
Flexible Optimization: Nurse Scheduling
with Constraint Programming and Automata

Sophie Demassey

Centre de Mathématiques Appliquées, MINES ParisTech
http://sofdem.github.io/

CMP, Gardanne, 3 July 2014

Flexible optimization 1 / 34

http://sofdem.github.io/

mutability of practical recurring problems

example 1: online data center resource management
http://btrp.inria.fr/ [Hermenier09]

Flexible optimization 2 / 34

http://btrp.inria.fr/

mutability of practical recurring problems

example 2: employee timetabling
https://github.com/sofdem/chocoETP [Menana09]

Flexible optimization 3 / 34

https://github.com/sofdem/chocoETP

outline

1 Mutable Problem
Nurse Scheduling

2 Flexible Tools
�nite automata
global constraints

3 Flexible Solutions
multicost-regular = automata + global constraints
ChocoETP = automata + CP + local search

4 Conclusion

Flexible optimization 4 / 34

Nurse Scheduling Problem
an illustration of mutability

Flexible optimization 5 / 34

Nurse Scheduling Problem

I set of nurses

T discrete time horizon 28 days

A set of activities N night, M morning, E evening, R rest

cover constraints Ct / day t between 2 and 3 nurses at night

working rules Ri / nurse i at least 2 mornings a week

R2

C3

Flexible optimization Illustration NSP 5 / 34

Nurse Scheduling Problem

I set of nurses

T discrete time horizon 28 days

A set of activities N night, M morning, E evening, R rest

cover constraints Ct / day t between 2 and 3 nurses at night

working rules Ri / nurse i at least 2 mornings a week

R2

C3

Flexible optimization Illustration NSP 5 / 34

Nurse Scheduling Problem

I set of nurses

T discrete time horizon 28 days

A set of activities N night, M morning, E evening, R rest

cover constraints Ct / day t between 2 and 3 nurses at night

working rules Ri / nurse i at least 2 mornings a week

R2

C3

Flexible optimization Illustration NSP 5 / 34

working rules

Examples:

between 2 and 3 rests every 7 days

no 3 consecutive nights a week

a rest and a night every week-end

mutable, heterogeneous, hard/soft

Flexible optimization Illustration NSP 6 / 34

working rules

Examples:

between 2 and 3 rests every 7 days

no 3 consecutive nights a week

a rest and a night every week-end

mutable, heterogeneous, hard/soft

Flexible optimization Illustration NSP 6 / 34

working rules

Examples:

between 2 and 3 rests every 7 days

no 3 consecutive nights a week

a rest and a night every week-end

mutable, heterogeneous, hard/soft

how ? forbid enforce count

what ? activity stretch pattern

when ? �xed time sliding period �xed period

Flexible optimization Illustration NSP 6 / 34

working rules

Examples:

between 2 and 3 rests every 7 days

no 3 consecutive nights a week

a rest and a night every week-end

mutable, heterogeneous, hard/soft

how ? forbid enforce count

what ? activity stretch pattern

when ? �xed time sliding period �xed period

Flexible optimization Illustration NSP 6 / 34

working rules

Examples:

between 2 and 3 rests every 7 days

no 3 consecutive nights a week

a rest and a night every week-end

mutable, heterogeneous, hard/soft

how ? forbid enforce count

what ? activity stretch pattern

when ? �xed time sliding period �xed period

Flexible optimization Illustration NSP 6 / 34

working rules

Examples:

between 2 and 3 rests every 7 days

no 3 consecutive nights a week

a rest and a night every week-end

mutable, heterogeneous, hard/soft

Flexible optimization Illustration NSP 6 / 34

working rules

Examples:

between 2 and 3 rests every 7 days

no 3 consecutive nights a week

a rest and a night every week-end

mutable, heterogeneous, hard/soft

individual constraint penalties (to minimize)
ex: 5∗occurrence(violation)2

Flexible optimization Illustration NSP 6 / 34

working rules

Examples:

between 2 and 3 rests every 7 days

no 3 consecutive nights a week

a rest and a night every week-end

mutable, heterogeneous, hard/soft

⇒ high-level modelisation tools
⇒ auto-con�gurable algorithms

Flexible optimization Illustration NSP 6 / 34

Flexible tools in Combinatorial Optimization

Flexible optimization Flexible Tools 7 / 34

�nite automata
�exible tool #1

a

p

l
a

o o

a aa
a

b bb
b

b

p
l

b

o

a
o

l ll

Flexible optimization Flexible Tools �nite automata 7 / 34

formal languages

alphabet: Σ a �nite non-empty set of symbols
{a, b}

word/string: w ∈ Σn a �nite sequence of symbols
aaabb

language: L ⊆ Σ∗ a set of words
{ab, ba, aab, bba, aaab, bbba, . . .}

classes and recognizers: regular, context-free, etc.

operations: union, concatenation, closure, etc.

properties: emptiness, membership, universality, etc.

Flexible optimization Flexible Tools �nite automata 7 / 34

formal languages

alphabet: Σ a �nite non-empty set of symbols
{a, b}

word/string: w ∈ Σn a �nite sequence of symbols
aaabb

language: L ⊆ Σ∗ a set of words
{ab, ba, aab, bba, aaab, bbba, . . .}

classes and recognizers: regular, context-free, etc.

operations: union, concatenation, closure, etc.

properties: emptiness, membership, universality, etc.

