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| FOR MIP

- metaheuristics, local search, B&B, Benders search in the projected Z-space to take advantage of:
a calculable optimal mapping @, finite neighborhoods, finite search space
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+ large nonconvex MIP:

what if the feasible integer solutions are sparse and scarce and if computing @ is not that easy ?

- dualizing the complicating and/or coupling constraints: no clear trade-off
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M FOR MIP (EX: DISCRETE CONTROL)
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- dualizing the time-coupling/state constraints: static control without initial condition
- fixing the time-coupling/state variables: static control with a known initial condition
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Black-box W is nonconvex (vs. lagrangian dual) but somewhat smooth + denser state space:

optimize W locally on R°T (0-order information)



HYBRID DECOMPOSITION AND CONVERGENCE

0. dualize the coupling constraints with multipliers u

ZvT H ]RcT ]RnT 1. start with an approximate state profile S € R°T
X
- 2. alternate solving W (separated control) and @, (resulting states)
N4 3. stop at fixed point @,(W(S)) = S.

policies for updating :

- under conditions: get a global optimum (ADMM), a stationary point (biconvex), or nothing

+ fixed high u: local search around one (or more) approximate candidate(s) S and repair feasibility

hybrid ML/MP decomposition method: learn the starting points S

bilevel method: implied continuous variables (outer level) / discrete decisions (inner level)



SCHEDULING WITH STORAGE
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- find operation and storage levels to meet demand, storage conservation and capacity on each
period and minimize the total operation cost
- feasible solutions are rare when storage capacities are tight and operations are stepped




SCHEDULING WITH STORAGE
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operation cost

static operation
storage conservation

storage capacity

find operation (x;, y;) and storage level s; to meet demand, storage conservation and capacity on each

period t and minimize the total operation cost.



ASSUMPTION ON THE STEADY STATE

steady state operation (x;, y;) for given storage level s, and demand L,

(xt,ye) © &(xp, Y5, L) =0

+ possibly a nonconvex system

+ but we assume that it is easy to solve and optimize on when s, is known



EX: SCHEDULING OF POTENTIAL-FLOW NETWORKS

sequence of potential-flow equilibria on a dynamic graph

9}
g = (T W - o), v - Lu, vik - s)

X, arc activity on/off,

(2, yH): active arc flows, nodal potentials
s;. potential at storage nodes,

L;: demand at service nodes

+ nonlinear potential-flow relation ¢, on each arc
- for x; and s; fixed: (th,ytH) unique KKT solution of a linearly-constrained strictly convex problem

+ fors, fixed: min, (g 1)a f¢(x;) is enumerable with graph partition along the storage nodes



OPTION O: DUALIZE THE TIME-COUPLING CONSTRAINTS

ex: lagrangian subproblem

(P): min zt] Fe, Y5 Ce) + p(sea = s¢ = Yi)

s.t. :gf(xt,yt,Sf,Lt) = 0 Vt € <(—-

- the model becomes separable in time
- but each static component remains hard (and poor) as the initial state s; is unknown



OPTION 1: FULL VARIABLE-SPLIT AND ADMM

ADMM: variant of the augmented lagrangian p(z, u) = p; z + p,llzll, with partial update

1: fix storage s, then compute (x, )

P(s) : l'(r\l}(l)’l th(xn Ye,5, Cp) + Pe(Ser = St = Yeo 1e) + Pr(&e(Xe, Yo Sty Le), pr)-
wy)

l T update , p

2: fix command (x, y), then compute s

P(x,y) : l‘n;il‘l E FeCee Yir st Co) + PeSa1 = S = Yio 1) + P& (X, Yir 51, Ly), pr)
* 5

+ no theoretical convergence with nonconvex coupling constraints
+ P(s) is too poor, P(x, y) too hard (inverse problem)



OPTION 2: PARTIAL SPLIT AND ADM-LIKE

no theory ? be practical: keep g¢(x;, y;, s, L) = 0 in P(s), but drop it from P(x, y)

1: fix storage s, then compute (x, y)

P(s) : IR}P E e, Y86 C) + Pi(Sre1 — St = Yoo i)
oY)

S't' :gt(xt/yflst/ Lt) = O

! T stop when ls; —s; — || < €

2: fix command (x, ), then compute s

P(x,y) : mqin Eft(v\'n]/nsn Cp) + pi(Se1 = St — Yir 1)
ST




EXPERIMENTS: PUMP SCHEDULING IN WATER NETWORKS

+ HA: partial split u € {50, 2} from multiple learned storage profiles

+ BC: SOA Branch-and-Check [Opt&Eng 2021] + BCpre advanced preprocessing [ICAE 2022]
- run algorithms on 50 instances within 2 hours; stop at the first feasible solution

+ hard to just compute a feasible solution when storage limits are tight
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LEARNING THE STARTING STORAGE PROFILES

We implemented:

- a standard deep learning architecture to capture temporal dependencies and local trends
- data set: historical data and corresponding optimal solutions
- Monte-Carlo dropout to get multiple profiles — multi-start ADM — diversification

- a scaling mechanism: train on coarse-grained data (|7"| = 12) then apply to fine
time-discretization (|7°| = 48) by resizing input (load and tariff) and output (profile) linearly.

- learning continuous states vs discrete command: regression vs classification, smoother moves,
up-scaling... more chance to end up with a feasible solution



RECONSIDER FULL-SPLIT ON THE BILEVEL MODEL

- the static potential/flow equilibrium for given x and s (at time ) is unique:
y=u%y") gy, L) =0
- as the KKT solution of a min-strictly-convex-cost flow problem on G(N, A(x)):

Qe argmqin{(l)(q) +s'qr gy =L} (primal flow)

yH earg mhax{CD*(h) +LTh:hg =s) (dual potential)

D) +sTyg = @) + LTy, yP =L,y =s  (strong duality condition).

- with a suited variable change, x does not appear in the SD condition

+ but nonconvexity remains in the bilinear term sy



DUALIZE THE SD CONDITION + ADMM

1: fix storage s, then compute (x, )

P(s) : (x;')rel%(riy 2 FiG Y5, Ch) + pi(Spen — 51— yg%f pe) + Pe(SD(Yy, $1), pr)
¢ teT

sti(L-x)yf =0, yf =L, yik =5,

with SDy(y;, s1) = PWR) + 57 y% — @*(y) — LTy (and f,, p, linear), then for each t, Py(s,) is
separable in primal/dual parts, i.e. (y<,y")-split, corresponding to two equilibrium problems with
perturbed costs and penalties

primal: perturbed potentials s; and resistance ¢ dual: perturbed load L; and resistance ¢

Py(x;,5) :mgn .Urq)(]/?) + (s, Cy, s Pt)T]/E2 Dy(x;, s;) 21’1’1/SIX ‘u,CD*(yf) + PtLT]/F
Yt Yt

sty =L, 1 -x)yL =0. sty =s;.




CONCLUSION

+ solving MIPs by optimizing W

z R

N4

+ hybrid ML/MIP decomposition approach: ML for optimality, MIP for feasibility



APPLICATIONS

temporal decomposition for control/scheduling/planning:

- load shifting or scheduling with storage: storage state — static control at each time

- capacity expansion planning: periodic investment — operation on each period
spatial decomposition of networks:

- traffic network design: inflow in hubs — design and flows in each component
decomposition by level/stage/scenario:

- stochastic programming: first-stage decision — second-stage decision for each scenario
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- papers available at https://sofdem.github.io/
- code availableat https://github.com/sofdem/gopslpnlpbb


https://sofdem.github.io/
https://github.com/sofdem/gopslpnlpbb

