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mutability of practical recurring problems

example 1: online data center resource management
http://btrp.inria.fr/ [Hermenier09]
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mutability of practical recurring problems

example 2: employee timetabling
https://github.com/sofdem/chocoETP [Menana09]
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Nurse Scheduling Problem
an illustration of mutability
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Nurse Scheduling Problem

I set of nurses

T discrete time horizon 28 days

A set of activities N night, M morning, E evening, R rest

cover constraints Ct / day t between 2 and 3 nurses at night

working rules Ri / nurse i at least 2 mornings a week

R2

C3
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working rules

Examples:

between 2 and 3 rests every 7 days

no 3 consecutive nights a week

a rest and a night every week-end

mutable, heterogeneous, hard/soft
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mutable, heterogeneous, hard/soft

how ? forbid enforce count

what ? activity stretch pattern

when ? �xed time sliding period �xed period
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working rules

Examples:

between 2 and 3 rests every 7 days

no 3 consecutive nights a week

a rest and a night every week-end

mutable, heterogeneous, hard/soft

individual constraint penalties (to minimize)
ex: 5∗occurrence(violation)2
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working rules

Examples:

between 2 and 3 rests every 7 days

no 3 consecutive nights a week

a rest and a night every week-end

mutable, heterogeneous, hard/soft

⇒ high-level modelisation tools
⇒ auto-con�gurable algorithms
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Flexible tools in Combinatorial Optimization
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�nite automata
�exible tool #1
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formal languages

alphabet: Σ a �nite non-empty set of symbols
{a, b}

word/string: w ∈ Σn a �nite sequence of symbols
aaabb

language: L ⊆ Σ∗ a set of words
{ab, ba, aab, bba, aaab, bbba, . . .}

classes and recognizers: regular, context-free, etc.

operations: union, concatenation, closure, etc.

properties: emptiness, membership, universality, etc.
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generators and recognizers

L = {ab, ba, aab, bba, aaab, bbba, . . .}

1 in�nite regular language, 3 �nite representations:

�nite automaton regular expression

(a+b)|(b+a)

formal grammar

S → aA|bB
A → aA|b
B → bB|a
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what purpose ?

implicit and concise (�nite) representation

human-readable and machine-processable

theories and algorithms for operations and decision properties

models of discrete systems like languages, protocols

models of working rules

alphabet: set of activities A = {M,E,N,R}
word: w ∈ AT schedule of an employee
language: constrained set of schedules
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working rules as a language

rule R as a regexp ER [Pesant04]

no more than 2 consecutive nights: ER = ¬(NNN)

feasible schedules as a regular language LR ∩AT with

LR =
⋂
R∈R
L(ER) = L(¬

⋃
R∈R
¬ER)

extension to context-free grammars [Sellman06, Quimper06, Côté10]

L(S → ε, S → aSb) = {anbn | n ∈ N}

extension to weighted automata [Demassey05, Menana09]

for counting, optimization and soft rules
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weighted automata

transition costs, path cost, and bounds

add a vector of costs (index dependent) to each transition

the cost of the word is the sum of the transition costs

restrict the language to words with costs within given bounds
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working rules as weighted automata [Menana09]

automated modeling tool in ChocoETP

1 model each rule including penalties as a language
⇒ regex or weighted automaton

2 compute the language intersection
⇒ multi-weighted automaton

include parsers for di�erent benchmark formats:

ASAP3 (XML) www.staffrostersolutions.com

NRP10 (XML) www.kuleuven-kortrijk.be

NSPLib (csv) www.projectmanagement.ugent.be

ETPShoe (csv+txt) [Demassey05]
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modeling rules (ex: activity count)

at least one rest on week # 2

hard rule, 2 alternatives:

a regexp A{7}((¬R)∗RA∗)A{14}
or A∗ with a counter Z ∈ [1, 28] and ctR = 1 i� t ∈ [8, 14]

soft rule: (ex: �xed penalty of 10 if no rest on week 2)
A∗ with a counter Z ∈ [0, 28] with ctR = 1 i� t ∈ [8, 14]
and an external cost Y ∈ [0, 10] with Y = 10 ⇐⇒ Z < 1

Flexible optimization Flexible Tools �nite automata 13 / 34



modeling rules (ex: activity count)

at least one rest on week # 2

hard rule, 2 alternatives:

a regexp A{7}((¬R)∗RA∗)A{14}
or A∗ with a counter Z ∈ [1, 28] and ctR = 1 i� t ∈ [8, 14]

soft rule: (ex: �xed penalty of 10 if no rest on week 2)
A∗ with a counter Z ∈ [0, 28] with ctR = 1 i� t ∈ [8, 14]
and an external cost Y ∈ [0, 10] with Y = 10 ⇐⇒ Z < 1

Flexible optimization Flexible Tools �nite automata 13 / 34



modeling rules (ex: sliding stretch)

between 3 and 5 consecutive night shifts

hard rule:

soft rule: (hard bounds[0, 7] and quadratic penalty)

with a cost/counter Y = Z ∈ [0,+∞]
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modeling rules (ex: forbid pattern)

at least one rest after 2 consecutive night shifts

hard rule:

