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WATER MOTION

• water falls (from high to low potentials)

• pressurized networks are more common today
• they consume electricity
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ENERGY-INTENSIVE BUT FLEXIBLE

• reduce the electricity bill

• using elevated tanks as buffers to shift pumping
• when electricity is cheaper/for better efficiency
• tanks have limited capacities
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PUMP SCHEDULING

when/how to pump over a discretized horizon 𝑡 = 1, … ,𝒯 to:

• minimize the electricity cost
• meet the forecast demand profiles
• respect the tank capacities
• satisfy the steady-state
flow/potential relations at each 𝑡
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NONCONVEXITY (NO VSD PUMPS/PR VALVES)

potential-flow relation on each arc=pipe/pump (𝑖, 𝑗) and time 𝑡

ℎ𝑖𝑡 − ℎ𝑗𝑡 = 𝜙𝑖𝑗(𝑞𝑖𝑗𝑡)

• flow sign = flow direction
• accurate approximation as an antisymetric quadratic function:

𝜙(𝑞) = 𝛼|𝑞|𝑞 + 𝛽𝑞 + 𝜅 with 𝛼 > 0

• friction in pipes: 𝜅 = 0
• active (fixed-speed) pumps: 𝜅 < 0 and 𝑞 > 0 5



LITERATURE

• linear or PWL approximations
• simulation + metaheuristics

• [BURGSCHWEIGER 2009]: Optimization models for operative planning in drinking water
networks

• [GHADDAR 2015]: A lagrangian decomposition approach for the pump scheduling
problem in water networks

• [NAOUM-SAWAYA 2015]: Simulation-optimization approaches for water pump scheduling
and pipe replacement problems

• [SHI&YOU 2016]: Energy optimization of water supply system scheduling: Novel MINLP
model and efficient global optimization algorithm
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AD

• [BONVIN 2018] Contrôle optimal et dimensionnement des stations de pompage dans les
réseaux de distribution d’eau potable

• [BONVIN ET AL. 2017] A convex mathematical program for pump scheduling in a class of
branched water networks

• [BONVIN, DEMASSEY, LODI 2021] Pump scheduling in drinking water distribution networks
with an LP/NLP-based branch and bound

• [BONVIN, DEMASSEY 2019] Extended linear formulation of the pump scheduling problem in
water distribution networks

• [BONVIN, DEMASSEY, DE OLIVEIRA 2019] Robust design of pumping stations in water networks
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BRING ON THE MATHS

1. implementation of branch&check for nonconvex MINLP
over a MILP solver with user callbacks and lazy cuts

2. managing the incumbent
3. strong duality cuts
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BRANCH&CHECK FOR NONCONVEX MINLP

𝑀𝐼𝑁𝐿𝑃 ∶ min
𝑥,𝑦
{𝑓(𝑥, 𝑦) | 𝑔(𝑥, 𝑦) ≤ 0, 𝑥 ∈ 𝔹𝑛, 𝑦 ∈ ℝ𝑝}

• get a MILP relaxation 𝑂𝐴 ∶ min
𝑥,𝑦
{𝑓(𝑥, 𝑦) | 𝑔̄(𝑥, 𝑦) ≤ 0, 𝑥 ∈ 𝔹𝑛, 𝑦 ∈ ℝ𝑝}

• solve with a branch&cut where

• at each integer solution 𝑥 = 𝑋, solve 𝑁𝐿𝑃(𝑋) ∶ min
𝑦
{𝑓(𝑋, 𝑦) | 𝑔(𝑋, 𝑦) ≤ 0, 𝑦 ∈ ℝ𝑝}

• if unfeasible: add a nogood cut ‖𝑥 − 𝑋‖1 ≥ 1 to 𝑂𝐴
• if feasible and improving: update the incumbent 𝑈𝐵 = min(𝑈𝐵, 𝑓(𝑋, 𝑌𝑋)) and
cut off 𝑓(𝑥, 𝑦) ≤ 𝑈𝐵 − 𝜖

• if feasible: discard the relaxed solution (𝑋, 𝑌̄)
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IMPLEMENTATION IN MILP SOLVERS

• user callbacks: interrupt the solver at chosen (integer) nodes
• lazy constraints: add nogood, cutoff or OA cuts (on convex side)
• local constraints: OA cuts with local tighter bounds (not supported in Gurobi
9)

• repair unfeasible solutions heuristically
• detect smaller conflicts 𝑋′ ⊆ 𝑋 to get stronger nogood cuts

10



MANAGING THE INCUMBENT

The solver underestimates the value at feasible nodes 𝑥 = 𝑋:
𝐿𝐵 = 𝑓(𝑋, 𝑌̄) ≤ 𝑓(𝑋, 𝑌𝑋)

