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COMBINATORIAL OPTIMISATION

maximise a real-valued objective function over a discrete set of solutions defined 

descriptively  

satisfaction problem if objective is constant 

solving = find an algorithm better than brute-force enumeration 

efficient = fast, scalable, exact/near-optimal 

practical = evolutive, flexible and robust to changes

max
s∈S

f(s), S ⊆ 2A, f : 2A → ℝ
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MANY PARADIGMS, MANY ALGORITHMS 

Integer Programming (Finite-Domain) 
Constraint Programming

Metaheuristics

SAT

Global Optimisation
Graph Theory

Logic Programming

Logic

Functional Analysis

Discrete Algebra
Calculus

Formal Langages

Machine Learning

Formal Verification

Signal Processing

Control

NONE TO RULE THEM ALL
Dynamic Programming
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SMT



PROBLEM/ALGORITHM ADEQUACY

some formalisms are more suitable to some problems 

some algorithms are more efficient for some problems 

some algorithms are less/more efficient but more/less flexible 

many problems are composite, different subsystems, different articulations, e.g.:  

several subsystems sharing decisions or constraints 

one basic system with complicating side constraints
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which algorithm for my problem ?

3 examples...



Example 1 
REAL-TIME DATACENTER RESOURCE MANAGEMENT

place & move Virtual Machines, satisfy the resource capacities and user requirements
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challenges: 

• an integrated packing/scheduling problem: where to place ? when to move ? 

• a non-conventional cumulative scheduling problem induced by live-migrations 

• various user constraints: isolate/security, spread/fault tolerance, gather/performance, clear/maintenance,... 

• flexibility: the problem – resource usage & user constraints – is dynamic and evolutive



Example 2 
ROSTERING

assign activities to every employee every time, cover the load, satisfy the working rules 

challenges: 

• two orthogonal problems: schedule activities for each employee / assign employees to each activity 

• various working rules: forbidden activities/sequences, min/max delays/lengths, fixed/sliding period, hard/soft 

• the problem – data, objective & constraints – varies with the context
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Example 3 
PUMP DESIGN IN WATER DISTRIBUTION NETWORKS

choose pumps, satisfy the demand, minimise investment+operation costs
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challenges: 

• investment/long-term: investment, maintenance, ageing, uncertain demand/price/availability 

• operation/short-term: pump scheduling, non-convex hydraulic constraints 

• various networks: looped/branched, fixed/variable-speed pumps, different kinds of valves



HYBRID DECOMPOSITION PRINCIPLE

in contrast to monolithic algorithms: one model, one search  

split a problem into coherent substructures by breaking their links  

apply algorithms from different paradigms to each substructure 

recover the broken links: iterate on the components and let them communicate together 

 get an optimal/feasible/approximated solution depending of the recovery
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EXPECTATIONS

flexibility: exhibit/isolate the substructures  

modularity: adaptable/reusable algorithmic/software components  

efficiency: dedicated algorithm for each substructure 

applicability: generic de-composition frameworks & refinement techniques   

scalability (dynamic generation): solve subproblems repeatedly 

scalability: symmetry breaking 

quality: if not optimal, give good relaxations/approximations (better than when breaking the links)
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22n ≫ K(2n+ 2n) ≫ ∑
k

(2n+ 2k)

one major drawback: naive implementations have slow rates of convergence 



PRACTICAL QUESTIONS 

how to decompose ? which algorithm for which block ? 

how deep the decomposition ? breaking strong links makes the subproblems easier but the 

convergence slower 

how to combine different algorithms ? how to make the communication efficient ? 

proof of convergence? speed of convergence ? what if incomplete search ?
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THIS TALK IS ABOUT

hybrid models, not hybrid techniques (portfolio, CBLS, CP+nogoods, ML & CP/MP,...) 

semantic decomposition, not structural decomposition  (tree search, graph splitting,...) 

algorithm composition... because decomposition is the easy part 

a bit of theory,  more about applications... on problems I have worked on (not exhaustive) 

two contexts for hybrid decomposition (not exhaustive): 

