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ABSTRACT 

The pump scheduling problem is to shift the pumping in a hydraulic network ahead of time of the forecasted water demand, 

so as to minimize the energy cost of pumping by leveraging the dynamic electricity tariff, together with the storage 

capacities of the reservoirs and the nonlinear flow dynamics. This optimization problem has a challenging mathematical 

nature, discrete and nonconvex. It also has a complex structure, comprising three interleaved decision levels: the control 

of pumps and valves, the flow-head equilibrium, and the storage level at all time periods. Many solution approaches 

approximate some of the coupling or complicating constraints, but the results of these procedures are hard to evaluate. 

In this paper, we focus on computing feasible solutions to the pump scheduling problem, and present a cooperative 

approach making use of deep learning to predict the reservoir level trajectories over the time horizon, integer 

programming to get the optimal combinations of pumps, and Todini’s gradient algorithm to simulate the hydraulic 

equilibria independently on all periods. We implement an alternating direction method to synchronize these components. 

The decoupling enables a fast computation of each component, some could additionally be run in parallel. The 

synchronization algorithm, although it lacks a theoretical guarantee of convergence, succeeds in computing strictly-

feasible nearly-optimal solutions on the well-known Van Zyl benchmark set. 

  

1. INTRODUCTION 

In the current trend towards decarbonizing the energy sector, hydraulic utilities, which combine energy-

intensive pumps and energy-storage reservoirs, offer great opportunities for implementing efficient demand-

response strategies, resulting in both substantial energy savings for these utilities and flexibility services for 

the power system. Load shifting in pressurized drinking water distribution networks is one emblematic 

example. There, pumping can profitably be scheduled ahead of time of delivering water, for three reasons: (i) 

the elevated tanks act as storage for both water and gravitational energy, (ii) the dynamic tariff of the electricity 

gives direct incentives for pumping when the power production is in surplus, and (iii) distributing the pumping 

effort allows reaching better efficient points given the nonlinear nature of the flow-pressure relation. Pump 

scheduling refers to anticipating the activation of pumps and valves according to a water demand forecast in 

order to minimize the energy cost of pumping.  

 In the static case, the demand and initial tank levels are fixed, and the problem is to find the most efficient 

combination of active pumps and valves, along with the associated network-wide flow-head equilibrium to 

serve the demand. The mathematical model is already challenging for conventional global optimization tools 

[1], as it involves both nonconvex head loss equations and combinatorial control decisions, formulated either 

as integer variables or complementary constraints. Note that this static problem has the same nature as the 

strategic design problem of pipe sizing in gravity-fed networks [2]. In the dynamic case considered in this 

paper, the water demand forecast is provided as an hourly time series for every service point on the day ahead. 

The time horizon is discretized accordingly to handle the pump and valve switch decision. The dynamic case 

then relies on solving a sequence of 24 static problems, interleaved pairwise by the storage conservation 

constraints in the water tanks. Its algorithmic complexity is still one magnitude higher. 
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 An abundant literature is dedicated to methods for solving different variants of this problem, 

experimenting with various techniques. In the standard deterministic variant, pumps and valves have binary 

states – on/off and open/close – and all data, including water demand and electricity tariff, are known. The few 

published global optimization approaches [3][4], even when tailored to a specific case [5], quickly become 

computationally intensive as the network size or time discretization grows. Alternatively, most proposed 

algorithms trade off accuracy for speed, usually by truncating the search (e.g., in genetic algorithms [6] [7]) 

and by approximating some of the complicating constraints (e.g., using a piecewise linear hydraulic model 

with mathematical programming [8]). The quality of the computed approximate solutions cannot be properly 

evaluated using heuristic approaches, especially in the case of pump scheduling, where it is challenging to 

estimate how far an approximate solution is from complying with a reliable model of this problem. Indeed, the 

solution space (i.e., binary vectors of pump and valve configurations) is sparse: applying a local move in this 

space relies on turning a pump on or off for the duration of one time period, which strongly impacts the dispatch 

of water in the network from this time period and later. In the process of recovering the feasibility of an 

approximate solution, it likely leads to exceeding the tank capacity if the level is already close to it, as in the 

case when the tanks are well dimensioned and the approximate solution has been optimized accordingly. This 

sensitivity is an issue for both exact and heuristic algorithms, including end-to-end machine learning 

approaches, as they mostly rely on global or local search through this discrete space. 

 In this paper, we adopt an alternative strategy by searching through the continuous state space of the tank 

level trajectories. This strategy was previously applied in [9], where, based on numerical experiments and 

industrial experience, it was observed that a simple linear programming relaxation provides a good 

approximation of the optimal tank level trajectories. The authors argued that experienced network operators 

could manually turn this prediction into a practical pump schedule. We adopt the same two-step scheme but 

implement it with some elaborate and complementary decision tools. Namely, we build a deep learning model 

instead of a linear program to predict tank levels. Then, we apply an iterative splitting algorithm to a reliable 

mathematical model of the problem to refine this approximation and derive a feasible solution. The 

mathematical model is a mixed integer nonlinear nonconvex program (MINLP) based on an accurate analytical 

representation of the dynamics that govern the hydraulic system, thus it allows measuring the theoretical 

quality of the computed solutions. The more accurate, the more difficult to solve, so the complementary deep 

learning (DL) model, built from historical data or observations, serves as a preprocessing step to initialize the 

MINLP algorithm with approximate predictions. 

 The main motivation behind our algorithm comes from the multi-level structure of the dynamic problem 

and how it decomposes into independent and easy static problems once the tank levels are fixed. We exploit 

this by implementing a Douglas-Rachford splitting scheme, akin to ADMM tailored for this discrete 

nonconvex problem: each iteration consists in solving the two subproblems obtained by splitting the (pump) 

control variables and the (tank) state variables, where the control part splits itself into parallelizable static 

problems, after dualizing the intertemporal storage conservation constraints. This relates then to the Lagrangian 

decomposition model of [10] or to the recent ADMM adaptation of [11], but with one major difference: in our 

decomposition, the tank levels are not only decoupled in time, but they are fixed in each static control 

subproblem. This allows us to decompose these subproblems also spatially, following the decomposition of 

the network along the tanks, and to use a fast Newton method, namely Todini-Pilati algorithm [12] to compute 

the hydraulic equilibria for each static configuration on each network component independently. Observing 

that the number of pumps and valves is often limited in each component, we expect that enumerating the 

configurations and computing the hydraulic equilibria to be much more efficient than relying on a global 

optimization tool, as in [10][11]. Our approach also relates to the matheuristic of [13], which employs this 

enumeration as a preprocessing step to populate an extended linear programming approximation before 

running a final step to repair the hydraulic inaccuracies. In comparison, our iterative scheme can be seen as a 

dual alternative to column generation, where configurations are computed on the fly. This eliminates the need 

for that final repair step; however, in theory, it is not guaranteed to converge because the MINLP is discrete 

and nonconvex. We thus implemented simple meta techniques to make it work in practice, in particular: a 

restart mechanism to diversify the search and a penalization technique to drive the search, or a scaling 

mechanism to alleviate the DL training process.  