Different solver-dependent answers:

1. manage the incumbent/cutoff value by hand (in the callback function) and
fathom the node with a nogood cut

• search remains complete but the dual bound is not valid
• minsinforming the solver probably hinders the pseudo-costs computation

2. inform the solver of the real solution (𝑋, 𝑌𝑋) at the node

• no such “lazy best solution” functionality in Gurobi 9

3. workaround: provide the real solution to the solver and cut the relaxed
solution with:

𝑓(𝑥, 𝑦) ≥ 𝑓(𝑋, 𝑌𝑋) ∗ (1 − ‖𝑥 − 𝑋‖1)
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MANAGING THE INCUMBENT

• bounding vs. fathoming
evolution of the primal/upper and
dual/lower bounds

• simple network / T=48
• non-contractual (but
representative): single instance,
single run
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STRONG DUALITY CUTS FOR PUMP SCHEDULING

• 𝑁𝐿𝑃(𝑋) has a unique solution (if no VSD pumps/PR valves)

• reformulate 𝑁𝐿𝑃(𝑋) as a strong dual/primal 𝑚𝑎𝑥𝐿/𝑚𝑖𝑛𝐹 problem pair with 𝐹
strictly convex [CHERRY 1951, COLLINS 1978, TODINI 1988]

• derive the strong duality condition 𝐹(𝑋, 𝑦) ≤ 𝐿(𝑋, 𝑢)
• linearize the strong duality constraint 𝐹(𝑥, 𝑦) − 𝐿(𝑥, 𝑢) ≤ 0
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NONLINEAR NETWORK ANALYSIS PROBLEM

steady-state potential/flow equilibrium in a digraph 𝐺 = (𝑁,𝐴) where nodes
𝑁 = 𝐽 ∪ 𝑅 have either a known demand 𝑑𝐽 or a known potential ℎ𝑅

network analysis problem

𝑁𝐿(𝐴, 𝑑𝐽 , ℎ𝑅) ={(𝑞𝐴, ℎ𝐽) ∈ ℝ𝐴 × ℝ𝐽

𝑞𝑗 = 𝑑𝑗 ∀𝑗 ∈ 𝐽,
ℎ𝑎 = 𝜙𝑎(𝑞𝑎) ∀𝑎 ∈ 𝐴}.

ℎ(𝑖,𝑗) = ℎ𝑖 − ℎ𝑗: potential decrease along arc (𝑖, 𝑗) ∈ 𝐴
𝑞𝑗 = ∑(𝑖,𝑗)∈𝐴 𝑞(𝑖,𝑗) − ∑(𝑗,𝑖)∈𝐴 𝑞(𝑗,𝑖): residual flow at node 𝑗 ∈ 𝑁,
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ASSUMPTIONS

• 𝜙𝑎 bijective, smooth, strictly increasing onℝ so
that

• 𝜙𝑎 invertible

• Φ𝑎(𝑞) = ∫
𝑞

0
𝜙(𝑠)𝑑𝑠 coercive, smooth, strictly

convex.
• at least one fixed potential node 𝑗 ∈ 𝑅 in each connected component of 𝐺 so
that:

• 𝑞𝐽 = 𝑑𝐽 is feasible
• ℎ𝐽 is uniquely determined by 𝑞𝐴

15



CONVEX OPTIMIZATION: PRIMAL

Lagrangian multiplier theorem holds:
(𝑞𝐴, ℎ𝐽) ∈ 𝑁𝐿(𝐴, 𝑑𝐽 , ℎ𝑅) for some ℎ𝐽 if and only if 𝑞𝐴 solves

𝑃(𝐴, 𝑞𝐽 , ℎ𝑅) ∶ min
𝑞𝐴
{𝑓(𝑞𝐴) = 􏾜

𝑎∈𝐴
Φ𝑎(𝑞𝑎) + ℎ𝑅𝑞𝑅, 𝑞𝐽 = 𝑑𝐽}

• by convexity of Φ𝑎 (KKT necessary+sufficient opt. cond.)