Flexible optimization Flexible Tools �nite automata 7 / 34

formal languages

alphabet: Σ a �nite non-empty set of symbols
{a, b}

word/string: w ∈ Σn a �nite sequence of symbols
aaabb

language: L ⊆ Σ∗ a set of words
{ab, ba, aab, bba, aaab, bbba, . . .}

classes and recognizers: regular, context-free, etc.

operations: union, concatenation, closure, etc.

properties: emptiness, membership, universality, etc.

Flexible optimization Flexible Tools �nite automata 7 / 34

formal languages

alphabet: Σ a �nite non-empty set of symbols
{a, b}

word/string: w ∈ Σn a �nite sequence of symbols
aaabb

language: L ⊆ Σ∗ a set of words
{ab, ba, aab, bba, aaab, bbba, . . .}

classes and recognizers: regular, context-free, etc.

operations: union, concatenation, closure, etc.

properties: emptiness, membership, universality, etc.

Flexible optimization Flexible Tools �nite automata 7 / 34

generators and recognizers

L = {ab, ba, aab, bba, aaab, bbba, . . .}

1 in�nite regular language, 3 �nite representations:

�nite automaton regular expression

(a+b)|(b+a)

formal grammar

S → aA|bB
A → aA|b
B → bB|a

Flexible optimization Flexible Tools �nite automata 8 / 34

what purpose ?

implicit and concise (�nite) representation

human-readable and machine-processable

theories and algorithms for operations and decision properties

models of discrete systems like languages, protocols

models of working rules

alphabet: set of activities A = {M,E,N,R}
word: w ∈ AT schedule of an employee
language: constrained set of schedules

Flexible optimization Flexible Tools �nite automata 9 / 34

what purpose ?

implicit and concise (�nite) representation

human-readable and machine-processable

theories and algorithms for operations and decision properties

models of discrete systems like languages, protocols

models of working rules

alphabet: set of activities A = {M,E,N,R}
word: w ∈ AT schedule of an employee
language: constrained set of schedules

Flexible optimization Flexible Tools �nite automata 9 / 34

working rules as a language

rule R as a regexp ER [Pesant04]

no more than 2 consecutive nights: ER = ¬(NNN)

feasible schedules as a regular language LR ∩AT with

LR =
⋂
R∈R
L(ER) = L(¬

⋃
R∈R
¬ER)

extension to context-free grammars [Sellman06, Quimper06, Côté10]

L(S → ε, S → aSb) = {anbn | n ∈ N}

extension to weighted automata [Demassey05, Menana09]

for counting, optimization and soft rules

Flexible optimization Flexible Tools �nite automata 10 / 34

working rules as a language

rule R as a regexp ER [Pesant04]

no more than 2 consecutive nights: ER = ¬(NNN)

feasible schedules as a regular language LR ∩AT with

LR =
⋂
R∈R
L(ER) = L(¬

⋃
R∈R
¬ER)

extension to context-free grammars [Sellman06, Quimper06, Côté10]

L(S → ε, S → aSb) = {anbn | n ∈ N}

extension to weighted automata [Demassey05, Menana09]

for counting, optimization and soft rules

Flexible optimization Flexible Tools �nite automata 10 / 34

working rules as a language

rule R as a regexp ER [Pesant04]

no more than 2 consecutive nights: ER = ¬(NNN)

feasible schedules as a regular language LR ∩AT with

LR =
⋂
R∈R
L(ER) = L(¬

⋃
R∈R
¬ER)

extension to context-free grammars [Sellman06, Quimper06, Côté10]

L(S → ε, S → aSb) = {anbn | n ∈ N}

extension to weighted automata [Demassey05, Menana09]

for counting, optimization and soft rules

Flexible optimization Flexible Tools �nite automata 10 / 34

working rules as a language

rule R as a regexp ER [Pesant04]

no more than 2 consecutive nights: ER = ¬(NNN)

feasible schedules as a regular language LR ∩AT with

LR =
⋂
R∈R
L(ER) = L(¬

⋃
R∈R
¬ER)

extension to context-free grammars [Sellman06, Quimper06, Côté10]

L(S → ε, S → aSb) = {anbn | n ∈ N}

extension to weighted automata [Demassey05, Menana09]

for counting, optimization and soft rules

Flexible optimization Flexible Tools �nite automata 10 / 34

working rules as a language

rule R as a regexp ER [Pesant04]

no more than 2 consecutive nights: ER = ¬(NNN)

feasible schedules as a regular language LR ∩AT with

LR =
⋂
R∈R
L(ER) = L(¬

⋃
R∈R
¬ER)

extension to context-free grammars [Sellman06, Quimper06, Côté10]

L(S → ε, S → aSb) = {anbn | n ∈ N}

extension to weighted automata [Demassey05, Menana09]

for counting, optimization and soft rules

Flexible optimization Flexible Tools �nite automata 10 / 34

weighted automata

transition costs, path cost, and bounds

add a vector of costs (index dependent) to each transition

the cost of the word is the sum of the transition costs

restrict the language to words with costs within given bounds

Flexible optimization Flexible Tools �nite automata 11 / 34

working rules as weighted automata [Menana09]

automated modeling tool in ChocoETP

1 model each rule including penalties as a language
⇒ regex or weighted automaton

