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the pump scheduling problem
plan the operation of a drinking water distribution network
to minimize the electricity bill of pumping

energy efficiency

• growing demand in water: up to 50% in the world by 2050

• energy-intensive: 4% in the US electricity consumption

• response to a dynamic incentive electricity tariff with load shifting

hard optimization

• discrete control (on/off) over a discretized time horizon

• nonlinear behavior (pressure/flow relation)

• time-coupling constraints: storage state (elevated water tanks)
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a drinking water distribution network

a directed graph 𝐺
arcs 𝐴: pipes, pumps, valves
nodes 𝐽 : users, tanks, sources
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Pump scheduling problem

solved on a daily basis: plan the operation of the pumps over time 𝑡 ∈ {1, ..., 𝑇 − 1}, to satisfy
the water demand 𝐷𝑡, at minimum cost given tariff 𝐶𝑡

pump control/operation
on/off switch 𝑥𝑡𝑎 ∈ {0, 1}
flow 𝑞𝑡𝑎 ∈ ℝ
electricity tariff𝐶𝑡 ∈ ℝ+
tank state/level𝐻𝑡𝑗 ∈ [𝐻𝑗, 𝐻𝑗]
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BAU optimization with Machine Learning

Train a ML model offline on the network historical data
to predict the optimal discrete control profile

• pros: available history, high seasonality but little variation across years
• cons: feasible decisions 𝑥 are sparse and scarce in {0, 1}𝑇 ×𝐴

• hard to repair an approximate 𝑥 to meet the storage capacities
• SOA heuristics: tackle storage capacities as soft constraints 5



Prop: learn continuous state vs. discrete control

Train a ML model statically on the network historical data to predict the optimal continuous
state profiles

• regression rather than classification
• local search around a predicted 𝐻 to restore a feasible 𝑋:

• allows for smoother moves
• exploits problem structure: time/space decomposition
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Mathematical

decomposition



MINLP model

(𝒫) ∶ min𝑥,𝑞,𝐻 ∑𝑡∈𝒯 𝑐𝑡(𝑥𝑡, 𝑞𝑡) = ∑𝑡∈𝒯 ∑𝑎∈𝒜(𝑐0𝑡𝑎𝑥𝑡𝑎 + 𝑐1𝑡𝑎𝑞𝑡𝑎) 𝑠.𝑡. ∶
𝑞𝑡 ∈ ℰ(𝐻𝑡, 𝐷𝑡, 𝑥𝑡) ∀ time 𝑡 flow/head equilibrium𝑞𝑡𝑗 = 𝜎𝑗(𝐻(𝑡+1)𝑗 − 𝐻𝑡𝑗) ∀ time 𝑡, tank 𝑗 flow conservation at tanks𝐻𝑡𝑗 ≤ 𝐻𝑡𝑗 ≤ 𝐻𝑡𝑗 ∀ time 𝑡, tank 𝑗 tank capacities𝑥𝑡𝑎 ∈ {0, 1} ∀ time 𝑡, arc 𝑎 pump status

time decomposition: relax/penalize/dualize the flow conservation constraints
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Static Equilibrium Problem ℰ(𝐻𝑡, 𝐷𝑡, 𝑥𝑡)
At each time 𝑡, flow/head equilibrium (𝑞𝑡, ℎ𝑡) ∈ ℰ(𝐻𝑡, 𝐷𝑡, 𝑥𝑡) iffℎ𝑡𝑗 = 𝐻𝑡𝑗 ∀ tank 𝑗 tank head𝑞𝑡𝑗 = 𝐷𝑡𝑗 ∀ user 𝑗 flow conservation𝑥𝑡𝑎 = 0 ⟹ 𝑞𝑡𝑎 = 0 ∀ arc 𝑎 inactive arc𝑥𝑡𝑎 = 1 ⟹ ℎ𝑡𝑎 = 𝜙𝑎(𝑞𝑡𝑎) ∀ arc 𝑎 flow/head loss

where 𝜙𝑎 is a quadratic antisymmetric fit

• nonconvex system; unique solution easy to compute for given state 𝐻𝑡 and control 𝑥𝑡
• space decomposition along the tanks; few pumps in each component:
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Recover feasibility: from learned 𝐻 to a feasible 𝑋
Tank levels 𝐻 are coupling elements of the model:

Fixing the tank levels:

1. Temporal decomposition: separates the model in independent static equilibrium
subproblems: 𝑞𝑡 ∈ ℰ(𝐻𝑡, 𝐷𝑡, 𝑥𝑡) ∀ time 𝑡

2. Graph decomposition: separates the static equilibrium subproblems along the tanks
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Recover feasibility 1: extended IP (approximate)

Original model

min𝑥,𝑞,𝐻 ∑𝑡 𝑐𝑡(𝑥𝑡, 𝑞𝑡)𝑞𝑡 ∈ ℰ(𝐻𝑡, 𝐷𝑡, 𝑥𝑡) ∀𝑡𝑞𝑡𝑗 = 𝜎𝑗(𝐻(𝑡+1)𝑗 − 𝐻𝑡𝑗) ∀𝑡, 𝑗𝐻𝑡𝑗 ≤ 𝐻𝑡𝑗 ≤ 𝐻𝑡𝑗 ∀𝑡, 𝑗𝑥𝑡𝑎 ∈ {0, 1} ∀𝑡, 𝑎
given learned 𝐻̃ :