 This paper presents an original hybridization of machine learning and mathematical programming for 

tackling optimization problems with hard feasibility issues, using DL for handling the optimization objective 

and MINLP for recovering feasibility. The approach is flexible as the two components are independent, and 

one could be replaced without impacting the other. This approach is also original for the pump scheduling 

problem for drinking water distribution as it fully leverages the problem separability in elementary tasks – 

using temporal decomposition and network partition, and handling independently the hydraulic/nonconvex 
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constraints with simulation and the combinatorial decisions with controlled enumeration – while using a 

mathematical programming framework to coordinate the tasks and enforce the strict feasibility of the solutions. 

It is also flexible in the sense that it can be applied to other hydraulic or hydrologic planning problems involving 

tight storage conservation constraints at reservoirs, possibly on different time scales, and with any kind of 

discrete control decisions. The algorithm is not even restricted to water systems, as the principle of flow-head 

equilibrium occurs in many other physical or economic networks, such as power distribution or routing. We 

actually developed the methodology in [14] on an abstract system with storage capacities. The present paper 

details its application to the pump scheduling problem, specifically, and describes a new physics-informed 

deep learning model along with the corresponding experimental results. 

 The paper is organized as follows: Section 2 describes the mathematical model of the pump scheduling 

problem; Section 3 describes two deep learning models to forecast the tank level trajectories; Section 4 

describes the splitting algorithm to repair the forecast trajectory and compute a feasible pump schedule; Section 

5 provides experimental results on the benchmark network known as Van Zyl network.   

2. MATHEMATICAL MODEL FOR THE PUMP SCHEDULING PROBLEM  

We briefly present a standard mathematical model for the pump scheduling problem; more details can be 

found, e.g., in [3]. The notation used in this paper is described in Table 1. 
 

𝑡, 𝑇 time step index, horizon length 

𝑟, 𝑠 network node indices: reservoirs (tanks and sources), service nodes 

𝐸, 𝑎 = (𝑖, 𝑗), 𝑛 network arcs: incidence matrix, arc indices, number of controllable arcs (pumps, valves) 

𝜋 network partition (along the  reservoirs): partition index 

𝑥𝑎𝑡, 𝑞𝑎𝑡, ℎ𝑖𝑡, 𝑣𝑎𝑡 , 𝑙𝑟𝑡 variables: binary arc control, arc flow, node head, arc head loss, tank filling level 

𝐷𝑠𝑡, 𝐶𝑡  data: demand at service nodes and electrical cost 

𝜑𝑎 , 𝑓𝑎 arc characteristics: head loss function, electrical consumption (for pumps)  

 

Table 1:  Notations 
 

 The water distribution network is formalized as a directed graph where each node represents either a junction, 

a service node, a source, or a water tank, and each arc represents either a pipe or a pump. Some arcs are 

controllable: the fixed-speed pumps can be turned on or off, and the gate valves equipping some pipes can be 

open or closed. For ease of presentation, we consider such controllable devices with only two states 

(active/inactive), but our method can also be adapted to networks with variable speed drive pumps or pressure 

reducing valves, following either approach in [3] or [13].  

 The scheduling horizon is discretized in 𝑇 time steps, so as the water demand, which is fixed over each 

time step, and the network operation is to decide the configuration of pumps and valves to activate on each 

time step (the noncontrollable arcs, such as the passive pipes are considered to be always active). This decision 

is formulated using boolean variables: 𝑥𝑎𝑡 = 1 if arc 𝑎 is active at time step 𝑡 (i.e., flow can pass) and 𝑥𝑎𝑡 = 0, 

otherwise. The transitory effect is usually neglected, and steady flow is assumed at each time step. Hence, the 

hydraulic equilibrium at time 𝑡 is characterized by the flow 𝑞𝑎𝑡 and head loss 𝑣𝑎𝑡 = ℎ𝑖𝑡 − ℎ𝑗𝑡 through the 

active arcs 𝑎 = (𝑖, 𝑗), and it derives from flow analysis in the current state of the network given by: the current 

arc configuration 𝑥𝑎𝑡, the demand 𝐷𝑠𝑡 at service nodes 𝑠, and the filling level 𝑙𝑟𝑡 of the water tanks 𝑟. It is well 

known that such a steady flow 𝑞𝑡 is uniquely determined by this input when each node has either a known 

demand (𝐷𝑠𝑡) or a known head (assimilated to 𝑙𝑟𝑡), and when the resistance function 𝑣𝑎𝑡 = 𝜑𝑎(𝑞𝑎𝑡) in each 

arc 𝑎 – corresponding to friction-induced head loss in pipes and to discharge in pumps – is strictly increasing. 

In [12], it is proved to be the unique solution of the following equation system for some head vector ℎ𝑡 :  

ℎ𝑟𝑡 =  𝑙𝑟𝑡   ∀𝑟, 𝐸𝑇
𝑠𝑞𝑡 =  𝐷𝑠𝑡  ∀𝑠, 𝐸 𝑎ℎ𝑡 + 𝜑𝑎(𝑞𝑎𝑡)  =  0 ∀𝑎: 𝑥𝑎𝑡 = 1, 𝑞𝑎𝑡 =  0 ∀𝑎: 𝑥𝑎𝑡 = 0.   