I. global constraints in CP & hybridisations with automata & LP 

II. decomposition methods in MP & hybridisations with CP & global optimisation
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I. CONSTRAINT PROGRAMMING  
WITH GLOBAL CONSTRAINTS
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CONSTRAINT PROGRAMMING: 
THE ESSENCE OF DECOMPOSITION

separate a model in constraints, "solve the constraints" (filter non-solutions) independently 

the constraints communicate through the variable domains 

the consistency algorithm is a generic cooperation scheme gluing the constraint models 

convergent scheme if strong n-consistency  

otherwise, backtracking is required and applied globally, but decomposition can be fully 

enforced by a multistage branching strategy and                                                                                        

by delaying the subproblem constraint propagators branch on X 
deactivate constraints(Y)

branch on Y
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Example 1 
REAL-TIME DATACENTER RESOURCE MANAGEMENT

place & move Virtual Machines, satisfy the resource capacities and user requirements

challenges: 

• an integrated packing/scheduling problem: where to place/how to collocate ? how and when to move ? 

• a non-conventional producer-consumer cumulative scheduling problem induced by live-migrations 

• various user constraints: isolate/security, spread/fault tolerance, gather/performance, clear/maintenance,... 

• flexibility: the model – resource usage & user constraints – is dynamic and evolutive
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Example 1: datacenter resource management

VECTOR PACKING

VM1PM1

PM4PM3

PM2

VM2

VM3 VM4

VM8

VM7 VM6

VM5

∑
VM∈assig n−1(PM)

DEMAND(VM, RES) ≤CAPACITY(PM, RES), ∀(PM, RES)

assig n: VMs → PMs

CPU RAM Disk Card

PM4

VM2

VM8

but dynamic...

possible objectives: 
• minimise the number of PMs (energy saving) 
• maximise the number of PMs (performance) 
• minimise the average load over all PMs
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VECTOR REPACKING

VM1

PM1

PM4

PM3

PM2

VM2

VM3 VM4

VM8

VM7 VM6

VM5

VM1PM1

PM4PM3

PM2

VM2

VM3

VM4

VM8

VM7 VM6

VM5

VM9

VM9

• new VM9 

• change VM4, VM5 

• failure on PM4

but actions are not all immediate...

Example 1: datacenter resource management

possible actions: 

• launch VM/PM 

• stop VM/PM 

• resize VM/PM 

• stop/relaunch VM 

• live/direct migrate VM
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PRODUCER-CONSUMER SCHEDULING
Example 1: datacenter resource management

∑
VM

DEMAND(start(VMs), PM, RES, T ) ≤CAPACITY(PM, RES, T ), ∀(PM, RES, T )

start : VMs → ACTIONs × PMs × TIMEs

objective (performance): 
• minimize the sum of 

the action durations

PM1

VM3

PM4

VM9PM3

VM8

PM2

VM1

VM2

VM2
VM4

                               VM5                                                                                                                     

            VM8                              VM4

t

launch

resize

stop

relaunch

migrate: consumes CPU and RAM on 2 PMs
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USER SIDE CONSTRAINTS
Example 1: datacenter resource management

VM3.1

PM4PM3

PM2

VM1.1

VM2.1
VM1.2

VM3.3VM3.2

PM1

VM2.2

fault tolerance
(spread)

security

(isolate) 

maintenance
(offline)

performance
(gather)

assig n(VM1) ∩ assig n(VMs∖VM1) = ∅

card(assig n(VM3)) = 1

assig n(VMs) ∩ PM3 = ∅

alldifferent(assig n(VM2))

spread, 
among,  
ban,  
fence,  
gather,  
root,  
lonely,  
quarantine,  
capacity, 
splitAmong, 
preserve, 
overSubscription,  
offline,  
noIdles, 
mostlySpread,...  18



OPPORTUNITY OF DECOMPOSITION
Example 1: datacenter resource management

we need a fast (<10min), scalable solution, not necessary optimal 

we need to freely & automatically compose side constraints in a flexible non-intrusive way 

i.e. without altering the global structure 

identified components: (packing + ∑side constraints) <----> scheduling 
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A CP-BASED APPROACH
Example 1: datacenter resource management

CP fits well with both non-conventional packing  and scheduling components 

CP/consistency is appropriate to integrate any kind/any number of side constraints without 

impacting the two main component models or the search algorithm (no need to expose 

extra variables) 

side constraints: concise models relying on an extensive evolutive catalog of predicates 