2 compute the language intersection
⇒ multi-weighted automaton

include parsers for di�erent benchmark formats:

ASAP3 (XML) www.staffrostersolutions.com

NRP10 (XML) www.kuleuven-kortrijk.be

NSPLib (csv) www.projectmanagement.ugent.be

ETPShoe (csv+txt) [Demassey05]

Flexible optimization Flexible Tools �nite automata 12 / 34

www.staffrostersolutions.com
www.kuleuven-kortrijk.be
www.projectmanagement.ugent.be

working rules as weighted automata [Menana09]

automated modeling tool in ChocoETP

1 model each rule including penalties as a language
⇒ regex or weighted automaton

2 compute the language intersection
⇒ multi-weighted automaton

include parsers for di�erent benchmark formats:

ASAP3 (XML) www.staffrostersolutions.com

NRP10 (XML) www.kuleuven-kortrijk.be

NSPLib (csv) www.projectmanagement.ugent.be

ETPShoe (csv+txt) [Demassey05]

Flexible optimization Flexible Tools �nite automata 12 / 34

www.staffrostersolutions.com
www.kuleuven-kortrijk.be
www.projectmanagement.ugent.be

modeling rules (ex: activity count)

at least one rest on week # 2

hard rule, 2 alternatives:

a regexp A{7}((¬R)∗RA∗)A{14}
or A∗ with a counter Z ∈ [1, 28] and ctR = 1 i� t ∈ [8, 14]

soft rule: (ex: �xed penalty of 10 if no rest on week 2)
A∗ with a counter Z ∈ [0, 28] with ctR = 1 i� t ∈ [8, 14]
and an external cost Y ∈ [0, 10] with Y = 10 ⇐⇒ Z < 1

Flexible optimization Flexible Tools �nite automata 13 / 34

modeling rules (ex: activity count)

at least one rest on week # 2

hard rule, 2 alternatives:

a regexp A{7}((¬R)∗RA∗)A{14}
or A∗ with a counter Z ∈ [1, 28] and ctR = 1 i� t ∈ [8, 14]

soft rule: (ex: �xed penalty of 10 if no rest on week 2)
A∗ with a counter Z ∈ [0, 28] with ctR = 1 i� t ∈ [8, 14]
and an external cost Y ∈ [0, 10] with Y = 10 ⇐⇒ Z < 1

Flexible optimization Flexible Tools �nite automata 13 / 34

modeling rules (ex: sliding stretch)

between 3 and 5 consecutive night shifts

hard rule:

soft rule: (hard bounds[0, 7] and quadratic penalty)

with a cost/counter Y = Z ∈ [0,+∞]

Flexible optimization Flexible Tools �nite automata 14 / 34

modeling rules (ex: sliding stretch)

between 3 and 5 consecutive night shifts

hard rule:

soft rule: (hard bounds[0, 7] and quadratic penalty)

with a cost/counter Y = Z ∈ [0,+∞]

Flexible optimization Flexible Tools �nite automata 14 / 34

modeling rules (ex: forbid pattern)

at least one rest after 2 consecutive night shifts

hard rule:

¬(A∗ (NN(¬R))A∗)

soft rule: (ex: linear penalty)

1 build the DFA corresponding to (A∗ (NN(¬R)β∗)∗)∗
2 get Qβ the set of states q with outgoing transition β
3 add a cost c = 1 on every ingoing transition of Qβ
4 associate a cost/counter Y = Z ∈ [0,+∞]

Flexible optimization Flexible Tools �nite automata 15 / 34

modeling rules (ex: forbid pattern)

at least one rest after 2 consecutive night shifts

hard rule:

¬(A∗ (NN(¬R))A∗)
soft rule: (ex: linear penalty)

1 build the DFA corresponding to (A∗ (NN(¬R)β∗)∗)∗
2 get Qβ the set of states q with outgoing transition β
3 add a cost c = 1 on every ingoing transition of Qβ
4 associate a cost/counter Y = Z ∈ [0,+∞]

Flexible optimization Flexible Tools �nite automata 15 / 34

aggregating rules

satisfying a conjunction of rules

R1 ∧R2 holds i�
X ∈ L(Π1) ∩ L(Π2) ∧ Z1 =

∑
t c

1
tXt

∧ Z2 =
∑

t c
2
tXt

WFA intersection in the tropical semiring of higher dimension:
(Π1, [c1, 0]) ∩ (Π2, [0, c2]) ∈WFA(Σ,Rn1+n2)

(our) intersection algorithm in WFA(Σ,Rn)

convert WFA(Σ,Rn) to FA(Σ× Rn) and naive intersection
modi�ed: ((q1, q2), (σ1, σ2), (q′1, q

′
2)) ∈ ∆∩ ⇐⇒

(q1, σ1, q′1) ∈ ∆1 ∧ (q2, σ2, q′2) ∈ ∆2 ∧ symbol(σ1) = symbol(σ2)

Flexible optimization Flexible Tools �nite automata 16 / 34

aggregating rules

satisfying a conjunction of rules

R1 ∧R2 holds i�
X ∈ L(Π1) ∩ L(Π2) ∧ Z1 =

∑
t c

1
tXt

∧ Z2 =
∑

t c
2
tXt

WFA intersection in the tropical semiring of higher dimension:
(Π1, [c1, 0]) ∩ (Π2, [0, c2]) ∈WFA(Σ,Rn1+n2)

