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- pressurized networks are more common today

- they consume electricity



ENERGY-INTENSIVE BUT FLEXIBLE

- reduce the electricity bill



ENERGY-INTENSIVE BUT FLEXIBLE

- reduce the electricity bill
- using elevated tanks as buffers to shift pumping



ENERGY-INTENSIVE BUT FLEXIBLE

- reduce the electricity bill
- using elevated tanks as buffers to shift pumping
- when electricity is cheaper/for better efficiency



ENERGY-INTENSIVE BUT FLEXIBLE

- reduce the electricity bill

- using elevated tanks as buffers to shift pumping
- when electricity is cheaper/for better efficiency
- tanks have limited capacities



PUMP SCHEDULING

when/how to pump over a discretized horizon t =1, ..., J to:

- minimize the electricity cost 2 III I_IIIIL

- meet the forecast demand profiles .

- respect the tank capacities o II I IIL

- satisfy the steady-state
flow/potential relations at each ¢




NONCONVEXITY (NO VSD PUMPS/PR VALVES)

potential-flow relation on each arc=pipe/pump (i,j) and time ¢

ah

hit — by = ¢ii(qijt) HRG
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- flow sign = flow direction
- accurate approximation as an antisymetric quadratic function:

O(q) = alglg + pg + x with a >0

- friction in pipes: k =0
- active (fixed-speed) pumps: xk <0and g >0
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- [BURGSCHWEIGER 2009]: Optimization models for operative planning in drinking water
networks

* [GHabpar 2015]: A lagrangian decomposition approach for the pump scheduling
problem in water networks

- [Naoum-Sawava 2015]: Simulation-optimization approaches for water pump scheduling
and pipe replacement problems

- [SHi&You 2016]: Energy optimization of water supply system scheduling: Novel MINLP
model and efficient global optimization algorithm
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- [Bonvin 2018] Controle optimal et dimensionnement des stations de pompage dans les

réseaux de distribution d’eau potable

- [Bonvin ET AL 2017] A convex mathematical program for pump scheduling in a class of

branched water networRks

* [Bonvin, DEMASSEY, Lopl 20211 Pump scheduling in drinking water distribution networks
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BRING ON THE MATHS

1. implementation of branch&check for nonconvex MINLP
over a MILP solver with user callbacks and lazy cuts

2. managing the incumbent
3. strong duality cuts
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MINLP : n}giyn{f(x,y) lg(x,y) <0,xeB",y € RP}

- get a MILP relaxation OA : nxliyn{f(x,y) |g(x,y) <0,xeB",y € R}
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BRANCH&CHECK FOR NONCONVEX MINLP

MINLP : n;iyn{f(x,y) lg(x,y) <0,x e B",y € RP}

- get a MILP relaxation OA : nxliyn{f(x,y) |g(x,y) <0,xeB",y € R}

- solve with a branch&cut where
- at each integer solution x = X, solve NLP(X) : min{f(X,y) | g(X,y) <0,y € R?}
y

- if unfeasible: add a nogood cut |lx - X|l; >1to OA

- if feasible and improving: update the incumbent UB = min(UB, f(X, YX)) and
cut off f(x,y) <UB-e€

- if feasible: discard the relaxed solution (X, Y)



IMPLEMENTATION IN MILP SOLVERS

- user callbacks: interrupt the solver at chosen (integer) nodes

- lazy constraints: add nogood, cutoff or OA cuts (on convex side)

- local constraints: OA cuts with local tighter bounds (not supported in Gurobi
9)

- repair unfeasible solutions heuristically

- detect smaller conflicts X’ C X to get stronger nogood cuts

10



MANAGING THE INCUMBENT

The solver underestimates the value at feasible nodes x = X:
LB = f(X,Y) sf(X,YX)

Different solver-dependent answers:

1. manage the incumbent/cutoff value by hand (in the callback function) and
fathom the node with a nogood cut
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MANAGING THE INCUMBENT

The solver underestimates the value at feasible nodes x = X:
LB = f(X,Y) sf(X,YX)