(alldifferent, cardinality, element, nvalue,...) with efficient implementations in CP solvers 

automatic model composition: DSL + automatic translation + automatic parametrisation: 

alternative algorithms 

reduce the search space heuristically by fixing VMs/PMs whose current assignment does 

not violate any new constraints: define checkers 
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A CP-BASED APPROACH
Example 1: datacenter resource management

CP fits well with both non-conventional packing  and scheduling components 

CP/consistency is appropriate to integrate any kind/any number of side constraints without 

impacting the two main component models or the search algorithm (no need to expose 

extra variables) 

side constraints: concise models relying on an extensive evolutive catalog of predicates 

(alldifferent, cardinality, element, nvalue,...) with efficient implementations in CP solvers 

automatic model composition: DSL + automatic translation + automatic parametrisation: 

alternative algorithms 

reduce the search space heuristically by fixing VMs/PMs whose current assignment does 

not violate any new constraints: define checkers 

Global Constra
ints
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GLOBAL CONSTRAINTS: 
THE ESSENCE OF HYBRIDISATION & MODULARITY

improve consistency by composition [Regin94]                                                       

actually a perfect tool to implement hybrid decomposition [since ALICE78, CHIP88]:  

expressivity: 1 substructure = 1 predicate 

encapsulation: hide internal computations 

hybridisation: implement any algorithm from any paradigm 

modularity: reusable, adaptable, parametrable (portfolio algorithms) 

additional services: propagators, checker, solver, violation counters, nogood computation, 

handlers on internal information,  probability,...

alldifferent(x1, …, xn) ≫ ∧i≠j xi ≠ xj
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Example 2 
(NURSE) ROSTERING

assign activities to every employee every time, cover the load, satisfy the working rules 

challenges: 

• two orthogonal problems: schedule activities for each employee / assign employees to each activity 

• numerous and heterogeneous working rules, hard and soft 

• the model (data, objective and constraints) changes from instances to instances
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Example 2: nurse rostering

DAYs

assig n: NURSEs × DAYs → ACTs = {Morning , Day, Nig h t, Rest}

N N D N M M N

M M N R N N R

D N N D R R M

N D R M D N N

R R M N N D D
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NURSEs

cardinality

sequ encing

cover the load

working rules

          M                T                 W               T                 F                 S                 S



CSP & FORMAL LANGUAGES

a nurse schedule is a word on the alphabet of activities 

a working rule defines a language on this alphabet: the set of words which satisfy the rule 

a language is regular iff it can be represented as a finite automaton/regular expression

 24

"Rest after Nights"

RRDNRDD ∈ {D, N, R}7

"max two consecutive Nights"

¬(ND)¬(NNN)

q0 q1

R,D N

N

R

q0 q1

R,D

N

R,D

q2

NR,D



AUTOMATIC MODEL COMPOSITION 
 WITH AUTOMATA

finite automata are concise and composable models: fast intersection/complement/

minimisation... algorithms, keep the model concise 

the set of feasible schedules is a language resulting from intersection 

automata intersection = constraint conjunction = pre-filtering
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"max two consecutive Nights" "Rest after Nights"∧

q0 q1

R,D N

N

R

q0 q1

R,D

N

R

q2

NR

q0 q1

R,D

N

R,D

q2

NR,D

∩ =



FILTERING WITH AUTOMATA
key ideas: (1) variable values = transition labels, assignment X1X2...Xn = word/path                                        
(2) word length is fixed

decomposition: automaton(X1,...,Xn,π) [Beldiceanu04] 

dynamic programming: regular(X1,...,Xn,π) [Pesant04]

GAC, same complexity 
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"Rest after Nights"

q0 q1

R,D N

N

R

q0 R,D

N

q0

q1

q0R,D

N
q1

R
N

q0

q1

q0R,D

N
q1

R
N

X1 X7X2

• unfold the automaton as a layered DAG of size n 
• remove the non final states in the last layer 
• remove arcs which do not belong to any path from the first to the last layer 
• synchronise the domain of Xi with the labels of the arc set in layer i: remove arcs or domain values

O(n× |Transitions | )