(our) intersection algorithm in WFA(Σ,Rn)

convert WFA(Σ,Rn) to FA(Σ× Rn) and naive intersection
modi�ed: ((q1, q2), (σ1, σ2), (q′1, q

′
2)) ∈ ∆∩ ⇐⇒

(q1, σ1, q′1) ∈ ∆1 ∧ (q2, σ2, q′2) ∈ ∆2 ∧ symbol(σ1) = symbol(σ2)

Flexible optimization Flexible Tools �nite automata 16 / 34

aggregating rules

satisfying a conjunction of rules

R1 ∧R2 holds i�
X ∈ L(Π1) ∩ L(Π2) ∧ Z1 =

∑
t c

1
tXt

∧ Z2 =
∑

t c
2
tXt

WFA intersection in the tropical semiring of higher dimension:
(Π1, [c1, 0]) ∩ (Π2, [0, c2]) ∈WFA(Σ,Rn1+n2)

(our) intersection algorithm in WFA(Σ,Rn)

convert WFA(Σ,Rn) to FA(Σ× Rn) and naive intersection
modi�ed: ((q1, q2), (σ1, σ2), (q′1, q

′
2)) ∈ ∆∩ ⇐⇒

(q1, σ1, q′1) ∈ ∆1 ∧ (q2, σ2, q′2) ∈ ∆2 ∧ symbol(σ1) = symbol(σ2)

Flexible optimization Flexible Tools �nite automata 16 / 34

aggregating rules

satisfying a conjunction of rules

R1 ∧R2 holds i�
X ∈ L(Π1) ∩ L(Π2) ∧ Z1 =

∑
t c

1
tXt

∧ Z2 =
∑

t c
2
tXt

WFA intersection in the tropical semiring of higher dimension:
(Π1, [c1, 0]) ∩ (Π2, [0, c2]) ∈WFA(Σ,Rn1+n2)

(our) intersection algorithm in WFA(Σ,Rn)

convert WFA(Σ,Rn) to FA(Σ× Rn) and naive intersection
modi�ed: ((q1, q2), (σ1, σ2), (q′1, q

′
2)) ∈ ∆∩ ⇐⇒

(q1, σ1, q′1) ∈ ∆1 ∧ (q2, σ2, q′2) ∈ ∆2 ∧ symbol(σ1) = symbol(σ2)

Flexible optimization Flexible Tools �nite automata 16 / 34

global constraints
�exible tool #2

Flexible optimization Flexible Tools global constraints 17 / 34

constraint satisfaction problem (CSP)

a set of variables X1, X2, . . . , Xn

on �nite (discrete) domains D1, D2, . . . , Dn

related by constraints C1, . . . , Cm

A solution:

(x1, . . . , xn) ∈ D1 × · · · ×Dn s.t.
Cj(x1, . . . , xn) holds ∀j = 1, . . . ,m

Flexible optimization Flexible Tools global constraints 17 / 34

constraint satisfaction problem (CSP)

a set of variables X1, X2, . . . , Xn

on �nite (discrete) domains D1, D2, . . . , Dn

related by constraints C1, . . . , Cm

A solution:

(x1, . . . , xn) ∈ D1 × · · · ×Dn s.t.
Cj(x1, . . . , xn) holds ∀j = 1, . . . ,m

Flexible optimization Flexible Tools global constraints 17 / 34

sudoku as a CSP

X0, X1, . . . , X80

Di = [0, 9] ∀i ∈ [0, 80]

X0 = 2, X1 = 6, . . .

Xi 6= Xj ∀(i, j) ∈ L
Xi 6= Xj ∀(i, j) ∈ C
Xi 6= Xj ∀(i, j) ∈ S

credit: N. Jussien

arc consistency of X0 6= X7: D0 = {2} =⇒ �lter 2 6∈ D7

Flexible optimization Flexible Tools global constraints 18 / 34

sudoku as a CSP

X0, X1, . . . , X80

Di = [0, 9] ∀i ∈ [0, 80]

X0 = 2, X1 = 6, . . .

Xi 6= Xj ∀(i, j) ∈ L
Xi 6= Xj ∀(i, j) ∈ C
Xi 6= Xj ∀(i, j) ∈ S

arc consistency of X0 6= X7: D0 = {2} =⇒ �lter 2 6∈ D7

Flexible optimization Flexible Tools global constraints 18 / 34

backtracking algorithm aka �branch-and-propagate�

1 propagation:
for each constraint,

infer inconsistent value assignments
apply domain reduction

until �x point

2 tree search:
if domains are singleton, then solution found
if no domain is empty, then assign a free variable to a value
otherwise, backtrack

Flexible optimization Flexible Tools global constraints 19 / 34

sudoku as a CSP with global constraints

X0, X1, . . . , X80

Di = [0, 9] ∀i ∈ [0, 80]

X0 = 2, X1 = 6, . . .

alldifferent(Xi)i∈l ∀l ∈ L
alldifferent(Xi)i∈c ∀c ∈ C
alldifferent(Xi)i∈s ∀s ∈ S

global AC: X43 6= 7
alldifferent ≈ bipartite
matching O(m

√
n) [Régin 94]