Different solver-dependent answers:

1. manage the incumbent/cutoff value by hand (in the callback function) and
fathom the node with a nogood cut
- search remains complete but the dual bound is not valid
- minsinforming the solver probably hinders the pseudo-costs computation
2. inform the solver of the real solution (X, YX) at the node
- no such “lazy best solution” functionality in Gurobi 9
3. workaround: provide the real solution to the solver and cut the relaxed
solution with:

fleoy) 2 fX YY)+ (0 -l = Xly)

1



MANAGING THE INCUMBENT

by
178

- bounding vs. ™ : rsoss
evolution of the primal/upper and
dual/lower bounds

- simple network / T=48

- non-contractual (but
representative): single instance,
single run

170
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STRONG DUALITY CUTS FOR PUMP SCHEDULING

- NLP(X) has a unique solution (if no VSD pumps/PR valves)

- reformulate NLP(X) as a strong dual/primal maxL/minF problem pair with F
strictly convex [CHerry 1951, COLLINS 1978, ToDINI 1988]

- derive the strong duality condition F(X,y) < L(X, u)

- linearize the strong duality constraint F(x,y) — L(x,u) <0

13



NONLINEAR NETWORK ANALYSIS PROBLEM

steady-state potential/flow equilibrium in a digraph G = (N, A) where nodes
N = J UR have either a known demand d; or a known potential hg

network analysis problem

NL(A,dj, hg) ={(q4,hy) € R* x R/
q; = d Vie],
ha = $4(q4) Vae Al

h(i,]-) =h; - h]-: potential decrease along arc (i,j) € A
G = Zijyea 6 ~ 2jeadG: residual flow at node j € N,

14



ASSUMPTIONS

- ¢, bijective, smooth, strictly increasing on R so gj:
that §
- ¢, invertible |
- Dg) = ﬂ ¢(s)ds coercive, smooth, strictly
convex.
- at least one fixed potential node j € R in each connected component of G so

that:
© gy =dj is feasible
* hy is uniquely determined by g,

15



CONVEX OPTIMIZATION: PRIMAL

Lagrangian multiplier theorem holds:
(qa,hy) € NL(A, dj, hg) for some hy if and only if g4 solves

P(A, q;,hg) : H;in{f(QA) = 2;4 D,(q,) + hrqr, g5 = dj}
ae

- by convexity of @, (KKT necessary+sufficient opt. cond.)

L(qa hy) = Y, Pa(@a) + hrqr + hy(q; — d))
acA

{hA = pa(ga) (Ist-order cond. ;TL =0),

q; = d; (primal feas. ;TLA =0)

- solution exists and is unique (by assumptions on G and strict convexity of f) "



CONVEX OPTIMIZATION: DUAL

- by convexity of f and unicity of hy:

Strong duality holds:
(94, hy) € NL(A, dj, hg) if and only if

[/]] = d] and f(LIA) < L(h]) mln L(qA,h])



CONVEX OPTIMIZATION: DUAL

- by convexity of f and unicity of hy:

Strong duality holds:
(qa,hy) € NL(A, dj, hy) if and only if
q; =dyand f(qa) < L(hy) = mln L(ga, hy).

“ L(ga y) = X ,c4(@a(qa) — haq,) — hydy and g, = Dy(q,) — h,q, is convex and
reaches its minimum at g, = ¢;*(h,) then:

Decomposition of the dual function:

L(hy) = Y, La(hy) - hyd,
A

with Lu(ha) = (Du(ﬁba_l(ha)) - ha(Pa_l(hu)-



CONVEX NLP REFORMULATION

NL(A, dj, hg) = NL'(A, dj, hg) with

NL,(A, q]’hR) :{ (qA, h]) e RAX R

) 8u(Ga a) + hngn <0
acA

q =dj ).

with §,(q., 1) = ®,(q,) — La(h,) convex (by assumption on ¢,).