Berge-acyclic: 
 AC = GACState variables 



GENERALISATION TO WEIGHTED AUTOMATA
add weights on the transitions and a bounded variable Z: a solution (Z,X1,...,Xn)  is an 
accepted word X1X2...Xn with the sum of the transition weights equal to Z 

increase the expressivity or make the model more compact

filtering with decomposition [Beldiceanu04]  

dynamic programming cost-regular(Z,X1,...,Xn,(π,w))[Demassey05]

same complexity, no GAC, not comparable, ex:   27

occurrence counter 
of pattern S*M

s [2,2]

a [0]

b [2]
b [2]

c [1]

a [0]

21

assignment costs 
a=0, b=2, c=1

quadratic violation penalty for: 
between 3 and 5 consecutive Nights

maintain the shortest and longest paths: 
• label the nodes in the layered graph: min/max lengths from the first layer/to the last layer 
• synchronise the bounds of Z with the min/max path length values  
• backpropagation: remove arcs not belonging to any path of length within the bounds of Z

(Si, Xi, Si+ 1, Wi) ∈ Weig h tedTransitions

∑
i

Wi = Z{

s [2,2]

a [0]

b [2]
b [2]

c [1]

a [0]

21 3s

1

2

a [1]

b [0]

a [1]

[0,1]
b [0]



MULTICOST-REGULAR
vectors of weights: to combine different counters/penalties/costs

composition algorithms for finite automata can be efficiently extended [Menana10]

underlying optimisation problem: resource-constrained shortest/longest paths are NP-hard

filtering: extend automaton 

or apply cost-regular independently on each dimension

 or consider a tighter relaxation: lagrangian relaxation (filtering by dynamic programming would 
require to maintain too many labels)

adapt lagrangian relaxation-based variable fixing to  constraint filtering [Sellmann04]  
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occurrences of a  
and of sequences of b

(Si, Xi, Si+ 1, W0
i , …, WK

i ) ∈ Weig h tedTransitions

∑
i

Wk
i = Zk, ∀k{

∧k costreg u lar(Zk, X, (Π, wk))
save memory & time vs. posting k costregular constraints



LAGRANGIAN RELAXATION-BASED FILTERING
resource constrained shortest path ILP model: 

dualisation = relax and penalise violations                    lagrangian subproblem with multipliers u    

a shortest path problem providing a lower bound:

then filtering:

and back-propagation:                                                                                    filter arc a in layer i 

this is cost-regular filtering with weights:  29

z0(u ) ≤z0, ∀u ≥ 0

xai = 1 ⟺ Xi = label(a), ∀arc a inlayer i

z0 = minf 0(x) = ∑
a,i

w0
aixai

Zk ≤∑
a,i

wk
aixai ≤Zk, ∀k = 1..K

x ∈ Path s ⊆ {0,1}A×n

z0(u ) = minx∈Path s f 0
u (x) = ∑

a,i
w0

aixai

+ ∑
k

u −
k (Zk −∑

a,i
wk

aixai)

+ ∑
k

u +
k (∑

a,i
wk

aixai −Zk)

w0
ai + ∑

k
(u +

k −u −
k )wk

ai, ∀a, i

z0(u ) ≤z0 ≤Z0 ⇒ Z0 := max(Z0, z0(u ))

z0(u )xai= 1 > Z0 ⇒ z0
xai= 1 > Z0 ⇒

complicating constraints



MULTICOST-REGULAR ALGORITHM
apply cost-regular filtering for different values of k and u

for a given k,                             gives the best lower bound, thus the best filtering for          but 

not necessary the best back-propagation:

default parameters in the Choco implementation: fix                for all             , solve maximum 30 

iterations of the subgradient algorithm to maximise 

not GAC, not even monotonic, parameter-dependant, a rather high complexity,... but it works:
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zk(u ) ≥ zk(u ′�) ⇏ zk(u )xei= 1 ≥ zk(u ′�)xei= 1
max zk(u ) Zk

u = 0 k ≥ 1
z0(u )

    solved         proof(s)          best(s)           #nodes     solved         proof(s)          best(s)           #nodes

cost-regular + GCC multicost-regular

a

p

l

a

o o

a aa

a

b bb

b

b

p
l

b

o

a

o

l ll

15 (#act=1) to 505 (#act=50) transitions

n=96 variables, 20 instances/#act, 10 min

#act



TO GO FURTHER WITH LANGUAGES & CP

expose internal informations to derive branching strategies. ex: regret(Xi=v) = length 

difference between a shortest path through an arc labelled v in layer i and a shortest path    

