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decision: prediction or prescription

decision aid: compute one of the best possible options

mathematical optimization

• solve an analytical model

• certificates for feasiblity and optimality

• accuracy/complexity trade-off

• models are based on data forecasts

machine learning

• predict from data

• no certificate

• data/computation intensive

• algorithms are based on optimization

combine MO and ML when models are complex but certificates required
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load shifting in drinking water distribution

pump in advance of demand to save energy

• water/energy storage tanks

• nonlinear efficiency

• dynamic electricity tariff
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accurate but complex analytical model

nonconvex flow/head loss equation Δℎ = 𝜙(𝑞)
friction in pipes discharge in pumps

mixed integer nonconvex model

𝑚𝑖𝑛 􏾜
𝑡
𝐶𝑡𝛾𝑡(𝑞𝑡, 𝑥𝑡) ∶

𝐻𝑅 ≤ ℎ𝑅𝑡 ≤ 𝐻
𝑅

∀𝑡
ℎ𝑅𝑡+1 = ℎ𝑅𝑡 + 𝜎𝑞𝑅𝑡 ∀𝑡
𝑞𝑆𝑡 = 𝐷𝑆

𝑡 ∀𝑡
(Δℎ𝑡 − 𝜙(𝑞𝑡))⊤𝑥𝑡 = 0 ∀𝑡
𝑞⊤𝑡 (1 − 𝑥𝑡) = 0 ∀𝑡

on/off switch 𝑥𝑡𝑎∈ {0, 1}
arc flow 𝑞𝑡𝑎 and head loss Δℎ𝑡𝑎
reservoir/service node inflow 𝑞𝑅𝑡𝑟, 𝑞𝑆𝑡𝑠 and head ℎ𝑡
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accurate but complex analytical model

(𝑞𝑡, ℎ𝑡) is the unique head/flow equilibrium on
open arcs 𝑥𝑡 with node inflow𝐷𝑆

𝑡 or head ℎ𝑅𝑡
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• computing (𝑞𝑡, ℎ𝑡) ∈ 𝐸𝑞(𝑥𝑡, 𝐷𝑆
𝑡 , ℎ𝑅𝑡 ) is easy

(Todini & Pilati’s Newton algorithm/EPANET)

• but optimizing (𝑥𝑡)𝑡 is hard
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solving the pump scheduling problem

integer/nonconvex bilevel model

𝑚𝑖𝑛 􏾜
𝑡
𝐶𝑡𝛾𝑡(𝑞𝑡, 𝑥𝑡) ∶

𝐻𝑅 ≤ ℎ𝑅𝑡 ≤ 𝐻
𝑅

∀𝑡
ℎ𝑅𝑡+1 = ℎ𝑅𝑡 + 𝜎𝑞𝑅𝑡 ∀𝑡
(𝑞𝑡, ℎ𝑡) ∈ 𝐸𝑞(𝑥𝑡, 𝐷𝑆

𝑡 , ℎ𝑅𝑡 ) ∀𝑡
𝑥𝑡 ∈ {0, 1}𝐴.

1. approximation or relaxation
simplify some of the hardest parts

• PWL approx [Morsi12,...]
• linear relax [Burgschweiger09]
• lagrangian relax [Ghaddar15]
• convex relax + simulation [Bonvin21]

→ complexity/accuracy trade-off

2. simulation-optimization
fix 0/1 config 𝑥⇋ simulate hydraulics (𝑞, ℎ)

• metaheuristics e.g. GA [Mackle95,...]
• Benders decomposition [NaoumSawaya15]
• linear opt approx [Bonvin&Demassey19]

→ slow convergence/many infeasibilities
⇒ scarce/sparse feasibility set in discrete 𝑥-space
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search the continuous ℎ𝑅-space

Sketch of the algorithm

1. fix the tank level profiles ℎ𝑅

2. compute all equilibria (𝑞𝑡, ℎ𝑡) ∈ 𝐸𝑞(𝑥𝑡, 𝐷𝑆
𝑡 , ℎ𝑅𝑡 ) for all config 𝑥𝑡 ∀𝑡

3. select the config/equilibrium of minimal cost 𝐶𝑡𝛾𝑡(𝑞𝑡, 𝑥𝑡) ∀𝑡
4. stop if ℎ𝑅𝑡+1 ≈ ℎ𝑅𝑡 + 𝑞𝑅𝑡 or update ℎ𝑅
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search the continuous ℎ𝑅-space: in practice
Step 2: compute all equilibria (𝑞𝑡, ℎ𝑡) ∈ 𝐸𝑞(𝑥𝑡, 𝐷𝑆

𝑡 , ℎ𝑅𝑡 ) for all config 𝑥𝑡 ∀𝑡

splitting the equilibrium problems in time and in space enables us to enumerate the sub-configurations

Step 4: update tank level profiles ℎ𝑅 closer to satisfy both ℎ𝑅𝑡+1 ≈ ℎ𝑅𝑡 + 𝑞𝑅𝑡 and𝐻𝑅 ≤ ℎ𝑅𝑡 ≤ 𝐻
𝑅
∀𝑡

we adapted a variable splitting scheme alike ADMM: no convergence proof in this nonconvex case

Step 0: compute initial tank level profiles ℎ𝑅

we built a deep learning model to predict the optimal profiles from history

• using a (time) scaling mechanism to save on the training phase
• using Monte-Carlo dropouts to restart/diversify the search
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Experimental evaluation

• 50 instances
[VanZyl04]

• stop at the first
feasible solution

• HA: deep learning + variable splitting

• BC: exact algorithm [Bonvin21] + BCpre preprocessing [Tavakoli22]
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Conclusion

• integration of machine learning, simulation and optimization

• time and space decomposition

• reasoning on the implied storage state variables instead of the discrete decision control variables

• practical scalability ? theoretical convergence ?

• other applications in water management ?
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