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decide on operation and storage levels
to meet demand, capacity, and flow conservation on all periods
and minimize the total operation cost (load shifting) 2




SCHEDULING WITH STORAGE

(P): 1'{11/19 Z fexe,Yi, 51, Cr) (1)
ToteT

s.t. th(xt,yt,st,Lt) = O Vt € T (2)

Ste1 =St + Yt Vie T (3)

StESt=[§t,§t]§IRI Vte(F (4)

x; € X, {0, 1N, y, € Y, CRM VteT. (5)

decide on operation (x;, ;) and storage s; levels
to meet demand (2), capacity (4) and flow conservation (3) on all periods ¢
and minimize the total operation cost (1)



ASSUMPTION ON THE STEADY STATE

steady state operation (x;, y;) for given storage level s, and demand L,

(xt,ye) = &(xp, Y5, L) =0

a possibly nonconvex system, but assume that it is easy to solve and optimize on if s, is fixed



EX 1: SCHEDULING OF POTENTIAL-FLOW NETWORKS

sequence of potential-flow equilibria on a dynamic graph

T - o) =0,y =L, vik =y

x;: on/off activity of the arcs,

(th,y{{): active arc flows, nodal potentials
s;. potential at storage nodes,

L;: demand at service nodes

* nonconvex system (potential-flow relation ¢, on each arc)
- for x; and s; fixed: (th,yf) unique KKT solution of a linearly-constrained strictly convex problem

+ fors, fixed: min, ¢ 1)a f¢(x;) is enumerable with graph partition along the tanks



EXPANSION PLANNING W/WO STORAGE
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fine-grained schedule on a coarse-grained period ¢

Sy st L) =0Viel, sit =si+yiViel, s =5,

(¢, y;): fine-grained operation+investment on the period
s available capacity/storage at the beginning of the period
L;: fine-grained demand on the period

- each subproblem is easy to optimize for s; fixed, as the horizon is smaller
- optimizing with s, variable may lead to all-or-none solutions, e.g.: s; = S; and y; =0.



OPTION 0: DUALIZE THE TIME-COUPLING CONSTRAINTS

ex: lagrangian subproblem

(P): r\rll}l:l E FrCYe 5 Co) + plsier — ¢ = Y1)

te T

s.t. Igt(xt,}/t,st,Lt) =0 Vte T

- the model becomes separable in time

Z J%itrslt{ft(xt/yt/st) + (e = pe-1) Tt + B Y 8 Y81 L) = 0}
teT Y

+ not separable with penalty terms, e.g. quadratic %lsm -5 —yf?
- s, is variable so each subproblem remains hard (potential/flow) or poor (hierarchical planning)



OPTION 1: FULL VARIABLE-SPLIT AND ADMM

ADMM: variant of the augmented lagrangian p(z, p) = p; z + p,llzll, with partial update

1: fix storage s, then compute (x, )

P(s) : - gggy E Jexe Y156, Co) + pilSeea = St = Yur 1) + Pe(&i(Xe, Yo St L), i)
2 teT

update p, u

2: fix command (x, y), then compute s

P(x,y) : nsllsn E FeCe, Y80 Co) + pr(Seer = (8¢ + Y1), pr) + Pe(€e(xe, Ve St L), phe)

te T

] — I
S.t. 1S =8+

- strong theoretical convergence, even with nonconvexity (ex: OPF) not in the coupling constraints
* P(s) is too poor, P(x, y) too hard




OPTION 2: PARTIAL SPLIT AND ADM-LIKE

if no theoretical convergence result exists, let's make it practical

1: fix storage s, then compute (x, )

P(s) : mll’l X, ,s/C + S -5, -1,
©) (x,we?(xyg;ff(’yf £ Ct) + PiSte1 = St = Yo, P1)

s.t. :gt(xf,]/f, Sty Lz‘) =0

stop when |[s,,; —s, — || < €

2: fix command (x, ), then compute s

P(x,y) : rzysn 2 FeCe, Y8 Cr) + P8 — 8¢ — Y 1)

teT

o — n
St 1S =S+

keep g:(xt, v, S, L) = 01in P(s) (easy), but drop it from P(x, y) (inverse problem)



EXPERIMENTS: PUMP SCHEDULING IN WATER NETWORKS

- HA: partial split py € {50, 2} + initial storage profiles learned with DL [ISCO 2024]

+ BC: SOA Branch-and-Check [Opt&Eng 2021] + BCpre advanced preprocessing [ICAE 2022]
- run algorithms on 50 instances within 2 hours; stop at the first feasible solution

+ hard to just compute a feasible solution when storage limits are tight
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RECONSIDER FULL-SPLIT WITH BILEVEL MODEL

Ex: static potential/flow equilibrium, given x and s (and time ), let

H):

Y(x,5) = {y = <, y7) : g(x,y,5,L) = 0}

* Y(x, s) are the KKT solutions for a min-strictly-convex-cost flow problem on G(N, A(x)):

yQe argmqin{@(q) +s'qr:q; =L} (primal flow)

= yHearg m}ax{(D*(h) +LTh:hg =s) (dual potential)

DY) +5TyR = D) + LTyH, y}g =L,y =s  (strong duality condition).

- with a suited variable change, x does not appear in the SD condition
* nonconvexity remains in the bilinear term sTylg



DUALIZE THE SD CONDITION + ADMM

1: fix storage s, then compute (x, )

P(s): min E Fi(xe Y5, Co) + pelSea = St = Yi, p1) + PH(SDi(Y1, 50), 1)
(XY [

sty =L (1-x)yf =0, yih =5, yi € B(x)

with SDy(y, 51) = DY) + 57 ik — ©* (i) — LTy (and f,, p, linear),



DUALIZE THE SD CONDITION + ADMM

1: fix storage s, then compute (x, )

P(s) & 11;)1’61%(214 E Fi(xe Y5, Co) + pelSea = St = Yi, p1) + PH(SDi(Y1, 50), 1)
- teT

s.t. y% = L/ (1 _xt)yg = Or yﬁ? =Sy yﬁ € B(xt)

with SDy(y, 5;) = D) + 57 Yk — @ (i) - LT yf! (and f,, p, linear), then for each ¢, Py(s,) is
separable in primal/dual parts, i.e. (v, y™)-split, corresponding to two equilibrium problems
perturbed with costs and penalties

primal: perturbed potentials s; and resistance ¢ dual: perturbed load L; and resistance ¢

Py(x;,5) :mén ‘u,q)(y?) + (s, Cy, p1,s llt)T]/? Dy(x;, 8;) :mgx ,Urq)*(]/fl) + lltLT}/tH
Yt Yt

s.t. :yﬁ =L, 1-x)y2 =0. st.iyif = s, Yl € Bxy).




CONCLUSION

+ coupling constraints ? consider regularization + alternating direction methods
- cascading separation: time — space — primal/dual
« initialization point (here the storage profiles) can be learned

- future: other applications (traffic, MPEC) and theoretical convergence
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