(how to compose branching strategies ?) 

automata are for automatic models: algorithms to generate multi-weighted automata with a DSL 

dedicated to nurse rostering, to compose/filter automata, to relax (soft constrs) [Menana11] 

beyond CP: automatic linearisation [Côté13] 

meta-constraint: automata can not only model sequencing/counting rules but CSP solution 

sets, i.e. global constraints, see >300 constraints of the global constraint catalog                                                           

(automaton model is dependant on the order of the variables) 

alternative models and algorithms: grammar constraint (free-context languages) and multi-
valued decision diagrams (concise models)
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https://sofdem.github.io/gccat/

https://sofdem.github.io/gccat/


OPEN QUESTIONS

 32

branch on packing then on scheduling vars 

deactivate heavy scheduling ctr while packing 

packing                                            scheduling

one multicost-regular for each employee 

one global-cardinality for each day, for each act 

better integration ? also with objective ?



2. DECOMPOSITION METHODS 
IN MATHEMATICAL PROGRAMMING

 33



INTEGER LINEAR PROGRAMMING 
IN A TINY NUTSHELL

integer linear program ILP (mixed MILP if not all variables are integer)

                                                    are the integer points of a polyhedron

Weyl-Minkowski: for some                                  (extreme points)                                (extreme 

rays): 

solving the LP relaxation is easy:

 34

z = min{cx | Ax ≥ b, x ∈ ℤn}, c ∈ ℝn, A ∈ ℝm × ℝn, b ∈ ℝm

X = {x ∈ ℤn | Ax ≥ b} X = {x ∈ ℝn | Ax ≥ b}

x1, …, xp ∈ ℝn r1, …, rq ∈ ℝn

X = {∑
s

λsxs + ∑
t

μtrt | ∑
s

λs = 1,λ ∈ ℝp
+ , μ ∈ ℝq

+ }

z̄ = min{cx | x ∈ X} = −∞ or mins cxs



INTEGER LINEAR PROGRAMMING 
IN A TINY NUTSHELL

integer linear program ILP (mixed MILP if not all variables are integer)

                                                    are the integer points of a polyhedron

Weyl-Minkowski: for some                                  (extreme points)                                (extreme 

rays): 

solving the LP relaxation is easy:

strong duality occurs in LP  

LP bound to prune nodes in branch-and-bound

different models, different bounds                                                                                                                    

ideal model, tightest bound:
 34

z = min{cx | Ax ≥ b, x ∈ ℤn}, c ∈ ℝn, A ∈ ℝm × ℝn, b ∈ ℝm

X = {x ∈ ℤn | Ax ≥ b} X = {x ∈ ℝn | Ax ≥ b}

x1, …, xp ∈ ℝn r1, …, rq ∈ ℝn

X = {∑
s

λsxs + ∑
t

μtrt | ∑
s

λs = 1,λ ∈ ℝp
+ , μ ∈ ℝq

+ }

z̄ = min{cx | x ∈ X} = −∞ or mins cxs

z = max{u b | u A = c, u ∈ ℝm
+ }

X = conv(X)

z ≤z



LAGRANGIAN RELAXATION 
& COLUMN GENERATION 
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z

z̄

w

c



Example 2 (continuation) 
NURSE SCHEDULING

assign activities to every employee every time, cover the load, satisfy the working rules 

challenges: 

• two orthogonal problems: schedule activities for each employee / assign employees to each activity 

• numerous and heterogeneous working rules, hard and soft 

• the model (data, objective and constraints) changes from instances to instances