 

We denote by 𝑔(𝑞𝑡;  𝑥𝑡 , 𝑙𝑡 , 𝐷𝑡) = 0 this system where the function 𝑔 of 𝑞𝑡 is nonconvex. Alternatively, the 

feasible steady flow 𝑞𝑡 can be seen as the solution of a linearly-constrained strictly convex minimization 

problem, called the Content Model in [15] in the hydraulic case, or the distribution problem in [16] in general 

nonlinear flow networks. In [12], an efficient gradient algorithm is proposed to optimize this strictly convex 

program, then to solve the equilibrium system. It is implemented in hydraulic simulators, like EPANET [17]. 
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 The equilibrium problem is separable. Indeed, given a partition of the network along the reservoir nodes, 

the steady flow can be computed for each component independently, as the equation system breaks into as 

many components: 

𝑔(𝑞;  𝑥, 𝑙, 𝐷) =  0   ⇔   𝑞 = (𝑞𝜋)𝜋   𝑤𝑖𝑡ℎ   𝑔(𝑞𝜋;  𝑥𝜋, 𝑙𝜋, 𝐷𝜋)  =  0  ∀𝜋 

 

This characteristic is particularly useful in our approach as the number 𝑛𝜋  of controllable arcs in each 

component 𝜋 is usually small enough to envisage enumerating all 2𝑛𝜋 possible combinations  𝑥𝜋  [13]. 

 The pump scheduling problem can then be stated as the following Mixed Integer NonLinear Problem, 

referred to as (MINLP) hereafter: 

 

𝑚𝑖𝑛 ∑𝑡  𝐶𝑡. 𝑓(𝑥𝑡 , 𝑞𝑡) ∶                                                 (0)   
 

 𝑔(𝑞𝑡; 𝑥𝑡 , 𝑙𝑡 , 𝐷𝑡) = 0 ,       ∀𝑡 = 1, . . . , 𝑇       (1)  
  𝑙𝑡+1  =  𝑙𝑡  +  𝐸𝑇𝑞𝑡 ,     ∀𝑡 = 1, . . . , 𝑇      (2)  

  𝐿𝑡  ≤ 𝑙𝑡 ≤ 𝐿𝑡  ,            ∀𝑡 = 1, . . . , 𝑇 + 1     (3)  

  𝑥𝑡 ∈ {0,1}𝐴,                        ∀𝑡 = 1, . . . , 𝑇.            (4)  

 
 As shown in (2), the tank levels 𝑙𝑡+1 at the next time step depend linearly on the incoming flows 𝑞𝑡; 

moreover, in (3), tank levels are bounded by the tank capacity and fixed at the beginning and at the end of the 

horizon. Finally, in (0), the energy consumption can be reduced to a linear function 𝑓 of the activity 𝑥 and flow 

𝑞 through the pumps, where coefficients are obtained from the pump characteristics, and the energy cost is 

defined by the dynamic electricity tariff  𝐶𝑡. As mentioned, the function 𝑔 is nonconvex in 𝑞𝑡, with 𝑥𝑡 and 𝑙𝑡 

being additional variables of the system 𝑔(𝑞𝑡;  𝑥𝑡 , 𝑙𝑡 , 𝐷𝑡) = 0 in the above formulation. Even for small-size 

problems, off-the-shelf global optimization solvers usually fail to find a feasible solution after hours of 

computation, and specialized branch-and-bound methods based on relaxing [1] or approximating [7] the 

nonlinear part all struggle in closing the optimality gap. This model makes explicit the time-separable structure 

of the problem after dualizing the time-coupling constraint (2), as implemented in the Lagrangian 

decomposition-based approaches of [10] and [11]. However, in these approaches, the tank levels remain 

unknown in the subsystems (1), preventing the application of Todini’s gradient algorithm to solve them. We 

propose instead to adapt the Douglas-Rachford scheme to the dualized problem by splitting the state variables 

𝑙𝑡 and the control variables (𝑥𝑡 , 𝑞𝑡). Conceptually, our algorithm searches through the space of tank level 

trajectories 𝑙 and attempts to derive a matching pump schedule 𝑥 and network flows 𝑞 by gradually repairing 

the relaxed constraint (2). To initialize the algorithm, a good prediction of the optimal tank level trajectories is 

required. To compute such a prediction, Ulanicki et al [9]. proposed to solve the continuous relaxation of the 

mathematical model above (without the integrality constraints (4)). In our approach, we opt for a numerical 

model, learned from data, to complement the analytical model presented above. 

3. DATA-DRIVEN MODELS OF THE OPTIMAL TANK TRAJECTORIES 

The evolution of drinking water consumption at the local scale of a distribution network exhibits high daily 

cyclicality and often significant seasonal variability. Still, it changes little from one year to the next. This 

motivates the use of the history of a network operation to predict the future daily operation using supervised 

machine learning methods. One data-driven approach to tackling combinatorial optimization problems is 

known as end-to-end learning, which consists of learning the solution to mathematical optimization problems 

directly from data [18].  Such a data-driven model does not offer a guarantee of optimality, nor even feasibility. 

When applied to pump scheduling, in place of the MINLP model above, to predict the optimal vector of binary 

control variables 𝑥, it is not even trivial to turn such an approximate prediction into an actual solution (𝑥, 𝑞, 𝑙) 

satisfying the tight and intricate constraints (1)-(4) simultaneously. Instead of predicting the discrete control 

variables 𝑥, we propose predicting the continuous storage state variables 𝑙. We expect that the feasible solution 

set is denser when projected into the 𝑙-space or, at least, that feasible solutions exist at a short distance of the 

prediction in this continuous space, and, in the next section, we present an effective local search approach 

based on lagrangian decomposition, to repair this prediction and reach such a feasible solution. This section 

describes the deep learning architectures we devised for building the numerical model, and two original 

components we implemented, either for managing scalability or predicting multiple outcomes. 
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3.1 Deep Learning Architecture  

Our machine learning problem is to build a hypothesis function, denoted as 𝛩0, mapping an input given as a 

set of time series representing the time-of-use energy price and the demand profiles at each service node, to 

the target, that is, the time series representing the optimal tank trajectories, one per tank. The hypothesis is 

built during the training phase from a precomputed collection of input/target tuples, by approximately 

minimizing a standard loss function: the mean squared error between the targets and the mapping outcomes. 