Flexible optimization Flexible Tools global constraints 20 / 34

sudoku as a CSP with global constraints

X0, X1, . . . , X80

Di = [0, 9] ∀i ∈ [0, 80]

X0 = 2, X1 = 6, . . .

alldifferent(Xi)i∈l ∀l ∈ L
alldifferent(Xi)i∈c ∀c ∈ C
alldifferent(Xi)i∈s ∀s ∈ S

global AC: X43 6= 7

alldifferent ≈ bipartite
matching O(m

√
n) [Régin 94]

Flexible optimization Flexible Tools global constraints 20 / 34

sudoku as a CSP with global constraints

X0, X1, . . . , X80

Di = [0, 9] ∀i ∈ [0, 80]

X0 = 2, X1 = 6, . . .

alldifferent(Xi)i∈l ∀l ∈ L
alldifferent(Xi)i∈c ∀c ∈ C
alldifferent(Xi)i∈s ∀s ∈ S

global AC: X43 6= 7
alldifferent ≈ bipartite
matching O(m

√
n) [Régin 94]

Flexible optimization Flexible Tools global constraints 20 / 34

examples of value global constraints

alldifferent((X1, X2, ..., Xn)) [Régin 94]

global-cardinality((X1, X2, ..., Xn), (lj)j , (uj)j) [Régin 96]

among(Z, (X1, X2, ..., Xn),V) [Bessière et al. 05]

soft-alldifferent(Z, (X1, X2, ..., Xn)) [Petit et al. 01]

mincost-alldifferent(Z, (X1, X2, ..., Xn), (cij)i,j) [Sellmann 02]

see also the Global Constraint Catalog http://sofdem.github.io/gccat/

from consistency to �ltering

robustness and incrementality

level of consistency vs. computation time

Flexible optimization Flexible Tools global constraints 21 / 34

http://sofdem.github.io/gccat/

examples of value global constraints

alldifferent((X1, X2, ..., Xn)) [Régin 94]

global-cardinality((X1, X2, ..., Xn), (lj)j , (uj)j) [Régin 96]

among(Z, (X1, X2, ..., Xn),V) [Bessière et al. 05]

soft-alldifferent(Z, (X1, X2, ..., Xn)) [Petit et al. 01]

mincost-alldifferent(Z, (X1, X2, ..., Xn), (cij)i,j) [Sellmann 02]

see also the Global Constraint Catalog http://sofdem.github.io/gccat/

from consistency to �ltering

robustness and incrementality

level of consistency vs. computation time

Flexible optimization Flexible Tools global constraints 21 / 34

http://sofdem.github.io/gccat/

a CSP model for NSP

R

C

Flexible optimization Flexible Tools global constraints 22 / 34

a CSP model for NSP

R

C

global_cardinality (gcc)

Flexible optimization Flexible Tools global constraints 22 / 34

a CSP model for NSP

R

C

global_cardinality (gcc)

a

p

l
a

o o

a aa
a

b bb
b

b

p
l

b

o

a
o

l ll

Flexible optimization Flexible Tools global constraints 22 / 34

language global constraints
�exible solution #1

Flexible optimization Flexible Solutions
multicost-regular = automata
+ global constraints 23 / 34

CSPs as languages

CSP solution (x1, x2, . . . , xn) = word x1x2 . . . xn ∈ D∗

CSP model = language representation

(un)satis�ability = emptiness

language global constraint family

language((X1, X2, ..., Xn),L) ≡ X1X2 . . . Xn ∈ L

regular((X1, X2, ..., Xn),Π) [Pesant 04]

cost-regular(Z, (X1, X2, ..., Xn),Π, c) [Demassey 05]

context-free((X1, X2, ..., Xn), G) [Sellman 06, Quimper 06]

multicost-regular((Z1, Z2, ..., Zp), (X1, X2, ..., Xn),Π, c) [Menana 09]

Flexible optimization Flexible Solutions
multicost-regular = automata
+ global constraints 23 / 34

CSPs as languages

CSP solution (x1, x2, . . . , xn) = word x1x2 . . . xn ∈ D∗

CSP model = language representation

(un)satis�ability = emptiness

language global constraint family

language((X1, X2, ..., Xn),L) ≡ X1X2 . . . Xn ∈ L

regular((X1, X2, ..., Xn),Π) [Pesant 04]

cost-regular(Z, (X1, X2, ..., Xn),Π, c) [Demassey 05]

context-free((X1, X2, ..., Xn), G) [Sellman 06, Quimper 06]

multicost-regular((Z1, Z2, ..., Zp), (X1, X2, ..., Xn),Π, c) [Menana 09]

Flexible optimization Flexible Solutions
multicost-regular = automata
+ global constraints 23 / 34

CSPs as languages

CSP solution (x1, x2, . . . , xn) = word x1x2 . . . xn ∈ D∗

CSP model = language representation

(un)satis�ability = emptiness

language global constraint family

language((X1, X2, ..., Xn),L) ≡ X1X2 . . . Xn ∈ L

regular((X1, X2, ..., Xn),Π) [Pesant 04]

cost-regular(Z, (X1, X2, ..., Xn),Π, c) [Demassey 05]

context-free((X1, X2, ..., Xn), G) [Sellman 06, Quimper 06]

multicost-regular((Z1, Z2, ..., Zp), (X1, X2, ..., Xn),Π, c) [Menana 09]

Flexible optimization Flexible Solutions
multicost-regular = automata
+ global constraints 23 / 34

language (< X1, . . . , Xn >,L)

the satis�ability problem

is L ∩ (D1×· · ·×Dn) empty ?

the consistency problem for v ∈ Di

is L ∩ (D1×· · ·×Di−1×{v}×Di+1×· · ·×Dn) empty ?