 36



A MIXED INTEGER LINEAR PROGRAM (MILP)  
assignment cost cai and minimum cover dai for each activity a and period i,

xeai=1 if employee e is assigned to activity a in period i

not a good formulation: hard to linearise the working rules, in a compact way, many 

symmetries, potentially weak LP bound 

lagrangian relaxation : for any                  solving            is to find a schedule for each employee e of 

minimum assignment costs                                                   one multicost-regular                      
 37

z = minf(x) = ∑
e,a,i

caixeai

∑
e

xeai ≥ dai ∀a, i

xe ∈ Sch edu les ⊆ {0,1}A×n ∀e

z(u )u ≥ 0
(cai −u ai)

coupling constraints

z(u ) = minfu (x) = ∑
e,a,i

caixeai

+ ∑
a,i

u ai(dai −∑
e

xeai)

xe ∈ Sch edu les ⊆ {0,1}A×n ∀e



LAGRANGIAN RELAXATION
solve z(u) gives a lower bound  and a near-feasible solution: some cover constraints may not be 
satisfied. If the solution is feasible then it is not necessary optimal for z.

the lagrangian dual is the problem to find the best lower bound 

is w far from z (dual gap)?  how to get feasible solutions from z(u) ? how to compute  w ?

                                 with

what to dualise: (1) coupling constraints so that z(u) decomposes                                                  

(2) not all complicating constraints so that LR bound > LP bound
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z(u ) = min{cx + u (d −Dx) | x ∈ X} = mins= 1..p{cxs + u (d −Dxs)}

w = max{z(u ) | u ≥ 0}

w = maxu ≥0z(u ) = maxu ≥0,y{y | y ≤cxs + u (d −Dxs), ∀s = 1..p}

= min{cx | Dx ≥ d, x ∈ conv(X)}

z = min{cx | Dx ≥ d, x ∈ X} X = {x ∈ ℤn | Ax ≥ b}, conv(X) = conv(xs)s= 1..passume:

= minλ≥0{∑ λscxs | ∑ λs(d −Dxs) ≤0,∑ λs = 1} (strong duality in LP)

z̄ ≤w ≤z z̄ = w if X = conv(X)



HOW TO COMPUTE FEASIBLE SOLUTIONS

1. replace the LP relaxation in branch-and-bound by lagrangian relaxation

2. repair the constraint violations in the subproblem solutions with local search: 

ex (rostering): subproblem solution = valid schedule for every employee 

try to repair the violated covers                                    by swapping activities

 39

∑
e

xeai < dai



HOW TO SOLVE ? 
 IN THE DUAL SPACE

the lagrangian function is concave non-smooth (piecewise linear) 

maximise by computing iteratively  

subgradient algorithm:  

follow a possible ascent direction (subgradient) 

simple to implement but lack of ascent, slow convergence, no stopping test  

Kelley cutting-plane algorithm: 

simple to implement, better (finite) convergence but instable and the LP becomes huge 

bundle methods: stabilisation and aggregation to remedy these drawbacks, e.g. (proximal): 

ellipsoid/analytic center, in-out,...

 40

cxs + u (d −Dxs)

u
z(u )

u K+ 1 ∈ arg maxu ≥0,y{y | y ≤cxk + u (d −Dxk), ∀k ≤K}

u K+ 1 = max(0, u K + tK(d −DxK))

u K+ 1 ∈ arg maxu ≥0,y{y + μK∥u −u *K∥ | y ≤cxk
* + u (d −Dxk

*) + ϵk}

z(u k), k = 0,…, K

u ↦ z(u ) = mins= 1..p{cxs + u (d −Dxs)}

0 ∈ δz
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Dantzig-Wolfe decomposition

LP relaxation: huge number of variables, most being 0 in any optimal solution (non-basic)

simplex: iteratively find the largest negative reduced cost

column generation: the same but the non-basic variables are not all made explicit

LP bound = LR dual, column generation/primal = Kelley cutting plane algorithm/dual 

z = minf(x) = ∑
e,a,i

caixeai

∑
e

xeai ≥ dai ∀a, i

xe ∈ Sch edu les ⊆ {0,1}A×n ∀e

z = minf(x) = ∑
s,e,a,i

λescaixs
ai

∑
s,e

λesxs
ai ≥ dai ∀a, i

λes ∈ {0,1}∀e, ∀s ∈ S

∑
s

λes = 1 ∀e

(separate convexity for each e)