𝐿(𝑞𝐴, ℎ𝐽) = 􏾜
𝑎∈𝐴

Φ𝑎(𝑞𝑎) + ℎ𝑅𝑞𝑅 + ℎ𝐽(𝑞𝐽 − 𝑑𝐽)

⎧⎪⎪⎨
⎪⎪⎩
ℎ𝐴 = 𝜙𝐴(𝑞𝐴) (1st-order cond. 𝜕𝐿

𝜕𝑞𝐴
= 0),

𝑞𝐽 = 𝑑𝐽 (primal feas. 𝜕𝐿
𝜕ℎ𝐴

= 0)

• solution exists and is unique (by assumptions on 𝐺 and strict convexity of 𝑓)
16



CONVEX OPTIMIZATION: DUAL

• by convexity of 𝑓 and unicity of ℎ𝐽 :

Strong duality holds:
(𝑞𝐴, ℎ𝐽) ∈ 𝑁𝐿(𝐴, 𝑑𝐽 , ℎ𝑅) if and only if
𝑞𝐽 = 𝑑𝐽 and 𝑓(𝑞𝐴) ≤ 𝐿(ℎ𝐽) = min

𝑞𝐴
𝐿(𝑞𝐴, ℎ𝐽).

• 𝐿(𝑞𝐴, ℎ𝐽) = ∑𝑎∈𝐴(Φ𝑎(𝑞𝑎) − ℎ𝑎𝑞𝑎) − ℎ𝐽𝑑𝐽 and 𝑞𝑎 ↦ Φ𝑎(𝑞𝑎) − ℎ𝑎𝑞𝑎 is convex and
reaches its minimum at 𝑞𝑎 = 𝜙−1𝑎 (ℎ𝑎) then:

Decomposition of the dual function:

𝐿(ℎ𝐽) = 􏾜
𝐴
𝐿𝑎(ℎ𝑎) − ℎ𝐽𝑑𝐽

with 𝐿𝑎(ℎ𝑎) = Φ𝑎(𝜙−1𝑎 (ℎ𝑎)) − ℎ𝑎𝜙−1𝑎 (ℎ𝑎).
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CONVEX NLP REFORMULATION

𝑁𝐿(𝐴, 𝑑𝐽 , ℎ𝑅) = 𝑁𝐿′(𝐴, 𝑑𝐽 , ℎ𝑅) with

𝑁𝐿′(𝐴, 𝑞𝐽 , ℎ𝑅) ={ (𝑞𝐴, ℎ𝐽) ∈ ℝ𝐴 × ℝ𝐽

􏾜
𝑎∈𝐴

𝑔𝑎(𝑞𝑎, ℎ𝑎) + ℎ𝑁𝑞𝑁 ≤ 0

𝑞𝐽 = 𝑑𝐽 }.

with 𝑔𝑎(𝑞𝑎, ℎ𝑎) = Φ𝑎(𝑞𝑎) − 𝐿𝑎(ℎ𝑎) convex (by assumption on 𝜙𝑎).
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ANOTHER VIEW OF PUMP SCHEDULING

minimize some cost function over the solutions of 𝒯 sequence-dependent
nonlinear analysis problems on a dynamic network:

• controllable arcs 𝑥𝑎𝑡 ∈ {0, 1}: pumps and valved pipes
• nodes with varying known demand 𝑑𝑗𝑡: junctions
• nodes with varying known potential ℎ𝑟𝑡: sources (𝑟 ∈ 𝑆 ⊆ 𝑅)
• nodes with bounded sequence-dependent potential ℎ𝑟𝑡: tanks (𝑟 ∈ 𝑇 ⊆ 𝑅)

ℎ𝑟0 = 𝐻𝑟

ℎ𝑟(𝑡+1) = ℎ𝑟𝑡 + 𝛼𝑟𝑞𝑟𝑡
𝐻𝑟𝑡 ≤ ℎ𝑟𝑡 ≤ 𝐻𝑟𝑡.

19



THE RESTRICTED SUBPROBLEM

For a fixed 𝑥 = 𝑋 ∈ {0, 1}𝐴×𝒯 , (𝑞𝐴𝒯 , ℎ𝑁𝒯) solves 𝑁𝐿𝑃(𝑋𝐴𝒯) iff

(𝑞𝐴𝑡, ℎ𝐽𝑡) ∈ 𝑁𝐿(𝐴𝑋𝑡, 𝑑𝐽𝑡, ℎ𝑅𝑡) ∀𝑡
𝑋𝑎𝑡 = 0 ⟹ 𝑞𝑎𝑡 = 0 ∀𝑡, 𝑎
ℎ𝑇(𝑡+1) = ℎ𝑇𝑡 + 𝛼𝑇𝑞𝑇𝑡 ∀𝑡
ℎ𝑇0) = 𝐻𝑇 , ℎ𝑇(𝒯+1) ≥ 𝐻𝑇

𝐻𝑇 ≤ ℎ𝑇𝑡 ≤ 𝐻𝑇 ∀𝑡.