¬(A∗ (NN(¬R))A∗)

soft rule: (ex: linear penalty)

1 build the DFA corresponding to (A∗ (NN(¬R)β∗)∗)∗
2 get Qβ the set of states q with outgoing transition β
3 add a cost c = 1 on every ingoing transition of Qβ
4 associate a cost/counter Y = Z ∈ [0,+∞]
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aggregating rules

satisfying a conjunction of rules

R1 ∧R2 holds i�
X ∈ L(Π1) ∩ L(Π2) ∧ Z1 =

∑
t c

1
tXt

∧ Z2 =
∑

t c
2
tXt

WFA intersection in the tropical semiring of higher dimension:
(Π1, [c1, 0]) ∩ (Π2, [0, c2]) ∈WFA(Σ,Rn1+n2 )

(our) intersection algorithm in WFA(Σ,Rn)

convert WFA(Σ,Rn) to FA(Σ× Rn) and naive intersection
modi�ed: ((q1, q2), (σ1, σ2), (q′1, q

′
2)) ∈ ∆∩ ⇐⇒

(q1, σ1, q′1) ∈ ∆1 ∧ (q2, σ2, q′2) ∈ ∆2 ∧ symbol(σ1) = symbol(σ2)
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global constraints
�exible tool #2
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constraint satisfaction problem (CSP)

a set of variables X1, X2, . . . , Xn

on �nite (discrete) domains D1, D2, . . . , Dn

related by constraints C1, . . . , Cm

A solution:

(x1, . . . , xn) ∈ D1 × · · · ×Dn s.t.
Cj(x1, . . . , xn) holds ∀j = 1, . . . ,m
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sudoku as a CSP

X0, X1, . . . , X80

Di = [0, 9] ∀i ∈ [0, 80]

X0 = 2, X1 = 6, . . .

Xi 6= Xj ∀(i, j) ∈ L
Xi 6= Xj ∀(i, j) ∈ C
Xi 6= Xj ∀(i, j) ∈ S

credit: N. Jussien

arc consistency of X0 6= X7: D0 = {2} =⇒ �lter 2 6∈ D7
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backtracking algorithm aka �branch-and-propagate�

1 propagation:
for each constraint,

infer inconsistent value assignments
apply domain reduction

until �x point

2 tree search:
if domains are singleton, then solution found
if no domain is empty, then assign a free variable to a value
otherwise, backtrack

Flexible optimization Flexible Tools global constraints 19 / 34



sudoku as a CSP with global constraints

X0, X1, . . . , X80

Di = [0, 9] ∀i ∈ [0, 80]

X0 = 2, X1 = 6, . . .

alldifferent(Xi)i∈l ∀l ∈ L
alldifferent(Xi)i∈c ∀c ∈ C
alldifferent(Xi)i∈s ∀s ∈ S

global AC: X43 6= 7
alldifferent ≈ bipartite
matching O(m

√
n) [Régin 94]
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examples of value global constraints

alldifferent((X1, X2, ..., Xn)) [Régin 94]

global-cardinality((X1, X2, ..., Xn), (lj)j , (uj)j) [Régin 96]

among(Z, (X1, X2, ..., Xn),V) [Bessière et al. 05]

soft-alldifferent(Z, (X1, X2, ..., Xn)) [Petit et al. 01]

mincost-alldifferent(Z, (X1, X2, ..., Xn), (cij)i,j) [Sellmann 02]

see also the Global Constraint Catalog http://sofdem.github.io/gccat/

from consistency to �ltering

robustness and incrementality

level of consistency vs. computation time

Flexible optimization Flexible Tools global constraints 21 / 34

http://sofdem.github.io/gccat/


examples of value global constraints

alldifferent((X1, X2, ..., Xn)) [Régin 94]

global-cardinality((X1, X2, ..., Xn), (lj)j , (uj)j) [Régin 96]

among(Z, (X1, X2, ..., Xn),V) [Bessière et al. 05]

soft-alldifferent(Z, (X1, X2, ..., Xn)) [Petit et al. 01]

mincost-alldifferent(Z, (X1, X2, ..., Xn), (cij)i,j) [Sellmann 02]

see also the Global Constraint Catalog http://sofdem.github.io/gccat/

from consistency to �ltering

robustness and incrementality

level of consistency vs. computation time

Flexible optimization Flexible Tools global constraints 21 / 34

http://sofdem.github.io/gccat/


a CSP model for NSP

R

C
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language global constraints
�exible solution #1
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multicost-regular = automata
+ global constraints 23 / 34



