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to meet demand, capacity, and flow conservation on all periods
and minimize the total operation cost (load shifting) 2



scheduling with storage

(𝑃) ∶ min𝑥,𝑦,𝑠
􏾜
𝑡∈𝒯

𝑓𝑡(𝑥𝑡, 𝑦𝑡, 𝑠𝑡, 𝐶𝑡) (1)

𝑠.𝑡. ∶ 𝑔𝑡(𝑥𝑡, 𝑦𝑡, 𝑠𝑡, 𝐿𝑡) = 0 ∀𝑡 ∈ 𝒯 (2)

𝑠𝑡+1 = 𝑠𝑡 + 𝑦𝐼𝑡 ∀𝑡 ∈ 𝒯 (3)

𝑠𝑡 ∈ 𝒮𝑡 = [𝑆𝑡, 𝑆𝑡] ⊆ ℝ𝐼 ∀𝑡 ∈ 𝒯 (4)

𝑥𝑡 ∈ 𝒳𝑡 ⊆ {0, 1}𝑁 , 𝑦𝑡 ∈ 𝒴𝑡 ⊆ ℝ𝑀 ∀𝑡 ∈ 𝒯. (5)

decide on operation (𝑥𝑡, 𝑦𝑡) and storage 𝑠𝑡 levels
to meet demand (2), capacity (4) and flow conservation (3) on all periods 𝑡
and minimize the total operation cost (1)
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assumption on the steady state

steady state operation (𝑥𝑡, 𝑦𝑡) for given storage level 𝑠𝑡 and demand 𝐿𝑡

(𝑥𝑡, 𝑦𝑡) ∶ 𝑔𝑡(𝑥𝑡, 𝑦𝑡, 𝑠𝑡, 𝐿𝑡) = 0

a possibly nonconvex system, but assume that it is easy to solve and optimize on if 𝑠𝑡 is fixed
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ex 1: scheduling of potential-flow networks

sequence of potential-flow equilibria on a dynamic graph

𝑥⊤𝑡 (𝑦𝐻𝑡 − 𝜙(𝑦𝑄𝑡 )) = 0, 𝑦𝑄𝑡𝐽 = 𝐿𝑡, 𝑦𝐻𝑡𝑅 = 𝑠𝑡
𝑥𝑡: on/off activity of the arcs,
(𝑦𝑄𝑡 , 𝑦𝐻𝑡 ): active arc flows, nodal potentials
𝑠𝑡: potential at storage nodes,
𝐿𝑡: demand at service nodes

• nonconvex system (potential-flow relation 𝜙𝑎 on each arc)

• for 𝑥𝑡 and 𝑠𝑡 fixed: (𝑦
𝑄
𝑡 , 𝑦𝐻𝑡 ) unique KKT solution of a linearly-constrained strictly convex problem

• for 𝑠𝑡 fixed: min𝑥𝑡∈{0,1}𝐴 𝑓𝑡(𝑥𝑡) is enumerable with graph partition along the tanks
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ex 2: expansion planning w/wo storage

fine-grained schedule on a coarse-grained period 𝑡

𝑔𝑖𝑡(𝑥𝑖𝑡, 𝑦𝑖𝑡, 𝑠𝑖𝑡, 𝐿𝑖𝑡) = 0 ∀𝑖 ∈ 𝕀𝑡, 𝑠𝑖+1𝑡 = 𝑠𝑖𝑡 + 𝑦𝑖𝑡 ∀𝑖 ∈ 𝕀𝑡, 𝑠0𝑡 = 𝑠𝑡
(𝑥𝑡, 𝑦𝑡): fine-grained operation+investment on the period
𝑠𝑡: available capacity/storage at the beginning of the period
𝐿𝑡: fine-grained demand on the period

• each subproblem is easy to optimize for 𝑠𝑡 fixed, as the horizon is smaller

• optimizing with 𝑠𝑡 variable may lead to all-or-none solutions, e.g.: 𝑠𝑡 = 𝑆𝑡 and 𝑦𝑡 = 0.
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option 0: dualize the time-coupling constraints

ex: lagrangian subproblem

(𝑃) ∶ min𝑥,𝑦,𝑠
􏾜
𝑡∈𝒯

𝑓𝑡(𝑥𝑡, 𝑦𝑡, 𝑠𝑡, 𝐶𝑡) + 𝜇𝑡(𝑠𝑡+1 − 𝑠𝑡 − 𝑦𝐼𝑡)