= minλ≥0{∑
s

λscxs | ∑
s

λs(d −Dxs) ≤0,∑
s

λs = 1}
w = maxu ≥0z(u ) = maxu ≥0,y{y | y ≤cxs + u (d −Dxs), ∀s = 1..p}

x ∈ arg min cx + u k(d −Dx) −wk

HOW TO SOLVE ? 
 IN THE PRIMAL SPACE



COLUMN GENERATION & BRANCH-AND-PRICE

 42

the basic algorithm may be slow to converge and suffers from instability

improvement techniques:  

do not solve the subproblem at optimality: find a negative reduced cost 

add several columns at  each iteration / remove inactive columns 

stabilisation techniques (similar to bundle methods)

provides a way to break symmetries

how to compute feasible (integral) solutions: 

try rounding 

branch-and-bound on the restricted LP 

branch-and-price: generate columns at each node 

like with LR, branch on the x decisions not on the master variables   

unlike with LR, the primal (fractional) solution can be used for cut generation

z = min f(x) = ∑
s,a,i

λscaixs
ai

∑
s

λsxs
ai ≥ dai ∀a, i

λs ∈ ℕ ∀s ∈ S

∑
s

λs = |E |



BENDERS DECOMPOSITION 
& BRANCH-AND-CHECK
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Example 1 (continuation) 
REAL-TIME DATACENTER RESOURCE MANAGEMENT

challenge: integrated packing/scheduling problem 

the scheduling decisions depend on the final packing 

but the final packing depends also on the scheduling decisions: 

packing can be proved unfeasible or suboptimal

 44

                                                                                                                                                              

 44
action schedulingVM packing

1 2

VM migrates live  
or migrates off

1 2 1 2



INTEGRATE PACKING/SCHEDULING
current approach: branch first on the packing variables and deactivate the heavy scheduling 

constraints in this phase, then solve scheduling. If unfeasible or suboptimal, then backtrack:

idea: identify a (minimal) partial assignment that causes unfeasibility/suboptimality, and 

generate a nogood constraint to discard it: 

branch-and-check [Hooker00, Thorsteinsson01]. Remark that activating scheduling 
propagation allows to infer inconsistencies from partial assignments (but may be too costly)

logic-based Benders decomposition [Hooker00]: solve packing at optimality before calling the 

scheduling subproblem (usually more efficient if the subproblem is hard)

 nogoods are often problem-specific but can be generated from conflict analysis
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assig n(VMs) ≠ pack(VMs)

assig n(V ) ≠ pack(V ), V ⊆ VMs
ex : du ration(mig ration(VM1)) > incu mbent ⇒ action(VM1) ∈ {stay, stop}

⇒ assig n(VM1) ∈ {initialpack(VM1), noPM}



BENDERS DECOMPOSITION IN MP

variable decomposition: delay the evaluation of the slave subproblem then tighten the master

decomposition scheme from integer linear programming [Benders63] and convex 

programming [Geoffrion72] when strong duality applies to the subproblem (ex LP or convex 

NLP): use duality information to generate nogoods  

different implementations: can evaluate the slave at optimal master solutions (traditional), at 

integer solutions (if the subproblem is easy to check), at fractional solutions (if the 

subproblem can be formulated from partial master solutions)

 easy to implement in modern branch-and-cut solvers with callback constraints

successful on stochastic programming (called the L-shaped method)
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BENDERS DECOMPOSITION FOR MILP

 remember the  lagrangian dual ? 

solve restricted master Mp: get yp.  Solve slave f(yp): get dual up+1 if feasible (rq+1 otherwise). 

Tighten master: Mp+1 then iterate if 
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M = max {cx + dy | Ax + By ≤b, x ≥ 0,y ∈ Y}
= maxy∈Y{dy + f(y)}, f(y) = max{cx | Ax ≤b −By, x ≥ 0}

= min{u (b −By) | u A ≥ c, u ≥ 0}

M = maxy∈Y{dy + z | z ≤u p(b −By) ∀p, 0 ≤rq(b −By) ∀q}
{u A ≥ c, u ≥ 0} = conv((u p)p) + cone((rq)q)

u p(b −By)

y
f(y)

exercise: dualise the coupling constraints 
difference: here Y can be integral 

maxp (dyp + f(yp)) = LB < UB = opt(Mp)



Example 3 
PUMP DESIGN IN WATER DISTRIBUTION NETWORKS

choose pumps, satisfy the demand, minimise investment+operation costs
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challenges: 