CSPs as languages

CSP solution (x1, x2, . . . , xn) = word x1x2 . . . xn ∈ D∗

CSP model = language representation

(un)satis�ability = emptiness

language global constraint family

language((X1, X2, ..., Xn),L) ≡ X1X2 . . . Xn ∈ L

regular((X1, X2, ..., Xn),Π) [Pesant 04]

cost-regular(Z, (X1, X2, ..., Xn),Π, c) [Demassey 05]

context-free((X1, X2, ..., Xn), G) [Sellman 06, Quimper 06]

multicost-regular((Z1, Z2, ..., Zp), (X1, X2, ..., Xn),Π, c) [Menana 09]
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language (< X1, . . . , Xn >,L)

the satis�ability problem

is L ∩ (D1×· · ·×Dn) empty ?

the consistency problem for v ∈ Di

is L ∩ (D1×· · ·×Di−1×{v}×Di+1×· · ·×Dn) empty ?
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regular (< X1, . . . , Xn >,Π = (Q,D,∆, q0, F ))

graph connexity [Pesant03]

L(Π) ∩ (D1×· · ·×Dn)

state-decomposition [Beldiceanu04]{
Si ∈ Q, i = 1..n

(Si, Xi, Si+1) ∈ ∆, i = 1..n

O(|∆n|) with |∆n| � n|∆|
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optimization variants

cost-regular(Z,< X1, . . . , Xn >,Π, c)

≡ X1X2 . . . Xn ∈ L(Π) ∧
∑

i ciXi = Z

shortest/longest path problem

O(|∆n|) bound consistency on Z

Ilog Solver, Choco [Demassey, Pesant & Rousseau 05]

multicost-regular(< Z1, . . . , Zp >,< X1, . . . , Xn >,Π, < c1, . . . , cp >)

≡ X1X2 . . . Xn ∈ L(Π) ∧
∑

i c
k
iXi

= Zk(∀k)

resource-constrained SPP/LPP (NP-hard)

lagrangian relaxation O(K|∆n|)
Choco [Menana & Demassey 09]
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bene�t of aggregation (1)

∑
individual aggregate unfolded

full-time
#states 5,782 682 230
#transitions 40,402 4,768 400

part-time
#states 4,401 385 421
#transitions 30,729 2,689 681

Size of the automata for the ASAP/GPost hard instance
for full-time and part-time contracts, n = 28
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bene�t of aggregation (2)

a

p

l
a

o o

a aa
a

b bb
b

b

p
l

b

o

a
o

l ll

+ assignment costs to minimize
+ cardinality (l, p, o) constraints
1 employee, 96 timeslots
number of working activities (a, b, ...) between 1 and 50
10 instances each
default backtracking of Choco in 10 minutes

multicost-regular
∧

cost-regular cost-regular ∧ gcc

|A| proof best #nodes proof best #nodes proof best #nodes
1 0.0 0.0 41 1.2 1.0 3654 0.3 0.2 225
2 0.1 0.1 68 2.1 0.9 1563 0.6 0.3 393
4 0.2 0.1 67 13.9 8.8 6401 2.9 2.3 1199
8 0.3 0.2 52 101.7 49.8 19637 17.9 13.2 3597
10 0.4 0.4 63 297.2 167.8 44530 50.0 47.7 7615
15 0.8 0.7 63 50% unsolved 58.1 47.1 6233
20 1.2 1.0 64 90% unsolved 58.1 44.0 4577
30 1.8 1.5 62 90% unsolved 20% unsolved
50 5.0 4.8 65 100% unsolved 60% unsolved

best = times (s) to �nd an optimum, proof = time (s) to prove optimality
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ChocoETP = DFA + CP + LNS
�exible solution for NSP
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a chief nurse-friendly solution ?

1 high-level language to express rules

2 automated tool to model rules

3 automated tool to agregate rules

4 automated tool to solve rules

5 automated tool to minimize penalties → CP + LNS

ChocoETP

CP-based Large Neighborhood Search solver

pluggable parsers

based on Choco and dk.brics Java libraries

https://github.com/sofdem/chocoETP
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�exibility and e�ectiveness

hard ASAP instances
[Métivier 09] ChocoETP

|I × T | cpu cpu nodes bk
Azaiez 13×28 233 6.3 4006 5574
Sintef 24×21 - 1.4 165 53
Millar-2S-1.1 8×12 1 0.5 29 0
Millar-2S-1 8×12 1 0.3 25 0
Ozkarahan 14×7 1 0.2 24 5

soft ASAP instances
[Métivier 09] ChocoETP

Soft |I × T | opt penalty cpu penalty cpu
GPost 8×28 5 8 234 5 75
GPost-B 8×28 3 - - 3 3
LLR 27×7 301 314 119 320 114
Valouxis 16×28 20 160 3780 20 4879
ORTEC01 16×31 270 - - 290 2920

Comparison with an ad-hoc LNS solver [Métivier09]
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Conclusion
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�exible optimization

modular solutions for recurring problems with mutable constraints

key of �exibility: decomposed models

key of e�ectiveness: aggregated algorithms

=⇒ automated composition =⇒ constraint learning

tools for �exibility

automata and graphs

global constraints and propagation

decomposition methods in linear programming (e.g. [Demassey06])

linearization (e.g. [Côté13])
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