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I for MIP

ℤ𝑝 ℝ𝑛ΦX
• metaheuristics, local search, B&B, Benders search in the projectedℤ-space to take advantage of:
a calculable optimal mapping Φ, finite neighborhoods, finite search space

• large nonconvex MIP:
what if the feasible integer solutions are sparse and scarce and if computingΦ is not that easy ?

• dualizing the complicating and/or coupling constraints: no clear trade-off
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M for MIP (ex: discrete control)

ℝ𝑐
state ℤ𝑝

control

ℝ𝑐 ℤ𝑝 ℝ𝑐 ℤ𝑝 ℝ𝑐 ℤ𝑝 ℝ𝑐 ℤ𝑝 ℝ𝑐 ℤ𝑝
time

• dualizing the time-coupling/state constraints: static control without initial condition
• fixing the time-coupling/state variables: static control with a known initial conditionℤ𝑝𝑇 ℝ𝑐𝑇×ℝ𝑛𝑇Ψ

Black-boxΨ is nonconvex (vs. lagrangian dual) but somewhat smooth + denser state space:
optimizeΨ locally onℝ𝑐𝑇 (0-order information)
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Hybrid decomposition and convergence

ℤ𝑝𝑇 ℝ𝑐𝑇×ℝ𝑛𝑇Ψ
Φ𝜇 0. dualize the coupling constraints with multipliers 𝜇

1. start with an approximate state profile 𝑆 ∈ ℝ𝑐𝑇
2. alternate solvingΨ (separated control) andΦ𝜇 (resulting states)

3. stop at fixed pointΦ𝜇(Ψ(𝑆)) ≈ 𝑆.
policies for updating 𝜇:

• under conditions: get a global optimum (ADMM), a stationary point (biconvex), or nothing

• fixed high 𝜇: local search around one (or more) approximate candidate(s) 𝑆 and repair feasibility

hybrid ML/MP decompositionmethod: learn the starting points 𝑆
bilevelmethod: implied continuous variables (outer level) / discrete decisions (inner level)
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scheduling with storage

demand

production

storage

time

production tariff

• find operation and storage levels to meet demand, storage conservation and capacity on each
period and minimize the total operation cost

• feasible solutions are rare when storage capacities are tight and operations are stepped 5



scheduling with storage

(𝑃) ∶ min𝑥,𝑦,𝑠 𝑡∈𝒯 𝑓𝑡(𝑥𝑡, 𝑦𝑡, 𝑠𝑡, 𝐶𝑡) operation cost

𝑠.𝑡. ∶ 𝑔𝑡(𝑥𝑡, 𝑦𝑡, 𝑠𝑡, 𝐿𝑡) = 0 ∀𝑡 ∈ 𝒯 static operation𝑠𝑡+1 = 𝑠𝑡 + 𝑦𝐼𝑡 ∀𝑡 ∈ 𝒯 storage conservation𝑠𝑡 ∈ 𝒮𝑡 = [𝑆𝑡, 𝑆𝑡] ⊆ ℝ𝐼 ∀𝑡 ∈ 𝒯 storage capacity𝑥𝑡 ∈ 𝒳𝑡 ⊆ {0, 1}𝑁, 𝑦𝑡 ∈ 𝒴𝑡 ⊆ ℝ𝑀 ∀𝑡 ∈ 𝒯.
find operation (𝑥𝑡, 𝑦𝑡) and storage level 𝑠𝑡 to meet demand, storage conservation and capacity on each
period 𝑡 and minimize the total operation cost.
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assumption on the steady state

steady state operation (𝑥𝑡, 𝑦𝑡) for given storage level 𝑠𝑡 and demand 𝐿𝑡(𝑥𝑡, 𝑦𝑡) ∶ 𝑔𝑡(𝑥𝑡, 𝑦𝑡, 𝑠𝑡, 𝐿𝑡) = 0
• possibly a nonconvex system

• but we assume that it is easy to solve and optimize on when 𝑠𝑡 is known
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ex: scheduling of potential-flow networks

sequence of potential-flow equilibria on a dynamic graph

𝑔𝑡 ≡ 𝑥⊤𝑡 (𝑦𝐻𝑡 − 𝜙(𝑦𝑄𝑡 )), 𝑦𝑄𝑡𝐽 − 𝐿𝑡, 𝑦𝐻𝑡𝑅 − 𝑠𝑡𝑥𝑡: arc activity on/off,(𝑦𝑄𝑡 , 𝑦𝐻𝑡 ): active arc flows, nodal potentials𝑠𝑡: potential at storage nodes,𝐿𝑡: demand at service nodes

• nonlinear potential-flow relation 𝜙𝑎 on each arc

• for 𝑥𝑡 and 𝑠𝑡 fixed: (𝑦𝑄𝑡 , 𝑦𝐻𝑡 ) unique KKT solution of a linearly-constrained strictly convex problem