To minimize the loss, the hypothesis function needs to capture both spatial and temporal local dependencies 

in the input and target data. However, a feedforward architecture requires flattening the input data, which might 

fade these patterns. Following the lead of previous works, e.g. [19], we choose to integrate the capabilities of 

Bidirectional Long Short-Term Memory (Bi-LSTM) networks for sequence understanding and Convolutional 

Neural Networks (CNNs) for spatial pattern recognition [20]. LSTMs are a type of Recurrent Neural Networks 

(RNNs) that is well-suited for tasks involving sequential data, including time-series forecasting. RNNs are 

neural networks with feedback loops to detect sequential patterns, and LSTMs use, in addition, a gating 

mechanism to train the network on long sequences of data. A BiLSTM can handle information in both forward 

and backward temporal directions, which is crucial in our application due to the dynamic relations spanning 

the entire scheduling horizon. On the other hand, CNNs are primarily recognized for their efficacy in computer 

vision tasks. Yet, they can also be utilized on time series to extract temporal features. 

 

  
Figure 1: Scheme of the proposed CNN-LSTM architecture for learning hypothesis 𝛩0. 

 

 In our architecture, depicted in Figure 1, the CNN consists of parallel one-dimensional convolutional 

layers (conv1D) with different kernel sizes located parallel to each other with zero padding. The kernel strategy 

enables sliding along the input sequence to identify local temporal patterns through an element-wise inner 

product operation between kernel weights and input data. Varying the number and size of kernels enables the 

model to recognize various patterns in the sequence. In relation to the time horizon, we considered 32 kernels 

in each layer with kernel sizes of 4, 6, 8, and 10. To handle the temporal dimension of the target (tank level 

trajectories), the output of the layers is passed through a hidden layer with ReLU activation functions, and their 

outputs are concatenated, reshaped, and fed into a Bi-LSTM. In the output layer, the prediction results are from 

a fully connected layer with a linear activation function placed after the Bi-LSTM unit. 

 

3.2 Physics-Informed Neural Network 

Hypothesis 𝛩0 is solely learned from training data and the approximate minimization of the loss function, a 

distance between predicted and ground truth solutions. Thus, its outcome is not guaranteed to satisfy the 

physical constraints of the pump scheduling problem. Some simple variable domain restrictions (e.g., box 

constraints) can be enforced into the deep learning architecture or in a post-processing step. But, in general, 

there is no straightforward way to specify analytical constraints as modeled by (1) and (2), not even 

individually. Supervised penalty (see e.g., [21]) can be seen as a soft approach for handling the constraint 

violations by adding penalty terms to the loss function. The penalty terms are weighted by parameters that 

control the trade-off between minimizing loss and infeasibility. In our experiments, we set them to 0, 0.05, 

and 0.1. Minimization remains tractable, while the penalized constraints are convex. In our case, equations (1) 
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and (4) reveal two different types of nonconvexity. We propose addressing this issue, first by separating the 

two nonconvexities, then by resorting to convex relaxations, taking the continuous relaxation of equations (4) 

and penalizing equations (3).  

  

  

 
Figure 2: Scheme of the proposed DL architecture for learning the combined hypothesis 𝛩1 + 𝛩2. 

 

 Hence, our second DL architecture is made of two blocks, as depicted in Figure 2. The first block builds 

the hypothesis 𝛩1to predict the binary variables via classification, given the cost and demand profiles. The 

following block creates a map 𝛩2 from the predicted binary values, together with the demand profile, to the 

tank profile. It is in this second block that physical constraints are considered. 

The first block is a slight modification of the CNN-BiLSTM architecture developed to build the previous 

hypothesis 𝛩0. In this case, the goal is to predict the optimal (binary) pump and valve control trajectories. 

Therefore, we replace the shape of the output layer with a sigmoid activation function to produce fractional 

values inside the interval [0,1]. The second hypothesis 𝛩2is a surrogate model of the feasibility subproblem 

(known as the extended analysis problem) defined by equations (1) and (2), i.e., 𝛩2 maps the pump and valve 

control trajectories 𝑥 to the unique tank level trajectories 𝑙 satisfying these two constraint sets. This block 

consists of LSTM units and feedforward layers with ReLU activation functions. 

     The second hypothesis 𝛩2 can be learned offline, as a preprocessing step. At this aim, we generate a 

training set of input/target pairs (𝑥, 𝑙) by solving the extended analysis problem for each binary matrix input 

𝑥: the target 𝑙 is built iteratively, starting from the initial tank levels 𝑙1,  then computing for each period 𝑡, the 

hydraulic equilibrium satisfying 𝑔(𝑞𝑡, 𝑥𝑡 , 𝑙𝑡 , 𝐷𝑡) = 0 (using Todini’s algorithm), then the tank levels at the 

next period according to 𝑙𝑡+1 = 𝑙𝑡 + 𝐸𝑇𝑞𝑡. Within the whole architecture, the hypothesis 𝛩2  receives as input 

the output of the mapping 𝛩1, which are fractional values in the interval [0,1]. We propose to use data 

augmentation (see e.g., [22]) to train 𝛩2 also on fictitious fractional inputs: we populate our training data set 

by simply adding, for each input/target pair (𝑥, 𝑙) in the collection (where 𝑥  is binary), 200 new pairs(𝑥′, 𝑙) 

where 𝑥′ is obtained by perturbing the matrix 𝑥 by adding to each 0 entry and subtracting from each 1 entry a 

random variable from a uniform distribution in the interval [0,0.5]. 

     Once 𝛩2  is learned, we use fine-tuning to train the whole architecture [22]. This means that the weights 

of the model 𝛩2 are frozen, so that only the weights in the first block are updated. We do not consider the tank 

capacities (3) in this process. However, when training the whole architecture, we penalize the violation of 

constraints (3) when evaluating the loss function: 

𝛬𝑙𝑜𝑠𝑠 =  𝛬𝐶𝐸(𝑋, 𝑋)̂  +  𝑝|𝐿̂ −  𝐿|−  +  𝑝|𝐿̂ − 𝐿|− 

where 𝛬𝐶𝐸  denotes the classical binary cross-entropy loss (to evaluate the accuracy of predicting the binary 

variable), and the parameter 𝑝 is a hyperparameter to control the compromise between minimizing the binary 

prediction and violating the physical constraints (3). Note that, unlike the approach described in the previous 
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architecture, we do not track the optimal tank profile here; instead, we only require feasibility. The shape of 

the tank profile is dictated by the map 𝛩2 built to approximate the extended analysis problem. 