Flexible optimization Flexible Solutions
multicost-regular = automata
+ global constraints 24 / 34

regular (< X1, . . . , Xn >,Π = (Q,D,∆, q0, F))

graph connexity [Pesant03]

L(Π) ∩ (D1×· · ·×Dn)

state-decomposition [Beldiceanu04]{
Si ∈ Q, i = 1..n

(Si, Xi, Si+1) ∈ ∆, i = 1..n

O(|∆n|) with |∆n| � n|∆|

Flexible optimization Flexible Solutions
multicost-regular = automata
+ global constraints 25 / 34

regular (< X1, . . . , Xn >,Π = (Q,D,∆, q0, F))

graph connexity [Pesant03]

L(Π) ∩ (D1×· · ·×Dn)

state-decomposition [Beldiceanu04]{
Si ∈ Q, i = 1..n

(Si, Xi, Si+1) ∈ ∆, i = 1..n

O(|∆n|) with |∆n| � n|∆|

Flexible optimization Flexible Solutions
multicost-regular = automata
+ global constraints 25 / 34

regular (< X1, . . . , Xn >,Π = (Q,D,∆, q0, F))

graph connexity [Pesant03]

L(Π) ∩ (D1×· · ·×Dn)

state-decomposition [Beldiceanu04]{
Si ∈ Q, i = 1..n

(Si, Xi, Si+1) ∈ ∆, i = 1..n

O(|∆n|) with |∆n| � n|∆|

Flexible optimization Flexible Solutions
multicost-regular = automata
+ global constraints 25 / 34

regular (< X1, . . . , Xn >,Π = (Q,D,∆, q0, F))

graph connexity [Pesant03]

L(Π) ∩ (D1×· · ·×Dn)

state-decomposition [Beldiceanu04]{
Si ∈ Q, i = 1..n

(Si, Xi, Si+1) ∈ ∆, i = 1..n

O(|∆n|) with |∆n| � n|∆|

Flexible optimization Flexible Solutions
multicost-regular = automata
+ global constraints 25 / 34

regular (< X1, . . . , Xn >,Π = (Q,D,∆, q0, F))

graph connexity [Pesant03]

L(Π) ∩ (D1×· · ·×Dn)

state-decomposition [Beldiceanu04]{
Si ∈ Q, i = 1..n

(Si, Xi, Si+1) ∈ ∆, i = 1..n

O(|∆n|) with |∆n| � n|∆|

Flexible optimization Flexible Solutions
multicost-regular = automata
+ global constraints 25 / 34

regular (< X1, . . . , Xn >,Π = (Q,D,∆, q0, F))

graph connexity [Pesant03]

L(Π) ∩ (D1×· · ·×Dn)

state-decomposition [Beldiceanu04]{
Si ∈ Q, i = 1..n

(Si, Xi, Si+1) ∈ ∆, i = 1..n

O(|∆n|) with |∆n| � n|∆|

Flexible optimization Flexible Solutions
multicost-regular = automata
+ global constraints 25 / 34

regular (< X1, . . . , Xn >,Π = (Q,D,∆, q0, F))

graph connexity [Pesant03]

L(Π) ∩ (D1×· · ·×Dn)

state-decomposition [Beldiceanu04]{
Si ∈ Q, i = 1..n

(Si, Xi, Si+1) ∈ ∆, i = 1..n

O(|∆n|) with |∆n| � n|∆|

Flexible optimization Flexible Solutions
multicost-regular = automata
+ global constraints 25 / 34

regular (< X1, . . . , Xn >,Π = (Q,D,∆, q0, F))

graph connexity [Pesant03]

L(Π) ∩ (D1×· · ·×Dn)

state-decomposition [Beldiceanu04]{
Si ∈ Q, i = 1..n

(Si, Xi, Si+1) ∈ ∆, i = 1..n

O(|∆n|) with |∆n| � n|∆|

Flexible optimization Flexible Solutions
multicost-regular = automata
+ global constraints 25 / 34

optimization variants

cost-regular(Z,< X1, . . . , Xn >,Π, c)

≡ X1X2 . . . Xn ∈ L(Π) ∧
∑

i ciXi = Z

shortest/longest path problem

O(|∆n|) bound consistency on Z

Ilog Solver, Choco [Demassey, Pesant & Rousseau 05]

multicost-regular(< Z1, . . . , Zp >,< X1, . . . , Xn >,Π, < c1, . . . , cp >)

≡ X1X2 . . . Xn ∈ L(Π) ∧
∑

i c
k
iXi

= Zk(∀k)

resource-constrained SPP/LPP (NP-hard)

lagrangian relaxation O(K|∆n|)
Choco [Menana & Demassey 09]

Flexible optimization Flexible Solutions
multicost-regular = automata
+ global constraints 26 / 34

optimization variants

cost-regular(Z,< X1, . . . , Xn >,Π, c)

