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the pump scheduling problem

plan the operation of a drinking water distribution network
to minimize the electricity bill of pumping

energy efficiency

- growing demand in water: up to 50% in the world by 2050
- energy-intensive: 4% in the US electricity consumption
+ response to a dynamic incentive electricity tariff with load shifting

hard optimization

- discrete control (on/off) over a discretized time horizon
- nonlinear behavior (pressure/flow relation)
- time-coupling constraints: storage state (elevated water tanks)



A DRINKING WATER DISTRIBUTION NETWORK

f 1 T 1
{Tanksi JDemand
o N J \

a directed graph G [ wmn ) T
arcs A: pipes, pumps, valves o I
nodes J: users, tanks, sources [otee | :
j Y trol valve ) T
PMP2 1
-3 g T
8



PUMP SCHEDULING PROBLEM

solved on a daily basis: plan the operation of the pumps over time ¢ € {1,...,T — 1}, to satisfy
the water demand D,, at minimum cost given tariff C,
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BAU OPTIMIZATION WITH MACHINE LEARNING

Train a ML model offline on the network historical data
to predict the optimal discrete control profile
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+ pros: available history, high seasonality but little variation across years
- cons: feasible decisions x are sparse and scarce in {0, 1}7>4
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+ hard to repair an approximate z to meet the storage capacities
+ SOA heuristics: tackle storage capacities as soft constraints
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PROP: LEARN CONTINUOUS STATE VS. DISCRETE CONTROL

Train a ML model statically on the network historical data to predict the optimal continuous
state profiles
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- regression rather than classification
- local search around a predicted H to restore a feasible X:

- allows for smoother moves
+ exploits problem structure: time/space decomposition



MATHEMATICAL
DECOMPOSITION



MINLP MODEL

(‘{P> : min th(wtaQt) - Z Z(c?a‘rta + Ctla(Ita> s.t.:
eT
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q; € E(H,, Dy, x,) Vtime t flow/head equilibrium

Qj = 0 (Hyy1y; — Hyj) vV time t, tank j flow conservation at tanks
o, <H;< th vV time ¢, tank j tank capacities

z,, € {0,1} Vtimet, arca pump status

time decomposition: relax/penalize/dualize the flow conservation constraints



STATIC EQUILIBRIUM PROBLEM &E(H,, D, x;)

At each time ¢, flow/head equilibrium (¢,, h,) € E(H,, D,, x,) iff

hy; = Hy; V tank j tank head

G; = Dy Y user j flow conservation
T =0 = ¢ =0 Varca inactive arc

Ty =1 = hyy = ¢u(014) Yarca flow/head loss

where ¢, is a quadratic antisymmetric fit
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STATIC EQUILIBRIUM PROBLEM &E(H,, D, x;)

At each time ¢, flow/head equilibrium (¢,, h,) € E(H,, D,, x,) iff

hy; = Hy; V tank j tank head

G; = Dy Y user j flow conservation
T =0 = ¢ =0 Varca inactive arc

Ty =1 = hyy = ¢u(014) Yarca flow/head loss

where ¢, is a quadratic antisymmetric fit

* nonconvex system; unigue solution easy to compute for given state H, and control z,
- space decomposition along the tanks; few pumps in each component:




RECOVER FEASIBILITY: FROM LEARNED H TO A FEASIBLE X

Tank levels H are coupling elements of the model:

Fixing the tank levels:

1. Temporal decomposition: separates the model in independent static equilibrium
subproblems:
q; € E(H, Dy, z,) Vimet

2. Graph decomposition: separates the static equilibrium subproblems along the tanks




RECOVER FEASIBILITY 1: EXTENDED IP (APPROXIMATE)

Original model Extended IP [INOC 2019]
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given learned H:
- solve &(H,, D,, z,) for each configuration s := z, € {0,1}4
- compute cost C,, and tank inflows @,

* keeps e S, ifQ,, ~ U(Htﬂ) H,)
- |8, is limited: symmetry breaking, space decomposition




RECOVER FEASIBILITY 2: VARIABLE-SPLITTING (HEURISTIC)

Original model Variable-splitting [ISCO 2024]

¢ (4, 4;) P(H) :n;liqnzct(xta‘h) + pyd,
t . t

q € E(Hy, Dy, z,)
z,, € {0,1}
H,<H,;<H, o
z,, €{0,1} P(x,q) :min p,d,

with dy; = g;; — 0;(Hyyq); — Hyj) H <. <T.
=tj — t] = "tg
Alternating Direction Method: start with H = H

1. solve P(H) get (z,q)

2. solve P(z,q) get H

3. stopif |d,|| < e or goto 1 and possibly update p




DEEP LEARNING




DEEP LEARNING ARCHITECTURE

7 :(D,C)— H',H? H3, .. H%

+ Both input (D, C') and output H resemble temporal sequential data

- Naive inception architecture: several parallel convolutional with various kernel sizes to
capture local trends in the input data

- +an LSTM unit after concatenation to capture temporal dependencies

* + Monte Carlo dropout to generate multiple outputs H* to implement diversification in
local search with multi-start



DEEP LEARNING ARCHITECTURE

Capturing local patterns with various kerne! sizes
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SCALING: IF NO TRAINING DATA ARE AVAILABLE

+ Training set: daily data (D, C') with associated optimal H

- Computing an optimal H for each input data (D, C) is not viable for fine
time-discretization,e.qg., T =24 or T' = 48

+ Scaling: train the DL model using coarse-grained resolution data (D, C, H),e.g. T = 12

+ resize/resample input and output by linear interpolation

Down sampling Up sampling
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EXPERIMENTS




EXPERIMENTAL SET

- data generation: 6 years of daily instances (D, C') drawn from realistic highly seasonal
data adapted to the Van Zyl network

- data collection: solve with coarse-time (" = 12) by a specialized branch-and-check
algorithm BC [Opt&Eng 2021] with advanced preprocessing BC+Pre [ICAE 2022]

- test set: 50 instances with T' = 12, 24, 48

- compare the first feasible solutions computed with DL+ADM for a fixed penalty value
p = 50 or p = 2 (HA50, HA2) with BC and BC+Pre



GAP TO THE BEST LB [BCPRE] AND AVG TIME

‘ #solved Mean% Min% Max% time (s)

VZ12 | HA50 49 66 00 212 254
1800s | HA2 44 46 00 113 305
BC 48 54 16 125 121
BC+Pre 50 43 04 124 124
VZ24 | HA50 50 95 33 234 285
3600s | HA2 50 84 34 163 279
BC 5 111 72 126 1097
BC+Pre 50 75 24 396 809
VZ48 | HA50 50 98 38 210 776
7200s | HA2 49 103 44 197 1014
BC 1 - - - -
BC+Pre 32 64 34 89 2517




NUMBER OF SOLUTIONS WRT TIME
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CONCLUSION AND PERSPECTIVE

-+ a combination of complementary data and mathematical models to reach feasible
high-quality solutions in a short time

+ models are independent, other combinations exist

- local search in the state H-space vs control z-space: exploiting time and space
decomposition

+ anatural mapping H + x exists in many control application

- future work: convergence to optimality
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