Extended IP [INOC 2019]

min𝑦,𝐻 ∑𝑡 ∑𝑠 𝐶𝑡𝑠𝑦𝑡𝑠∑𝑠 𝑦𝑡𝑠 = 1 ∀𝑡∑𝑠 𝑄𝑡𝑠𝑗𝑦𝑡𝑠 = 𝜎𝑗(𝐻(𝑡+1)𝑗 − 𝐻𝑡𝑗) ∀𝑡, 𝑗𝐻𝑡𝑗 ≤ 𝐻𝑡𝑗 ≤ 𝐻𝑡𝑗 ∀𝑡, 𝑗𝑦𝑡𝑠 ∈ {0, 1} ∀𝑠 ∈ 𝒮𝑡
• solve ℰ(𝐻̃𝑡, 𝐷𝑡, 𝑥𝑡) for each configuration 𝑠 ∶= 𝑥𝑡 ∈ {0, 1}𝐴
• compute cost 𝐶𝑡𝑠 and tank inflows 𝑄𝑡𝑠
• keep 𝑠 ∈ 𝒮𝑡 if 𝑄𝑡𝑠 ≈ 𝜎(𝐻̃(𝑡+1) − 𝐻̃𝑡)
• |𝒮𝑡| is limited: symmetry breaking, space decomposition 10



Recover feasibility 2: variable-splitting (heuristic)

Original model

min𝑥,𝑞,𝐻 ∑𝑡 𝑐𝑡(𝑥𝑡, 𝑞𝑡)𝑞𝑡 ∈ ℰ(𝐻𝑡, 𝐷𝑡, 𝑥𝑡) ∀𝑡𝑑𝑡𝑗 = 0 ∀𝑡, 𝑗𝐻𝑡𝑗 ≤ 𝐻𝑡𝑗 ≤ 𝐻𝑡𝑗 ∀𝑡, 𝑗𝑥𝑡𝑎 ∈ {0, 1} ∀𝑡, 𝑎
with 𝑑𝑡𝑗 = 𝑞𝑡𝑗 − 𝜎𝑗(𝐻(𝑡+1)𝑗 − 𝐻𝑡𝑗)
Alternating Direction Method: start with 𝐻 = 𝐻̃

Variable-splitting [ISCO 2024]

𝒫(𝐻) ∶min𝑥,𝑞 ∑𝑡 𝑐𝑡(𝑥𝑡, 𝑞𝑡) + 𝜌𝑡𝑑𝑡𝑞𝑡 ∈ ℰ(𝐻𝑡, 𝐷𝑡, 𝑥𝑡) ∀𝑡𝑥𝑡𝑎 ∈ {0, 1} ∀𝑡, 𝑎↓ ↑𝒫(𝑥, 𝑞) ∶min𝐻 𝜌𝑡𝑑𝑡𝑞𝑡 ∈ ℰ(𝐻𝑡, 𝐷𝑡, 𝑥𝑡) ∀𝑡𝐻𝑡𝑗 ≤ 𝐻𝑡𝑗 ≤ 𝐻𝑡𝑗 ∀𝑡, 𝑗
1. solve 𝒫(𝐻) get (𝑥, 𝑞)
2. solve 𝒫(𝑥, 𝑞) get 𝐻
3. stop if ‖𝑑𝑡‖ < 𝜖 or goto 1 and possibly update 𝜌 11



Deep Learning



Deep Learning architecture

ℋ ∶ (𝐷, 𝐶) −→ 𝐻1, 𝐻2, 𝐻3, … , 𝐻50
• Both input (𝐷, 𝐶) and output 𝐻 resemble temporal sequential data

• Naive inception architecture: several parallel convolutional with various kernel sizes to
capture local trends in the input data

• + an LSTM unit after concatenation to capture temporal dependencies

• + Monte Carlo dropout to generate multiple outputs 𝐻𝑘 to implement diversification in
local search with multi-start
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Deep Learning architecture
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Scaling: if no training data are available

• Training set: daily data (𝐷, 𝐶) with associated optimal 𝐻
• Computing an optimal 𝐻 for each input data (𝐷, 𝐶) is not viable for fine
time-discretization, e.g., 𝑇 = 24 or 𝑇 = 48

• Scaling: train the DL model using coarse-grained resolution data (𝐷, 𝐶, 𝐻), e.g. 𝑇 = 12
• resize/resample input and output by linear interpolation
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Experiments



Experimental set

• data generation: 6 years of daily instances (𝐷, 𝐶) drawn from realistic highly seasonal
data adapted to the Van Zyl network

• data collection: solve with coarse-time (𝑇 = 12) by a specialized branch-and-check
algorithm BC [Opt&Eng 2021] with advanced preprocessing BC+Pre [ICAE 2022]

• test set: 50 instances with 𝑇 = 12, 24, 48
• compare the first feasible solutions computed with DL+ADM for a fixed penalty value𝜌 = 50 or 𝜌 = 2 (HA50, HA2) with BC and BC+Pre
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gap to the best LB [BCpre] and avg time

#solved Mean% Min% Max% time (s)

VZ12 HA50 49 6.6 0.0 21.2 254
1800s HA2 44 4.6 0.0 11.3 305

BC 48 5.4 1.6 12.5 121
BC+Pre 50 4.3 0.4 12.4 124

VZ24 HA50 50 9.5 3.3 23.4 285
3600s HA2 50 8.4 3.4 16.3 279

BC 5 11.1 7.2 12.6 1097
BC+Pre 50 7.5 2.4 39.6 809

VZ48 HA50 50 9.8 3.8 21.0 776
7200s HA2 49 10.3 4.4 19.7 1014

BC 1 - - - -
BC+Pre 32 6.4 3.4 8.9 2517
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Number of solutions wrt time
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Conclusion and perspective

• a combination of complementary data and mathematical models to reach feasible
high-quality solutions in a short time

• models are independent, other combinations exist

• local search in the state 𝐻-space vs control 𝑥-space: exploiting time and space
decomposition

• a natural mapping 𝐻 ↦ 𝑥 exists in many control application

• future work: convergence to optimality
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