≡ X1X2 . . . Xn ∈ L(Π) ∧
∑

i ciXi = Z

shortest/longest path problem

O(|∆n|) bound consistency on Z

Ilog Solver, Choco [Demassey, Pesant & Rousseau 05]

multicost-regular(< Z1, . . . , Zp >,< X1, . . . , Xn >,Π, < c1, . . . , cp >)

≡ X1X2 . . . Xn ∈ L(Π) ∧
∑

i c
k
iXi

= Zk(∀k)

resource-constrained SPP/LPP (NP-hard)

lagrangian relaxation O(K|∆n|)
Choco [Menana & Demassey 09]

Flexible optimization Flexible Solutions
multicost-regular = automata
+ global constraints 26 / 34

bene�t of aggregation (1)

∑
individual aggregate unfolded

full-time
#states 5,782 682 230
#transitions 40,402 4,768 400

part-time
#states 4,401 385 421
#transitions 30,729 2,689 681

Size of the automata for the ASAP/GPost hard instance
for full-time and part-time contracts, n = 28

Flexible optimization Flexible Solutions
multicost-regular = automata
+ global constraints 27 / 34

bene�t of aggregation (2)

a

p

l
a

o o

a aa
a

b bb
b

b

p
l

b

o

a
o

l ll

+ assignment costs to minimize
+ cardinality (l, p, o) constraints
1 employee, 96 timeslots
number of working activities (a, b, ...) between 1 and 50
10 instances each
default backtracking of Choco in 10 minutes

multicost-regular
∧

cost-regular cost-regular ∧ gcc

|A| proof best #nodes proof best #nodes proof best #nodes
1 0.0 0.0 41 1.2 1.0 3654 0.3 0.2 225
2 0.1 0.1 68 2.1 0.9 1563 0.6 0.3 393
4 0.2 0.1 67 13.9 8.8 6401 2.9 2.3 1199
8 0.3 0.2 52 101.7 49.8 19637 17.9 13.2 3597
10 0.4 0.4 63 297.2 167.8 44530 50.0 47.7 7615
15 0.8 0.7 63 50% unsolved 58.1 47.1 6233
20 1.2 1.0 64 90% unsolved 58.1 44.0 4577
30 1.8 1.5 62 90% unsolved 20% unsolved
50 5.0 4.8 65 100% unsolved 60% unsolved

best = times (s) to �nd an optimum, proof = time (s) to prove optimality

Flexible optimization Flexible Solutions
multicost-regular = automata
+ global constraints 28 / 34

bene�t of aggregation (2)

a

p

l
a

o o

a aa
a

b bb
b

b

p
l

b

o

a
o

l ll

+ assignment costs to minimize
+ cardinality (l, p, o) constraints
1 employee, 96 timeslots
number of working activities (a, b, ...) between 1 and 50
10 instances each
default backtracking of Choco in 10 minutes

multicost-regular
∧

cost-regular cost-regular ∧ gcc

|A| proof best #nodes proof best #nodes proof best #nodes
1 0.0 0.0 41 1.2 1.0 3654 0.3 0.2 225
2 0.1 0.1 68 2.1 0.9 1563 0.6 0.3 393
4 0.2 0.1 67 13.9 8.8 6401 2.9 2.3 1199
8 0.3 0.2 52 101.7 49.8 19637 17.9 13.2 3597
10 0.4 0.4 63 297.2 167.8 44530 50.0 47.7 7615
15 0.8 0.7 63 50% unsolved 58.1 47.1 6233
20 1.2 1.0 64 90% unsolved 58.1 44.0 4577
30 1.8 1.5 62 90% unsolved 20% unsolved
50 5.0 4.8 65 100% unsolved 60% unsolved

best = times (s) to �nd an optimum, proof = time (s) to prove optimality

Flexible optimization Flexible Solutions
multicost-regular = automata
+ global constraints 28 / 34

ChocoETP = DFA + CP + LNS
�exible solution for NSP

Flexible optimization Flexible Solutions
ChocoETP = automata + CP
+ local search 29 / 34

a chief nurse-friendly solution ?

1 high-level language to express rules

2 automated tool to model rules

3 automated tool to agregate rules

4 automated tool to solve rules

5 automated tool to minimize penalties → CP + LNS

ChocoETP

CP-based Large Neighborhood Search solver

pluggable parsers

based on Choco and dk.brics Java libraries

https://github.com/sofdem/chocoETP

Flexible optimization Flexible Solutions
ChocoETP = automata + CP
+ local search 29 / 34

https://github.com/sofdem/chocoETP

a chief nurse-friendly solution ?

1 high-level language to express rules

2 automated tool to model rules → WFA/regexp

3 automated tool to agregate rules → WFA intersection

4 automated tool to solve rules → multicost-regular

5 automated tool to minimize penalties → CP + LNS

ChocoETP

CP-based Large Neighborhood Search solver

pluggable parsers

based on Choco and dk.brics Java libraries

https://github.com/sofdem/chocoETP

Flexible optimization Flexible Solutions
ChocoETP = automata + CP
+ local search 29 / 34

https://github.com/sofdem/chocoETP

a chief nurse-friendly solution ?