𝑠.𝑡. ∶ 𝑔𝑡(𝑥𝑡, 𝑦𝑡, 𝑠𝑡, 𝐿𝑡) = 0 ∀𝑡 ∈ 𝒯

• the model becomes separable in time

􏾜
𝑡∈𝒯

min𝑥𝑡,𝑦𝑡,𝑠𝑡
{𝑓𝑡(𝑥𝑡, 𝑦𝑡, 𝑠𝑡) + (𝜇𝑡 − 𝜇𝑡−1)⊤𝑠𝑡 + 𝜇⊤𝑡 𝑦𝑡 ∶ 𝑔𝑡(𝑥𝑡, 𝑦𝑡, 𝑠𝑡, 𝐿𝑡) = 0}.

• not separable with penalty terms, e.g. quadratic 𝜌𝑡
2 |𝑠𝑡+1 − 𝑠𝑡 − 𝑦𝑡|2

• 𝑠𝑡 is variable so each subproblem remains hard (potential/flow) or poor (hierarchical planning)
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option 1: full variable-split and ADMM

ADMM: variant of the augmented lagrangian 𝑝𝑡(𝑧, 𝜌) = 𝜌⊤𝑑 𝑧 + 𝜌𝑝‖𝑧‖2 with partial update

1: fix storage 𝑠, then compute (𝑥, 𝑦)

𝑃(𝑠) ∶ min
(𝑥,𝑦)∈𝒳×𝒴

􏾜
𝑡∈𝒯

𝑓𝑡(𝑥𝑡, 𝑦𝑡, 𝑠𝑡, 𝐶𝑡) + 𝑝𝑡(𝑠𝑡+1 − 𝑠𝑡 − 𝑦𝑡, 𝜌𝑡) + 𝑝𝑡(𝑔𝑡(𝑥𝑡, 𝑦𝑡, 𝑠𝑡, 𝐿𝑡), 𝜇𝑡).

↓ ↑ update 𝜌, 𝜇

2: fix command (𝑥, 𝑦), then compute 𝑠

𝑃(𝑥, 𝑦) ∶ min
𝑠∈𝒮

􏾜
𝑡∈𝒯

𝑓𝑡(𝑥𝑡, 𝑦𝑡, 𝑠𝑡, 𝐶𝑡) + 𝑝𝑡(𝑠𝑡+1 − (𝑠𝑡 + 𝑦𝑡), 𝜌𝑡) + 𝑝𝑡(𝑔𝑡(𝑥𝑡, 𝑦𝑡, 𝑠𝑡, 𝐿𝑡), 𝜇𝑡)

𝑠.𝑡. ∶ 𝑠𝑡+1 = 𝑠𝑡 + 𝑦𝐼𝑡 ∀𝑡 ∈ 𝒯.

• strong theoretical convergence, even with nonconvexity (ex: OPF) not in the coupling constraints
• 𝑃(𝑠) is too poor, 𝑃(𝑥, 𝑦) too hard 8



option 2: partial split and ADM-like

if no theoretical convergence result exists, let’s make it practical

1: fix storage 𝑠, then compute (𝑥, 𝑦)

𝑃(𝑠) ∶ min
(𝑥,𝑦)∈𝒳×𝒴

􏾜
𝑡∈𝒯

𝑓𝑡(𝑥𝑡, 𝑦𝑡, 𝑠𝑡, 𝐶𝑡) + 𝑝𝑡(𝑠𝑡+1 − 𝑠𝑡 − 𝑦𝑡, 𝜌𝑡)

𝑠.𝑡. ∶ 𝑔𝑡(𝑥𝑡, 𝑦𝑡, 𝑠𝑡, 𝐿𝑡) = 0 ∀𝑡 ∈ 𝒯

↓ ↑ stop when 􏿎𝑠𝑡+1 − 𝑠𝑡 − 𝑦𝑡􏿎 < 𝜖

2: fix command (𝑥, 𝑦), then compute 𝑠

𝑃(𝑥, 𝑦) ∶ min
𝑠∈𝒮

􏾜
𝑡∈𝒯

𝑓𝑡(𝑥𝑡, 𝑦𝑡, 𝑠𝑡, 𝐶𝑡) + 𝑝𝑡(𝑠𝑡+1 − 𝑠𝑡 − 𝑦𝑡, 𝜌𝑡)