• two integrated decision levels: 

• investment/long-term: investment, maintenance, ageing, uncertain demand/price/availability 

• operation/short-term: pump scheduling, non-convex hydraulic constraints 

• various types of networks: looped/branched, fixed/variable-speed pumps, 



master problem: select pumps to install:                    if at least n pumps of type p installed

slave problem: compute the expected minimum operational cost over the next 20 years for 
configuration 

evaluate over D representative  days and one critical day with high demand and one pump 
outage : slave decomposes in D+1 daily pump scheduling problems (non-convex MINLPs)

solve first the the critical day as a satisfaction problem: if unfeasible, at least one more pump 

of any type is required:                           . Using dominance, we can generate other unfeasible 

configurations.

otherwise solve a convex NLP relaxation of each representative day (expected to be feasible)
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ypn = 1

∑
p

ypn*p ≥ 1

s . t : xpnt ≤ypn∀p, n, t

(xt, qt, h t) ∈ Ft ⊆ {0,1}PN × ℝA
+ × ℝV

+

∑
i

qijt = Dd
jt + Sj(h t+ 1 −h jt), ∀t, j ∈ Tanks

fd(y) = min ∑
p,n,t

αptqpnt + βptxpnt
get the operation cost 

and one subgradient 

(from duals of                     ) 

fd(y)
sd(y) ∈ δfd(y)

xpnt ≤ypn

GENERALISED BENDERS WITH STABILISATION  
APPLICATION TO PUMP DESIGN [BONVIN19]

y*, n*p = ∑ y*pn, ∀p



Bender's master:    

with  

if infeasible update LB  

otherwise solve slave and possibly update UB and stabilisation center:  

stop when  

 with level stabilisation: 

BENDERS APPLIED TO PUMP DESIGN  
(CONTINUATION)
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s . t : ypn ≥ ypn+ 1 ∀p, n

y ∈ {0,1}PN, z ∈ ℝD

zd ≥ fd(yk) + sd(yk)(y −yk) ∀d, k = 1..K

ming (y) = ∑
p,n

Cpypn+ ∑
d

Ndzd

∑
p

yNlp
≥ 1 ∀l = 1..L

g K+ 1 := min(g K, ∑
p,n

CpyK+ 1
pn + ∑

d
Nd fd(yK+ 1)), g K+ 1 < g K ⟹ y* := yK+ 1

s . t : ypn ≥ ypn+ 1 ∀p, n

y ∈ {0,1}PN, z ∈ ℝD

g lev ≥ g (yk) + s(yk)(y −yk) ∀k = 1..K

min∥y −y*∥2
2

∑
p

yNlp
≥ 1 ∀l = 1..L

(linear because y binary)

g
K+ 1

= g lev

g lev =
g

K
+ g K

2 , g
0

= 0, g 0 = + ∞

g −g
g

< ϵ



TAKE-AWAY
decomposition methods are flexible solutions for practical composite/large-scale problems

how deep to decompose: trade-off between performance and flexibility

CP/global constraints: easy way to implement decomposition/hybridisation
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TAKE-AWAY
decomposition methods are flexible solutions for practical composite/large-scale problems

how deep to decompose: trade-off between performance and flexibility

CP/global constraints: easy way to implement decomposition/hybridisation

but not so easy to turn an optimisation algorithm to an efficient filtering algorithm

partial decomposition (propagation) to complement with a specialised search strategy 

(sequential branching, branch-and-check )
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TAKE-AWAY
decomposition methods are flexible solutions for practical composite/large-scale problems

how deep to decompose: trade-off between performance and flexibility

CP/global constraints: easy way to implement decomposition/hybridisation

but not so easy to turn an optimisation algorithm to an efficient filtering algorithm

partial decomposition (propagation) to complement with a specialised search strategy 

(sequential branching, branch-and-check )

MP decomposition: lagrangian relaxation, column generation, Benders decomposition 

generic frameworks but their application is problem-specific (subproblem)

naive implementations may not converge well

hybrid CP & MP: complementary orientations local/global, feasibility/optimality, logic/analytic

stay curious: parts of your problem are perhaps well solved with other formalisms
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