1 high-level language to express rules

2 automated tool to model rules → WFA/regexp

3 automated tool to agregate rules → WFA intersection

4 automated tool to solve rules → multicost-regular

5 automated tool to minimize penalties → CP + LNS

ChocoETP

CP-based Large Neighborhood Search solver

pluggable parsers

based on Choco and dk.brics Java libraries

https://github.com/sofdem/chocoETP

Flexible optimization Flexible Solutions
ChocoETP = automata + CP
+ local search 29 / 34

https://github.com/sofdem/chocoETP

a chief nurse-friendly solution ?

1 high-level language to express rules

2 automated tool to model rules → WFA/regexp

3 automated tool to agregate rules → WFA intersection

4 automated tool to solve rules → multicost-regular

5 automated tool to minimize penalties → CP + LNS

ChocoETP

CP-based Large Neighborhood Search solver

pluggable parsers

based on Choco and dk.brics Java libraries

https://github.com/sofdem/chocoETP

Flexible optimization Flexible Solutions
ChocoETP = automata + CP
+ local search 29 / 34

https://github.com/sofdem/chocoETP

�exibility and e�ectiveness

hard ASAP instances
[Métivier 09] ChocoETP

|I × T | cpu cpu nodes bk
Azaiez 13×28 233 6.3 4006 5574
Sintef 24×21 - 1.4 165 53
Millar-2S-1.1 8×12 1 0.5 29 0
Millar-2S-1 8×12 1 0.3 25 0
Ozkarahan 14×7 1 0.2 24 5

soft ASAP instances
[Métivier 09] ChocoETP

Soft |I × T | opt penalty cpu penalty cpu
GPost 8×28 5 8 234 5 75
GPost-B 8×28 3 - - 3 3
LLR 27×7 301 314 119 320 114
Valouxis 16×28 20 160 3780 20 4879
ORTEC01 16×31 270 - - 290 2920

Comparison with an ad-hoc LNS solver [Métivier09]

Flexible optimization Flexible Solutions
ChocoETP = automata + CP
+ local search 31 / 34

Conclusion

Flexible optimization Conclusion 32 / 34

�exible optimization

modular solutions for recurring problems with mutable constraints

key of �exibility: decomposed models

key of e�ectiveness: aggregated algorithms

=⇒ automated composition =⇒ constraint learning

tools for �exibility

automata and graphs

global constraints and propagation

decomposition methods in linear programming (e.g. [Demassey06])

linearization (e.g. [Côté13])

Flexible optimization Conclusion 32 / 34

�exible optimization

modular solutions for recurring problems with mutable constraints

key of �exibility: decomposed models

key of e�ectiveness: aggregated algorithms

=⇒ automated composition

=⇒ constraint learning

tools for �exibility

automata and graphs

global constraints and propagation

decomposition methods in linear programming (e.g. [Demassey06])

linearization (e.g. [Côté13])

Flexible optimization Conclusion 32 / 34

�exible optimization

modular solutions for recurring problems with mutable constraints

key of �exibility: decomposed models

key of e�ectiveness: aggregated algorithms

=⇒ automated composition =⇒ constraint learning

tools for �exibility

automata and graphs

global constraints and propagation

decomposition methods in linear programming (e.g. [Demassey06])

linearization (e.g. [Côté13])

Flexible optimization Conclusion 32 / 34

�exible optimization

modular solutions for recurring problems with mutable constraints

key of �exibility: decomposed models

key of e�ectiveness: aggregated algorithms

=⇒ automated composition =⇒ constraint learning

tools for �exibility

automata and graphs

global constraints and propagation

decomposition methods in linear programming (e.g. [Demassey06])

linearization (e.g. [Côté13])

Flexible optimization Conclusion 32 / 34

Bibliography

Menana (2011) Automates et programmation par contraintes pour la
plani�cation de personnel, PhD Thesis.

Menana, Demassey (2010) Weighted Automata, Constraint Programming, and
Large Neighborhood Search, Nurse Rostering Competition at PATAT'10.

Menana, Demassey (2009) Sequencing and counting with the multicost-regular
constraint, LNCS 5547: 178 - 192.

Demassey, Pesant, Rousseau (2006) A Cost-Regular based Hybrid Column
Generation Approach, Constraints 11 (4) : 315 - 333.

Demassey, Pesant, Rousseau (2005) Constraint programming based column
generation for employee timetabling LNCS 3524: 140 - 154.

Flexible optimization Conclusion 33 / 34

Bibliography

Pesant (2004) A regular language membership constraint for �nite sequences of
variables, CP'04, 482-495.

Sellmann (2006) The theory of grammar constraints, CP'06, 530-544.

Côté, Gendron, Quimper, Rousseau (2007) Formal languages for integer
programming modeling of shift scheduling problems, Constraints, 1-23.

Pesant (2008) Constraint-based rostering, PATAT'08.

Métivier, Boizumault, Loudni (2009) Solving nurse rostering problems using soft
global constraints, CP'09, 73-87.

Coté, Gendron, Rousseau (2013) Grammar-Based Column Generation for
Personalized Multi-Activity Shift Scheduling, INFORMS JoC, 25:3, 461-474.

Flexible optimization Conclusion 34 / 34

	Mutable Problem
	Nurse Scheduling

	Flexible Tools
	finite automata
	global constraints

	Flexible Solutions
	multicost-regular = automata + global constraints
	ChocoETP = automata + CP + local search

	Conclusion