𝑠.𝑡. ∶ 𝑠𝑡+1 = 𝑠𝑡 + 𝑦𝐼𝑡 ∀𝑡 ∈ 𝒯.

keep 𝑔𝑡(𝑥𝑡, 𝑦𝑡, 𝑠𝑡, 𝐿𝑡) = 0 in 𝑃(𝑠) (easy), but drop it from 𝑃(𝑥, 𝑦) (inverse problem) 9



Experiments: pump scheduling in water networks

• HA: partial split 𝜌0 ∈ {50, 2} + initial storage profiles learned with DL [ISCO 2024]
• BC: SOA Branch-and-Check [Opt&Eng 2021] + BCpre advanced preprocessing [ICAE 2022]
• run algorithms on 50 instances within 2 hours; stop at the first feasible solution
• hard to just compute a feasible solution when storage limits are tight
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Reconsider full-split with bilevel model

Ex: static potential/flow equilibrium, given 𝑥 and 𝑠 (and time 𝑡), let

𝑌(𝑥, 𝑠) = {𝑦 = (𝑦𝑄, 𝑦𝐻) ∶ 𝑔(𝑥, 𝑦, 𝑠, 𝐿) = 0}

• 𝑌(𝑥, 𝑠) are the KKT solutions for a min-strictly-convex-cost flow problem on 𝐺(𝑁,𝐴(𝑥)):

𝑦𝑄 ∈ argmin
𝑞

{Φ(𝑞) + 𝑠⊤𝑞𝑅 ∶ 𝑞𝐽 = 𝐿} (primal flow)

≡ 𝑦𝐻 ∈ argmax
ℎ

{Φ ∗(ℎ) + 𝐿⊤ℎ ∶ ℎ𝑅 = 𝑠} (dual potential)

≡ Φ(𝑦𝑄) + 𝑠⊤𝑦𝑄𝑅 = Φ ∗(𝑦𝐻) + 𝐿⊤𝑦𝐻 , 𝑦𝑄𝐽 = 𝐿, 𝑦𝐻𝑅 = 𝑠 (strong duality condition).

• with a suited variable change, 𝑥 does not appear in the SD condition
• nonconvexity remains in the bilinear term 𝑠⊤𝑦𝑄𝑅
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dualize the SD condition + ADMM

1: fix storage 𝑠, then compute (𝑥, 𝑦)

𝑃(𝑠) ∶ min
(𝑥,𝑦)∈𝒳×𝒴

􏾜
𝑡∈𝒯

𝑓𝑡(𝑥𝑡, 𝑦𝑡, 𝑠𝑡, 𝐶𝑡) + 𝑝𝑡(𝑠𝑡+1 − 𝑠𝑡 − 𝑦𝑡, 𝜌𝑡) + 𝑝𝑡(𝑆𝐷𝑡(𝑦𝑡, 𝑠𝑡), 𝜇𝑡)

𝑠.𝑡. ∶ 𝑦𝑄𝑡𝐽 = 𝐿, (1 − 𝑥𝑡)𝑦𝑄𝑡 = 0, 𝑦𝐻𝑡𝑅 = 𝑠𝑡, 𝑦𝐻𝑡 ∈ 𝐵(𝑥𝑡) ∀𝑡 ∈ 𝒯.