ANOTHER VIEW OF PUMP SCHEDULING

minimize some cost function over the solutions of J° sequence-dependent
nonlinear analysis problems on a dynamic network:

- controllable arcs x,; € {0,1}: pumps and valved pipes

- nodes with varying known demand dj;: junctions

- nodes with varying known potential 4, sources (r € S CR)

- nodes with bounded sequence-dependent potential h,: tanks (r € T C R)

hrO =H,

hr(t+l) = hrt + Qs
Hrt = hrt = Hrt-

19



THE RESTRICTED SUBPROBLEM

For a fixed x = X € {0, 1}™7, (gas, hns) SOlves NLP(X 45) iff

(9 At hyt) € NL(AX, djy, hgy) Vi
Xut:O — qatZO vt,ﬂ
hr(1) = hre + arqry Vit

hroy = Hr, hr@r41) 2 Hr
H.<hy <Hp Vi,
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THE RESTRICTED SUBPROBLEM

For a fixed x = X € {0, 1}™7, (gas, hns) SOlves NLP(X 45) iff

(9 At hyt) € NL(AX, djy, hgy) Vi
Xp=0= gq,4=0 Vit a
hr(1) = hre + arqry Vit
hroy = Hr, hr@r41) 2 Hr

H, <hp < Hry Vit

strong duality constraint

Z 8aGats Map)X gt + I < 0
aeA

is valid at each period t. 2



STRONG DUALITY CONSTRAINT

The strong duality constraint

2 Sa(Gat, Map)Xar + hreqrs + hsgse + hpdpy <0
acA

- non-convex because of the bilinear terms hq,;, r € T

- the bad news: the strong duality constraint is an aggregated form of
{h, = ¢,(q9.),a € A} and a loose relaxation of h,q,; could “absorb” the duality
gap

- the good news: |T| << |A| and the tank capacities provide constrained
bounds: hy € [H , H,] and gy = (hyee1) = hy)/e

21



POLYHEDRAL RELAXATION

The strong duality constraint

Z Sa(Gats Nat)Xar + hreqrs + hsiqsy + hydy <0
acA

Linearize g, at some feasible points (g3, ¢,(9,)*) and take the McCormick’s

envelope for the bilinear terms h,q,;, v € T:
z Sat + Iy + hsqse + hydyy < 0
acA
Xp=0 = g4 =0 A hy=0 Ya

Xt =1 = hg = hy — hy Va=(,j)

Sat 2 Qba(qz;)(qm‘ - q;xat) + q:zhat \7'11, q; € Qa - [gul Ga]

h;’t € Mc[ﬂrfﬁr](hrtqrt) VV € T.

22



STRONG DUALITY CONSTRAINTS

with or duality constraints in ini-
tial OA
5 linear/pipes, 10/pumps

primal/dual bounds
simple network / T=48

non-contractual (but representative)
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RELATED WORKS FOR THE OPTIMAL PIPE SIZING PROBLEM

aka: gravity-fed water network design problem

- [RacHUNATAN 2013]: Global optimization of nonlinear network design

- branch&check + OA cut generation
- without the incumbent management issue (the objective f(x) only depends on

the binary variables)
- with several problem-specific improvements: repair heuristic, aggregated

linearizations

24



RELATED WORKS FOR THE OPTIMAL PIPE SIZING PROBLEM

aka: gravity-fed water network design problem

- [RacHUNATAN 2013]: Global optimization of nonlinear network design
- branch&check + OA cut generation
- without the incumbent management issue (the objective f(x) only depends on
the binary variables)
- with several problem-specific improvements: repair heuristic, aggregated

linearizations
* [TassEF, BENT, EPELMAN, PASQUALINI, VAN HENTENRYCK (ARXIV 2020)]: Exact Mixed-integer Convex
Programming Formulation for Optimal Water Network Design
- the strong duality constraint is directly convex (no tank, no bilinear term)
- nice physical interpretation of the constraint

Other possible applications: operation/design/planning of crude oil/natural
gas/electricity/transportation networks ?

24
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- code (partially) available on:
https://github.com/sofdem/gopslpnlpbb
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