• for 𝑠𝑡 fixed: min𝑥𝑡∈{0,1}𝐴 𝑓𝑡(𝑥𝑡) is enumerable with graph partition along the storage nodes
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option 0: dualize the time-coupling constraints

ex: lagrangian subproblem

(𝑃) ∶ min𝑥,𝑦,𝑠 𝑡 𝑓𝑡(𝑥𝑡, 𝑦𝑡, 𝑠𝑡, 𝐶𝑡) + 𝜇𝑡(𝑠𝑡+1 − 𝑠𝑡 − 𝑦𝐼𝑡)
𝑠.𝑡. ∶ 𝑔𝑡(𝑥𝑡, 𝑦𝑡, 𝑠𝑡, 𝐿𝑡) = 0 ∀𝑡 ∈ 𝒯

• the model becomes separable in time

• but each static component remains hard (and poor) as the initial state 𝑠𝑡 is unknown
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option 1: full variable-split and ADMM

ADMM: variant of the augmented lagrangian 𝑝𝑡(𝑧, 𝜇) = 𝜇⊤𝑑 𝑧 + 𝜇𝑝‖𝑧‖2 with partial update

1: fix storage 𝑠, then compute (𝑥, 𝑦)𝑃(𝑠) ∶ min(𝑥,𝑦) 𝑡 𝑓𝑡(𝑥𝑡, 𝑦𝑡, 𝑠𝑡, 𝐶𝑡) + 𝑝𝑡(𝑠𝑡+1 − 𝑠𝑡 − 𝑦𝑡, 𝜇𝑡) + 𝑝𝑡(𝑔𝑡(𝑥𝑡, 𝑦𝑡, 𝑠𝑡, 𝐿𝑡), 𝜌𝑡).
↓ ↑ update 𝜇, 𝜌

2: fix command (𝑥, 𝑦), then compute 𝑠𝑃(𝑥, 𝑦) ∶ min𝑠 𝑡 𝑓𝑡(𝑥𝑡, 𝑦𝑡, 𝑠𝑡, 𝐶𝑡) + 𝑝𝑡(𝑠𝑡+1 − 𝑠𝑡 − 𝑦𝑡, 𝜇𝑡) + 𝑝𝑡(𝑔𝑡(𝑥𝑡, 𝑦𝑡, 𝑠𝑡, 𝐿𝑡), 𝜌𝑡)
• no theoretical convergence with nonconvex coupling constraints
• 𝑃(𝑠) is too poor, 𝑃(𝑥, 𝑦) too hard (inverse problem)
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option 2: partial split and ADM-like

no theory ? be practical: keep 𝑔𝑡(𝑥𝑡, 𝑦𝑡, 𝑠𝑡, 𝐿𝑡) = 0 in 𝑃(𝑠), but drop it from 𝑃(𝑥, 𝑦)
1: fix storage 𝑠, then compute (𝑥, 𝑦)𝑃(𝑠) ∶ min(𝑥,𝑦) 𝑡 𝑓𝑡(𝑥𝑡, 𝑦𝑡, 𝑠𝑡, 𝐶𝑡) + 𝑝𝑡(𝑠𝑡+1 − 𝑠𝑡 − 𝑦𝑡, 𝜇𝑡)

𝑠.𝑡. ∶ 𝑔𝑡(𝑥𝑡, 𝑦𝑡, 𝑠𝑡, 𝐿𝑡) = 0 ∀𝑡 ∈ 𝒯
↓ ↑ stop when 𝑠𝑡+1 − 𝑠𝑡 − 𝑦𝑡 < 𝜖

2: fix command (𝑥, 𝑦), then compute 𝑠𝑃(𝑥, 𝑦) ∶ min𝑠 𝑡 𝑓𝑡(𝑥𝑡, 𝑦𝑡, 𝑠𝑡, 𝐶𝑡) + 𝑝𝑡(𝑠𝑡+1 − 𝑠𝑡 − 𝑦𝑡, 𝜇𝑡)
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Experiments: pump scheduling in water networks

• HA: partial split 𝜇 ∈ {50, 2} from multiple learned storage profiles
• BC: SOA Branch-and-Check [Opt&Eng 2021] + BCpre advanced preprocessing [ICAE 2022]
• run algorithms on 50 instances within 2 hours; stop at the first feasible solution
• hard to just compute a feasible solution when storage limits are tight
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Learning the starting storage profiles

We implemented:

• a standard deep learning architecture to capture temporal dependencies and local trends

• data set: historical data and corresponding optimal solutions

• Monte-Carlo dropout to get multiple profiles→multi-start ADM→ diversification

• a scaling mechanism: train on coarse-grained data (|𝒯| = 12) then apply to fine
time-discretization (|𝒯| = 48) by resizing input (load and tariff) and output (profile) linearly.