with 𝑆𝐷𝑡(𝑦𝑡, 𝑠𝑡) = Φ(𝑦𝑄𝑡 ) + 𝑠⊤𝑡 𝑦
𝑄
𝑡𝑅 − Φ ∗(𝑦𝐻𝑡 ) − 𝐿⊤𝑡 𝑦𝐻𝑡 (and 𝑓𝑡, 𝑝𝑡 linear),

then for each 𝑡, 𝑃𝑡(𝑠𝑡) is
separable in primal/dual parts, i.e. (𝑦𝑄, 𝑦𝐻)-split, corresponding to two equilibrium problems
perturbed with costs and penalties

primal: perturbed potentials 𝑠𝑡 and resistance 𝜙

𝑃𝑡(𝑥𝑡, 𝑠𝑡) ∶min
𝑦𝑄𝑡

𝜇𝑡Φ(𝑦𝑄𝑡 ) + 𝑙(𝑠𝑡, 𝐶𝑡, 𝜌𝑡, 𝜇𝑡)⊤𝑦𝑄𝑡

𝑠.𝑡. ∶ 𝑦𝑄𝑡𝐽 = 𝐿𝑡, (1 − 𝑥𝑡)𝑦𝑄𝑡 = 0.

dual: perturbed load 𝐿𝑡 and resistance 𝜙

𝐷𝑡(𝑥𝑡, 𝑠𝑡) ∶max
𝑦𝐻𝑡

𝜇𝑡Φ ∗(𝑦𝐻𝑡 ) + 𝜇𝑡𝐿⊤𝑦𝐻𝑡

𝑠.𝑡. ∶ 𝑦𝐻𝑡𝐽 = 𝑠𝑡, 𝑦𝐻𝑡 ∈ 𝐵(𝑥𝑡).
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dualize the SD condition + ADMM

1: fix storage 𝑠, then compute (𝑥, 𝑦)

𝑃(𝑠) ∶ min
(𝑥,𝑦)∈𝒳×𝒴

􏾜
𝑡∈𝒯

𝑓𝑡(𝑥𝑡, 𝑦𝑡, 𝑠𝑡, 𝐶𝑡) + 𝑝𝑡(𝑠𝑡+1 − 𝑠𝑡 − 𝑦𝑡, 𝜌𝑡) + 𝑝𝑡(𝑆𝐷𝑡(𝑦𝑡, 𝑠𝑡), 𝜇𝑡)

𝑠.𝑡. ∶ 𝑦𝑄𝑡𝐽 = 𝐿, (1 − 𝑥𝑡)𝑦𝑄𝑡 = 0, 𝑦𝐻𝑡𝑅 = 𝑠𝑡, 𝑦𝐻𝑡 ∈ 𝐵(𝑥𝑡) ∀𝑡 ∈ 𝒯.

with 𝑆𝐷𝑡(𝑦𝑡, 𝑠𝑡) = Φ(𝑦𝑄𝑡 ) + 𝑠⊤𝑡 𝑦
𝑄
𝑡𝑅 − Φ ∗(𝑦𝐻𝑡 ) − 𝐿⊤𝑡 𝑦𝐻𝑡 (and 𝑓𝑡, 𝑝𝑡 linear), then for each 𝑡, 𝑃𝑡(𝑠𝑡) is

separable in primal/dual parts, i.e. (𝑦𝑄, 𝑦𝐻)-split, corresponding to two equilibrium problems
perturbed with costs and penalties

primal: perturbed potentials 𝑠𝑡 and resistance 𝜙

𝑃𝑡(𝑥𝑡, 𝑠𝑡) ∶min
𝑦𝑄𝑡

𝜇𝑡Φ(𝑦𝑄𝑡 ) + 𝑙(𝑠𝑡, 𝐶𝑡, 𝜌𝑡, 𝜇𝑡)⊤𝑦𝑄𝑡

𝑠.𝑡. ∶ 𝑦𝑄𝑡𝐽 = 𝐿𝑡, (1 − 𝑥𝑡)𝑦𝑄𝑡 = 0.

dual: perturbed load 𝐿𝑡 and resistance 𝜙

𝐷𝑡(𝑥𝑡, 𝑠𝑡) ∶max
𝑦𝐻𝑡

𝜇𝑡Φ ∗(𝑦𝐻𝑡 ) + 𝜇𝑡𝐿⊤𝑦𝐻𝑡

𝑠.𝑡. ∶ 𝑦𝐻𝑡𝐽 = 𝑠𝑡, 𝑦𝐻𝑡 ∈ 𝐵(𝑥𝑡).
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Conclusion

• coupling constraints ? consider regularization + alternating direction methods

• cascading separation: time→ space→ primal/dual

• initialization point (here the storage profiles) can be learned

• future: other applications (traffic, MPEC) and theoretical convergence
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