 

3.3 Scaling Mechanism 

DL models have a data-intensive nature, requiring a large dataset for training. This means that for training the 

two DL architectures described above, we need to collect the solutions of a large number of pump scheduling 

problems. For a real-world network, the training dataset could be built from the history of daily operations. On 

the other hand, if no history is available or if we assume that the historical operating decisions are not optimal, 

we must generate the training set from the optimal solutions of the analytical model (MINLP). However, even 

computing a feasible solution may require minutes or hours when considering a fine-grained time discretization 

of the scheduling horizon, e.g., for half an hour time steps (𝑇 = 48). To generate a training set that is large 

enough, the problem must be drastically simplified, without losing the structure of the optimal solutions. In 

this paper, we propose to act on the time resolution rather than the complicating constraints. Exploiting the 

elasticity of the scheduling horizon, we generate the training set by solving the problem for a coarse-grained 

time discretization of 2-hour duration steps (𝑇 = 12). By reducing the number of time steps, we also reduce 

the number of binary variables in (MINLP), consequently increasing its tractability. On medium-size networks, 

specialized algorithms can then compute a (feasible) solution in seconds and even prove optimality. This 

scaling mechanism allows reducing the computational cost of dataset generation, without directly 

compromising feasibility or optimality, as constraint relaxation would do. Reducing the size of the input and 

output also allows for reducing the computational cost for training the DL models. Finally, when running the 

learned model on a fine-time resolution instance, we simply need to scale the input and output time series up 

and down, e.g., through resampling and linear interpolation. The inaccuracies resulting from both the learning 

model and the scaling mechanism are expected to be corrected by the splitting algorithm in the second step of 

our procedure. 

 

3.3 Diversified Predictions 

Our two-step predict/repair procedure can be viewed as an original hybrid local search heuristic, using DL to 

generate a candidate solution driven by optimality, and MINLP to search for an actual solution, driven by 

feasibility, in the neighborhood of the candidate (without guarantee of finding one). The second step thus 

corresponds to the intensification phase of the heuristic, and the diversification phase could be simply 

implemented by generating more than one candidate. We propose generating multiple outcomes from the DL 

step by using the Monte-Carlo dropout method, originally developed for quantifying the uncertainty of neural 

networks, by approximating Bayesian variational inferences [23]. Simple and efficient, it works by randomly 

dropping out a fraction of neurons during training. In our architecture, the dropout layers are placed before the 

Bi-LSTM unit and just before the last fully connected layer that yields the outcomes (see Figure 1 and Figure 

2). This approach yields a collection of distinct models, arising from masked neurons. As a result, for one input 

(tariff and demand profiles), we obtain multiple outcomes (level profiles), one from each model. The repair 

step of our procedure can then be applied to each outcome, independently, thus possibly in parallel. 

 

4. SPLITTING ALGORITHM TO RESTORE FEASIBILITY 

This section presents an iterative algorithm, related to the Alternating Direction Method (ADM) [24],  based 

on the partial splitting of the control (𝑥, 𝑞) and state 𝑙 variables in (MINLP). ADM for separable problems and 

its variant ADMM [25] for handling linear coupling constraints, are very popular methods in large-scale 

convex optimization. The theoretical convergence to a stationary point is also established in some nonconvex 

cases, but under conditions that are not met in our case. As such, a splitting scheme would offer no theoretical 

guarantee of convergence, so we present a specific adaptation and its practical motivation. 

 

First, we duale the time coupling constraints (2) with multipliers 𝜇 as follows: 
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ℒ(𝜇) = 𝑚𝑖𝑛(𝑥,𝑞,𝑙) ℒ(𝑥, 𝑞, 𝑙, 𝜇): (1), (3), (4) 𝑤𝑖𝑡ℎ ℒ(𝑥, 𝑞, 𝑙, 𝜇)

= ∑𝑡  (𝐶𝑡. 𝑓(𝑥𝑡 , 𝑞𝑡)  + 𝜇𝑡(𝑙𝑡+1 − 𝑙𝑡  −  𝐸𝑇𝑞𝑡)) 

This allows leveraging the temporal separability of the resulting Lagrangian subproblems: 

                      
       ℒ(𝜇) = ∑𝑡=1..𝑇 ℒ𝑡(𝜇)  + 𝜇𝑇+1 𝑙𝑇+1     𝑤𝑖𝑡ℎ        

ℒ𝑡(𝜇) = 𝑚𝑖𝑛(𝑥𝑡,𝑞𝑡,𝑙𝑡) 𝐶𝑡𝑓(𝑥𝑡 , 𝑞𝑡) + (𝜇𝑡−1 − 𝜇𝑡)𝑙𝑡 −  𝜇𝑡𝐸𝑇𝑞𝑡 ∶  𝑔(𝑞𝑡; 𝑥𝑡, 𝑙𝑡 , 𝐷𝑡) = 0, 𝐿𝑡  ≤ 𝑙𝑡 ≤ 𝐿𝑡,   𝑥𝑡

∈ {0,1}𝐴        
The maximum of the dual function ℒ usually provides a good lower bound for (MINLP). Furthermore, ℒ  is 

piecewise linear concave, so it can be efficiently maximized with either subgradient, bundle, or cutting-plane 

algorithms. During the proposed iterative process, each evaluation at a trial point 𝜇 returns a nearly feasible 

solution for (MINLP), which can potentially be turned into a feasible solution, then an upper bound for 

(MINLP). This decomposition is exploited in the Lagrangian relaxation approach of [10]. More recently, in 

[11], a standard ADMM is applied to the continuous model of the pump scheduling problem (replacing the 

integrality constraints with complementary constraints), based on a decomposition conceptually similar to the 

one we propose: they duplicate the state variables and dualize these new linking constraints. However, in such 

decompositions, the static subproblems ℒ𝑡(𝜇), while much smaller, remain hard to solve as they keep the same 

discrete nonconvex nature of the original problem.  

