .

: — - 1

— S o

e ——

i .

choose pumps, Sahsfy the demand, minimise investment+operation costs

challenges:

- two integrated decision levels:

- investment/long-term: investment, maintenance, ageing, uncertain demand/price/availability
- operation/short-term: pump scheduling, non-convex hydraulic constraints

- various types of networks: looped/branched, fixed/variable-speed pumps,
48

GENERALISED BENDERS WITH STABILISATION
APPLICATION TO PUMP DESIGN [BONVIN19]

master problem: select pumps toinstall: v,, =1 if at least n pumps of type p installed

slave problem: compute the expected minimum operational cost over the next 20 years for
configuration y, i = " v vp

evaluate over D representative days and one critical day with high demand and one pump
outage : slave decomposes in D+1 daily pump scheduling problems (non-convex MINLPs)

solve first the the critical day as a satisfaction problem: if unfeasible, at least one more pump
of any type is required: 2 Vo > 1 Using dominance, we can generate other unfeasible

configurations. >

otherwise solve a convex NLP relaxation of each representative day (expected to be feasible)

fd(y) = min Z X dpnt + :Bptxpnt

oet the operation cost /a(»)
and one subgradient s.(y) € /,(»)
(from duals of X < Y)

p.n,t
S b Xy S Vpp VP 1, 1

Z dijr = Dﬁl + Sl — hy), V1, j € Tanks

(x,q,h) € F, C {0,1}"N x RA x RY 45

BENDERS APPLIED TO PUMP DES
(CONTINUAT

« Benders master: « Wwith level stabilisation:
min g0 = Y, CPyp+ Y Nz
d

p.n
§.r: ypn > ypn+1vp,n

2y > L0%) + 5,000 =y Vd k= 1.K

D vz 1Vi=1.L

ye (0,1}, 7 e RP

min ||y — y«||5 (linear because y binary)

STy, 2 ypn+1‘v’p,n

8lev = 80V + 50N =y Vk=1.K

Yoy 1Vi=1.L

y € 10,1}, z € RP

8, 18k
2

* W'th 8lev = ,§O=O,gO:+OO

« ifinfeasible update B &, = 8w

~» otherwise solve slave and possibly update UB and stabilisation center:

§K+1 = min(gK, Z pr§l+1 4+ ZNdfd(yK+l))’ §K+1 < gK — Y, = yK+1
p’n d

. stopwhen 22 .
g

GN
ON)

50

|AKE-AWAY

« decomposition methods are flexible solutions for practical composite/large-scale problems

» how deep to decompose: trade-off between performance and flexibility

« (P/global constraints: easy way to implement decomposition/hybridisation

51

|AKE-AWAY

« decomposition methods are flexible solutions for practical composite/large-scale problems

» how deep to decompose: trade-off between performance and flexibility

« (P/global constraints: easy way to implement decomposition/hybridisation

- but not so easy to turn an optimisation algorithm to an efficient filtering algorithm

. partial decomposition (propagation) to complement with a specialised search strategy
(sequential branching, branch-and-check)

51

) 4

|AKE-AWAY

decomposition methods are flexible solutions for practical composite/large-scale problems

how deep to decompose: trade-off between performance and flexibility

(P/global constraints: easy way to implement decomposition/hybridisation

- but not so easy to turn an optimisation algorithm to an efficient filtering algorithm

. partial decomposition (propagation) to complement with a specialised search strategy
(sequential branching, branch-and-check)

MP decomposition: lagrangian relaxation, column generation, Benders decomposition
. generic frameworks but their application is problem-specific (subproblem)

- naive implementations may not converge well
hybrid CP & MP: complementary orientations local/global, feasibility/optimality, logic/analytic

stay curious: parts of your problem are perhaps well solved with other formalisms
5]

¢ ‘ EH'H ‘WH

’iIle

{ ; "; 2
PPM |(r'" ‘f

f | MM[MG H{(‘M
,\,.4-;

A

Mﬁu

|/) ; |
| 308 3 :
P WL
|/ "{l - i |C
a J;_f‘ """
Tl s Pt MG i
D, TN
t L"‘ ‘ | : | r
| a of off a |
J | .'. | k- \ ’ y ' 1

- "V\I_e‘liﬁgton de Oliveira

https://sofdem.github.io/

52