• learning continuous states vs discrete command: regression vs classification, smoother moves,
up-scaling... more chance to end up with a feasible solution
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Reconsider full-split on the bilevel model

• the static potential/flow equilibrium for given 𝑥 and 𝑠 (at time 𝑡) is unique:𝑦 = (𝑦𝑄, 𝑦𝐻) ∶ 𝑔(𝑥, 𝑦, 𝑠, 𝐿) = 0
• as the KKT solution of a min-strictly-convex-cost flow problem on 𝐺(𝑁,𝐴(𝑥)):𝑦𝑄 ∈ argmin𝑞 {Φ(𝑞) + 𝑠⊤𝑞𝑅 ∶ 𝑞𝐽 = 𝐿} (primal flow)≡ 𝑦𝐻 ∈ argmaxℎ {Φ∗(ℎ) + 𝐿⊤ℎ ∶ ℎ𝑅 = 𝑠} (dual potential)≡ Φ(𝑦𝑄) + 𝑠⊤𝑦𝑄𝑅 = Φ∗(𝑦𝐻) + 𝐿⊤𝑦𝐻, 𝑦𝑄𝐽 = 𝐿, 𝑦𝐻𝑅 = 𝑠 (strong duality condition).
• with a suited variable change, 𝑥 does not appear in the SD condition

• but nonconvexity remains in the bilinear term 𝑠⊤𝑦𝑄𝑅
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dualize the SD condition + ADMM
1: fix storage 𝑠, then compute (𝑥, 𝑦)𝑃(𝑠) ∶ min(𝑥,𝑦)∈𝒳×𝒴 𝑡∈𝒯 𝑓𝑡(𝑥𝑡, 𝑦𝑡, 𝑠𝑡, 𝐶𝑡) + 𝑝𝑡(𝑠𝑡+1 − 𝑠𝑡 − 𝑦𝑄𝑡𝑅, 𝜇𝑡) + 𝑝𝑡(𝑆𝐷𝑡(𝑦𝑡, 𝑠𝑡), 𝜌𝑡)

𝑠.𝑡. ∶ (1 − 𝑥𝑡)𝑦𝑄𝑡 = 0, 𝑦𝑄𝑡𝐽 = 𝐿𝑡, 𝑦𝐻𝑡𝑅 = 𝑠𝑡 ∀𝑡 ∈ 𝒯.
with 𝑆𝐷𝑡(𝑦𝑡, 𝑠𝑡) = Φ(𝑦𝑄𝑡 ) + 𝑠⊤𝑡 𝑦𝑄𝑡𝑅 − Φ∗(𝑦𝐻𝑡 ) − 𝐿⊤𝑡 𝑦𝐻𝑡 (and 𝑓𝑡, 𝑝𝑡 linear), then for each 𝑡, 𝑃𝑡(𝑠𝑡) is
separable in primal/dual parts, i.e. (𝑦𝑄, 𝑦𝐻)-split, corresponding to two equilibrium problems with
perturbed costs and penalties

primal: perturbed potentials 𝑠𝑡 and resistance 𝜙𝑃𝑡(𝑥𝑡, 𝑠𝑡) ∶min𝑦𝑄𝑡 𝜇𝑡Φ(𝑦𝑄𝑡 ) + 𝑙(𝑠𝑡, 𝐶𝑡, 𝜇𝑡, 𝜌𝑡)⊤𝑦𝑄𝑡
𝑠.𝑡. ∶ 𝑦𝑄𝑡𝐽 = 𝐿𝑡, (1 − 𝑥𝑡)𝑦𝑄𝑡 = 0.

dual: perturbed load 𝐿𝑡 and resistance 𝜙𝐷𝑡(𝑥𝑡, 𝑠𝑡) ∶max𝑦𝐻𝑡 𝜇𝑡Φ∗(𝑦𝐻𝑡 ) + 𝜌𝑡𝐿⊤𝑦𝐻𝑡
𝑠.𝑡. ∶ 𝑦𝐻𝑡𝐽 = 𝑠𝑡.
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conclusion

• solving MIPs by optimizingΨ ℤ𝑝 ℝ𝑐Ψ
• hybrid ML/MIP decomposition approach: ML for optimality, MIP for feasibility

16



applications

temporal decomposition for control/scheduling/planning:

• load shifting or scheduling with storage: storage state→ static control at each time

• capacity expansion planning: periodic investment→ operation on each period

spatial decomposition of networks:

• traffic network design: inflow in hubs→ design and flows in each component

decomposition by level/stage/scenario:

• stochastic programming: first-stage decision→ second-stage decision for each scenario
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