 Our first proposition is to evaluate ℒ(𝜇) through ADM, that is to enforce a control/state variable splitting, 

then to solve alternatively the two created subproblems: a control subproblem (update (𝑥, 𝑞) by solving ℒ(𝜇) 

with fixed 𝑙), and a state subproblem (update 𝑙 with fixed (𝑥, 𝑞)). This approach can not only leverage the 

temporal separability, but also, as discussed in Section 2, the spatial separability and computational simplicity 

of the hydraulic equilibrium system 𝑔(𝑞𝑡; 𝑥𝑡 , 𝑙𝑡 , 𝐷𝑡) = 0 in constraints (1) once the tank levels  𝑙𝑡 are fixed. 

Since constraints (1) are coupling, then the variable split can be enforced by dualizing them (as in ADMM). 

However, this iterative procedure may not converge as the function 𝑔 in (1) is not biconvex in 𝑥 and 𝑙, and the 

integrality constraints (4) are not qualified. Furthermore, constraints (1) are structuring, and their dualization 

impoverishes the subproblems.  

 Hence, our second proposition is to enforce the variable split, not by dualizing constraints (1), but by 

keeping them as hard constraints in the control subproblem (as it conserves the property of spatial separability) 

and relaxing them in the state subproblem. Our adaptation of ADM leads to the following algorithm to evaluate 

ℒ(𝜇) : 

 

0. Initialize k=0 and  𝑙0 with tank level trajectories (not necessarily feasible). Choose a positive tolerance 

𝜀 and a maximum number of iterations 𝐾. 

1. 1. Fix 𝑙 = 𝑙𝑘  ,  solve 𝑚𝑖𝑛(𝑥,𝑞) ℒ(𝑥, 𝑞, 𝑙𝑘 , 𝜇) ∶  (1), (4), and update (𝑥𝑘+1, 𝑞𝑘+1) with the solution. 

2. 2. Fix (𝑥, 𝑞)  =  (𝑥𝑘+1, 𝑞𝑘+1) ,  solve 𝑚𝑖𝑛𝑙  ℒ(𝑥𝑘+1, 𝑞𝑘+1, 𝑙, 𝜇) ∶  (3), and update 𝑙𝑘+1 with the solution. 

3. 3. If  (𝑙𝑘+1, 𝑞𝑘+1) solves (2), then STOP: solution (𝑥𝑘+1, 𝑞𝑘+1, 𝑙𝑘+1) solves (MINLP). 

4. 4. Otherwise, if ‖𝑙𝑘+1 − 𝑙𝑘‖∞ < 𝜀  or 𝑘 >  𝐾,  then STOP. 

 

 Algorithm 1: Adapted ADM to evaluate a solution to ℒ(𝜇) and (MINLP) heuristically 

 

The two optimization subproblems solved at Steps 1 and 2 of Algorithm 1 can be solved efficiently. The first 

one is the control subproblem. It is separable in time and space and consists, for each time step 𝑡 and each 

component 𝜋 of the network partition, of enumerating the possible configurations 𝑥𝑡
𝜋 of pumps and valves in 

the partition, then to generate the unique associate hydraulic equilibrium 𝑞𝜋
𝑡 (given that the tank levels are 

fixed) and the corresponding cost that we denote 𝑐(𝑥𝜋
𝑡) . The optimal solution is obtained by considering, for 

each time 𝑡, the configurations 𝑥𝜋
𝑡 in every component 𝜋 that altogether minimize 𝛴𝑝𝑐(𝑥𝜋

𝑡). The second state 

subproblem is a small linear program.  

 Our application of ADM is specific as it focuses on feasibility rather than optimality: conceptually, 

Algorithm 1 searches through the 𝑙-space of the tank level profiles satisfying the capacity limits, and attempts 

to derive a matching control profile (𝑥, 𝑞) by gradually reconciling the states 𝑙𝑡+1 and 𝑙𝑡 + 𝑞𝑡 at each time 𝑡, 

which is the stopping test at Step 3.  As this adaptation does not allow for recovering the theoretical 

convergence of ADM, the stopping test at Step 4 limits the number of iterations. This algorithm remains a 

heuristic, so the computation of a solution to (MINLP) is not guaranteed. In compensation, we act on the input 

to the algorithm by running it from various promising initialization points 𝑙0. Indeed, as described in Section 
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3.3, the initialization points  𝑙0 are taken as outcomes of our deep learning model. They correspond to nearly 

feasible and optimal tank level trajectories. Therefore, we expect that actual feasible solutions exist in their 

neighborhood, and that our local repairing procedure in Algorithm 1 is able to reach them. The restart procedure 

with different candidates increases this expectation. 

 Finally, the lack of theoretical convergence allows taking freedom in the proposed scheme, as it is not 

restricted to convexity, smoothness, or regularity properties. In particular, there are many possible 

implementations of this scheme, depending on (i) the choice of the dualization, penalization, or partition of the 

variable-coupling constraints, and (ii) the policy for updating the multipliers or penalties. For example, a loyal 

adaptation to ADMM would be to limit Algorithm 1 to just one iteration, then update the multipliers 𝜇 with 

some gradient information derived from the result (𝑥1, 𝑞1, 𝑙1).  For the experiments presented in the next 

section, we opted for another approach, more similar to the penalized ADM proposed in [26]. First, we manage 

constraints (2) with penalization, instead of dualization, using the L1 regularization form 𝑝𝑟𝑡(𝑙, 𝑞)  =

|𝑙𝑟,𝑡+1 −  𝑙𝑟𝑡  − 𝐸𝑟
𝑇𝑞𝑡| . Hence, in the model, ℒ(𝜇) we redefine the objective function as: 

ℒ(𝑥, 𝑞, 𝑙, 𝜇) = ∑𝑡  𝐶𝑡. 𝑓(𝑥𝑡 , 𝑞𝑡)  + 𝜇𝑡𝑝𝑡(𝑙, 𝑞),   
where 𝜇 now represents nonnegative penalties instead of multipliers. When Algorithm 1 terminates at Step 4, 

we restart it after increasing the penalties to push towards satisfying (2). Note that this objective function, and 

then problem ℒ(𝜇), are not separable in time, but our variable splitting procedure maintains this separability: 

it only changes, at Step 1, the way to combine the configurations 𝑥𝜋
𝑡 over all components 𝜋, to minimize the 

nonlinear cost (and not the way to compute the equilibrium for each configuration individually).  