strong duality constraint

􏾜
𝑎∈𝐴

𝑔𝑎(𝑞𝑎𝑡, ℎ𝑎𝑡)𝑥𝑎𝑡 + ℎ𝑁𝑡𝑞𝑁𝑡 ≤ 0

is valid at each period 𝑡.
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STRONG DUALITY CONSTRAINT

The strong duality constraint

􏾜
𝑎∈𝐴

𝑔𝑎(𝑞𝑎𝑡, ℎ𝑎𝑡)𝑥𝑎𝑡 + ℎ𝑇𝑡𝑞𝑇𝑡 + ℎ𝑆𝑡𝑞𝑆𝑡 + ℎ𝐽𝑡𝑑𝐽𝑡 ≤ 0

• non-convex because of the bilinear terms ℎ𝑟𝑡𝑞𝑟𝑡, 𝑟 ∈ 𝑇
• the bad news: the strong duality constraint is an aggregated form of
{ℎ𝑎𝑡 = 𝜙𝑎(𝑞𝑎𝑡), 𝑎 ∈ 𝐴} and a loose relaxation of ℎ𝑟𝑡𝑞𝑟𝑡 could “absorb” the duality
gap

• the good news: |𝑇| << |𝐴| and the tank capacities provide constrained
bounds: ℎ𝑟𝑡 ∈ [𝐻𝑟, 𝐻𝑟] and 𝑞𝑟𝑡 = (ℎ𝑟(𝑡+1) − ℎ𝑟𝑡)/𝛼𝑟
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POLYHEDRAL RELAXATION

The strong duality constraint

􏾜
𝑎∈𝐴

𝑔𝑎(𝑞𝑎𝑡, ℎ𝑎𝑡)𝑥𝑎𝑡 + ℎ𝑇𝑡𝑞𝑇𝑡 + ℎ𝑆𝑡𝑞𝑆𝑡 + ℎ𝐽𝑡𝑑𝐽𝑡 ≤ 0

Linearize 𝑔𝑎 at some feasible points (𝑞∗𝑎, 𝜙𝑎(𝑞𝑎)∗) and take the McCormick’s
envelope for the bilinear terms ℎ𝑟𝑡𝑞𝑟𝑡, 𝑟 ∈ 𝑇:

􏾜
𝑎∈𝐴

𝑔𝑎𝑡 + ℎ′𝑅𝑡 + ℎ𝑆𝑡𝑞𝑆𝑡 + ℎ𝐽𝑡𝑑𝐽𝑡 ≤ 0

𝑥𝑎𝑡 = 0 ⟹ 𝑞𝑎𝑡 = 0 ∧ ℎ𝑎𝑡 = 0 ∀𝑎
𝑥𝑎𝑡 = 1 ⟹ ℎ𝑎𝑡 = ℎ𝑖𝑡 − ℎ𝑗𝑡 ∀𝑎 = (𝑖, 𝑗)
𝑔𝑎𝑡 ≥ 𝜙𝑎(𝑞∗𝑎)(𝑞𝑎𝑡 − 𝑞∗𝑎𝑥𝑎𝑡) + 𝑞∗𝑎ℎ𝑎𝑡 ∀𝑎, 𝑞∗𝑎 ∈ 𝒬𝑎 ⊆ [𝑄𝑎

, 𝑄𝑎]

ℎ′𝑟𝑡 ∈ 𝑀𝐶[𝐻𝑟,𝐻𝑟](ℎ𝑟𝑡𝑞𝑟𝑡) ∀𝑟 ∈ 𝑇. 22



STRONG DUALITY CONSTRAINTS

with or without duality constraints in ini-
tial OA
5 linear/pipes, 10/pumps

primal/dual bounds
simple network / T=48

non-contractual (but representative)
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RELATED WORKS FOR THE OPTIMAL PIPE SIZING PROBLEM

aka: gravity-fed water network design problem

• [RAGHUNATAN 2013]: Global optimization of nonlinear network design
• branch&check + OA cut generation
• without the incumbent management issue (the objective 𝑓(𝑥) only depends on
the binary variables)

• with several problem-specific improvements: repair heuristic, aggregated
linearizations

• [TASSEF, BENT, EPELMAN, PASQUALINI, VAN HENTENRYCK (ARXIV 2020)]: Exact Mixed-integer Convex
Programming Formulation for Optimal Water Network Design

• the strong duality constraint is directly convex (no tank, no bilinear term)
• nice physical interpretation of the constraint

Other possible applications: operation/design/planning of crude oil/natural
gas/electricity/transportation networks ?
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REFERENCES

• papers by Bonvin et al. available on https://sofdem.github.io/
• code (partially) available on:
https://github.com/sofdem/gopslpnlpbb
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