5. COMPUTATIONAL RESULTS 

This section presents computational results for the experimental evaluation of the proposed hybrid DL-MINLP 

algorithm. It takes up and completes the results presented in [14]. A complete description of the dataset 

generation procedure, and of the DL architecture parameters, is available in the PhD thesis [27] and data and 

generation codes are available at:  

https://github.com/amirhtavakoli94/bench_pmpscheduling.  

5.1 Experimental Protocol 

We run experiments on generated instances of the pump scheduling problem for the benchmark hydraulic 

network [7], known as van Zyl.  

 
Figure 3: Schema of network van Zyl [7] and, in red, a cut through the two tanks which creates a partition of 

two subgraphs: the one on the left has 4 controllable arcs and no service node, the other on the right has no 

controllable arcs and one service node. 

 

The network, depicted in Figure 3, consists of two water tanks of different capacities, two service nodes with 

individual loads, and four controllable elements: two symmetrical pumps and a boost pump operating parallel 

to a check valve. This is a fictitious, medium-sized but difficult network, often used for empirical evaluations. 

A collection of 2113 instances has been generated to train (75% of the instances), validate (15%), and test 

(10%) the DL model. Demands are drawn from a three-year highly seasonal history of real consumption 

sourced from a public network based in a tourist zone in Brittany, France, and electricity tariffs taken from the 

Belgian spot market data for the reference period from 2007 to 2013. Demands and tariffs are given as daily 

profiles of 2-hour time steps (i.e., 𝑇 = 12) and optimal solutions have been computed for these instances using 

the specialized branch-and-cut algorithm of [3], denoted BC hereafter. The DL architectures are trained on 

https://github/
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these data, and sized accordingly. They are built using Tensorflow API v2.12.0 in Google Colab with GPU 

A100.  

 The hybrid DL-MINLP algorithm, denoted HA, is tested on 50 instances, also using finer-grained 

temporal discretizations: with 𝑇 = 24 (1-hour time steps), and 𝑇 = 48 (30-minute time steps). As said in 

Section 4, implementing this variable-splitting scheme can be done in various ways. In these experiments, we 

tested the approach with penalization (not dualization) of the time coupling constraints (2). Algorithm 1 is run 

from at most 35 initialization points  𝑙0 computed using the DL model.  Penalties are updated at most 4 times 

for each run, and the maximum number of iterations is set as 𝐾 = 85 for each penalty update. We initialize the 

penalty terms 𝜇𝑟𝑡, uniformly for all tanks 𝑟 and times 𝑡, either to value 2 or 50; we denote HA2 and HA50 the 

corresponding algorithms. The penalties are updated/increased according to the update number u ∈ {0,..., 4} 

and the constraint violation. Precisely, given a random value ξ ∈ [0.75, 1] and 𝑎 = 𝜉𝑒(−𝑢/10), the penalty 𝜇𝑟𝑡 

is updated to  (1 + 5𝑎𝜇𝑟𝑡) if 𝑝𝑟𝑡(𝑙, 𝑞) > 10−6 and to  (1 + 2𝑎𝜇𝑟𝑡) otherwise. 

 We evaluate the quality of the returned solutions and the computation time, in comparison with the branch-

and-cut algorithm BC and its variant, denoted BCpre [28], which implements an enhanced preprocessing. For 

the sake of comparison, the algorithms are all run on one thread of the same machine, i.e., without 

parallelization, (a personal laptop with x86 microprocessor at 2.40GHz and 128 GB memory). They employ 

the same implementation of Todini’s algorithm (in Python, adapted to a quadratic form of the head loss 

functions) and Gurobi v10.0.1 to solve MILP. They are stopped at the first computed feasible solution found 

(within a 10−6 feasibility tolerance) or when reaching the computation time limit to 1 hour and 2 hours, for 

𝑇 = 24 and 𝑇 = 24, respectively. 

 

5.2 Evaluation of the Prediction Step 

We first evaluate the prediction accuracy of the proposed DL models: the initial hypothesis 𝛩0 and the physics-

informed hypothesis 𝛩1+𝛩2, as well as the two internal models 𝛩1 and  𝛩2, independently. We also compare 

it to a conventional feedforward (FW) neural network with a proportional depth and number of parameters (𝛩0 

and FFW have 45k and 63k parameters, respectively). 

 We considered classical metrics to evaluate accuracy in regression problems, namely the mean absolute 

and squared errors (MAE and MSE) between the predicted output and the target. For comparison, we also 

report the normalized MAE (nMAE), i.e., MAE divided by the range of the ground truth, and the Pearson 

coefficient (R) to measure the linear correlation between targets and predictions. The prediction accuracy of 

𝛩0 is good: MAE=0.53, MSE=0.64, nMAE=9.2%, R=0.772. In comparison, the simpler architecture FW gives 

MAE=0.89, MSE=1.56, nMAE=12.7%, R=0.724. We can visualize the performance of our DL model 𝛩0 on 

one random test instance in Figure 4. It depicts the filling levels of the two water tanks in the target/optimal 

solution and the prediction.    

     

  

 
  

 Figure 4: Comparing optimal and 𝛩0 predicted solutions on one random test instance. 

    

We now evaluate the accuracy of our second, physics-informed model 𝛩1+𝛩2 described in Section 3.2. This 

is composed of the binary classification model 𝛩1 to predict the optimal profiles of the configuration of pumps 
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and valves, and the regression model  𝛩2 to derive the tank level profiles. The complete model 𝛩1+𝛩2 aims to 

minimize a penalized loss function. In the experiments, we considered the penalty values  

𝑝 = 0,0.05,0.1. Model 𝛩2 mimics the extended analysis problem and is also trained on fractional inputs, via 

data augmentation. Its accuracy is high, as indicated by MAE=0.11 and MSE=0.027.  We evaluate the 

performance of 𝛩1 according to the value of the binary classification accuracy, which is the rate of correct 

predictions. Increasing the penalty parameter decreases the accuracy value: from 0.84 for p=0 to 0.75 for 

p=0.05 and 0.74 for p=0.1. This seems natural as the penalty cost reduces the weight of accuracy in the loss 

function. In return, we expect that the predictions of the physics-informed model are closer to being feasible 

than the predictions of 𝛩0. 

 There is no trivial way to evaluate this distance, however, we can evaluate the computational effort 

required to repair the infeasibility when applying our splitting algorithm directly to the outcomes of DL 

(without scaling). Hence, Table 2 shows the computational times of the hybrid algorithm when applied to the 

50 test coarse-grained instances with T=12, using either DL models 𝛩0 (HA) or 𝛩1+𝛩2 (PHA), initial penalty 

value of the splitting algorithm 𝜇 ∈ {2, 50} , and penalty coefficient of the loss function 𝑝 ∈ {0, 0.05, 0.1} . 
We also report the time required for the global optimization algorithms BC and BCpre to reach a first feasible 

solution.  

 

T algorithm 𝑝 𝜇 # solved avg CPU (s) max CPU (s) avg GAP (%) max GAP (%) 

12 HA  2 44 305 1577 4.6 11.3 

HA  50 49 254 1570 6.6 21.2 

PHA 0 50 49 131 510 4.8 12.8 

PHA 0.05 50 50 33 392 11.1 22.3 

PHA 0.1 50 49 45 438 10.9 23.7 

BC   48 121 681 5.4 12.5 

BCpre   50 124 137 4.3 12.4 

 

Table 2:  Computational results on the 50 instances of van Zyl T=12 for different algorithms and parameters 𝑝 

and 𝜇: number of instances solved (to feasibility) in 30 minutes, average and maximum computation time in 

seconds to reach a feasible solution, and average and maximum gap of the solution values with the optimum 

values (over the set of instances for which a solution has been computed: the statistics are shown in italic when 

this does not correspond to the whole set of instances, best results are typed in bold face).  

 

   

The time limit is set to 30 minutes. These problems are small, however, we see that the state-of-the-art solver 

BC fails to compute feasible solutions within this time limit for 2 instances. At least one instance is also 

challenging for all hybrid algorithms except for the physics-informed version PHA0.05, which is able to find 

a feasible solution for all instances very quickly, in a maximum of 7 minutes and in 33 seconds on average. 

The comparison with HA50 and PHA0 tends to confirm the impact of penalization on predicting solutions 

close to being feasible. However, the predicted solutions appear to be less optimal, as indicated by the average 

and maximal optimality gaps reported in the last two columns of Table 2. 

 

5.3 Evaluation of the Repair Step 

We now evaluate the ability of the whole hybrid algorithm to find feasible solutions, and apply it to the 50 

instances with T=24 and T=48. As stated in Section 3.3, we then rescale the output of the DL model (12-steps 

profiles) to get the input of the splitting algorithm.  

 

T algorithm 𝜇 # solved avg CPU (s) max CPU (s) avg GAP (%) max GAP (%) 

24 HA 2 50 279 1711 8.4 11.3 

HA 50 50 285 1257 9.5 21.2 

BC  5 1097 3117 11.1 12.5 
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T algorithm 𝜇 # solved avg CPU (s) max CPU (s) avg GAP (%) max GAP (%) 

BCpre  50 809 2439 7.5 12.4 

48 HA 2 49 1014 5548 10.3 19.7 

HA 50 50 776 7069 9.8 21.0 

BC  1 - - - - 

BCpre  32 2517 6404 6.4 8.9 

 

Table 3:  Computational results on the two sets of 50 instances of van Zyl with T=24 and T=48 for different 

algorithms and parameter 𝜇: number of instances solved (to feasibility) in 30 minutes, average and maximum 

computation time in seconds to reach a feasible solution, and average and maximum gap of the solution values 

with the optimum values (over the set of instances for which a solution has been computed: the statistics are 

shown in italic when this does not correspond to the whole set of instances, best results are typed in bold face). 

 

Table 3 provides the same information as in Table 2 for algorithms HA2, HA50 to estimate the performance of 

the splitting algorithm. We also report results on BC and BCpre, to illustrate the complexity of this problem. 

Precisely, the BC algorithm is not able to compute a feasible solution for almost all instances in the two sets 

T=24, T=48 in 1 and 2 hours, respectively. The efficient preprocessing of BCPre allows finding a feasible 

solution for all the smallest instances, but not for a third of the largest instances, and the computation times 

increase up to 40 minutes on average on the 32 solved instances. In comparison, the hybrid algorithm appears 

to be very stable as the discretization precision increases. Configuration HA50 computes one feasible solution 

for all instances in the two sets in a short time, respectively, less than 7 and 13 minutes on average. 

Furthermore, the computed solutions are of good quality in terms of electricity cost, as they all are within a 

10% tolerance range of the optimal value.  

 

 
Figure 5: Cumulated number of instances solved as a function of the time needed to compute the first feasible 

solution by hybrid algorithm HA (with 𝜇 ∈ {2, 50} ) and by the two variants of branch-and-cut (BC, BCpre) 

the two sets of 50 instances of  Van Zyl with T=24 (left) and T=48 (right). 

 

Figure 5 compares the computation times cumulated over the 50 instances in the two sets T=24 and T=48. We 

observe that the hybrid algorithm is very fast on the majority of the instances: it takes less than 2 minutes on 

half of the instances in both sets. The algorithm is efficient even on the most difficult instances: for 18 of the 

largest instances, we were not able to close the optimality gap after running BCpre for several hours. The 

hybrid algorithm computed a feasible solution for half of these difficult instances in less than 10 minutes.  

6. CONCLUSIONS  

This paper presents an original hybridization of machine learning and mathematical programming to compute 

strictly-feasible nearly-optimal solutions to a reliable model of pump scheduling in drinking water distribution 

networks. Experiments on the benchmark network van Zyl show that the method manages to compute good 

solutions on all instances and that the computational times remain unusually low as the problem complexity 

increases dramatically when the scheduling horizon becomes more precise. This performance mainly results 
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from the deep problem decomposition offered by our splitting method. In return, the nature of the problem 

makes it unlikely to guarantee the theoretical convergence of iterative methods based on such a decomposition. 

In future work, we aim to evaluate the practical limits of the proposed approach by exploring other networks 

and investigate which algorithmic components need to be adapted to push these limits. In particular, we are 

interested in studying various methods to enforce the splitting scheme, using dualization or penalization. More 

generally, we are interested in applying our approach to other planning problems with storage conservation 

constraints, especially for the operational and strategic management of water systems with reservoirs.  
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