# SCHEDULING PUMPS AND RESERVOIRS WITH INTEGER NONLINEAR PROGRAMMING AND DEEP LEARNING

Sophie Demassey, Valentina Sessa, Amirhossein Tavakoli (Mines Paris – PSL) SimHydro 2025

decision aid: compute one of the best possible options

decision aid: compute one of the best possible options

#### mathematical optimization

- solve an analytical model
- certificates for feasiblity and optimality
- accuracy/complexity trade-off

decision aid: compute one of the best possible options

#### mathematical optimization

- solve an analytical model
- certificates for feasiblity and optimality
- accuracy/complexity trade-off

#### machine learning

- predict from data
- no certificate
- data/computation intensive

decision aid: compute one of the best possible options

#### mathematical optimization

- solve an analytical model
- certificates for feasiblity and optimality
- accuracy/complexity trade-off
- models are based on data forecasts

#### machine learning

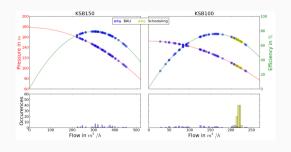
- predict from data
- no certificate
- data/computation intensive
- algorithms are based on optimization

combine MO and ML when models are complex but certificates required

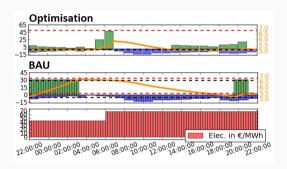
- water/energy storage tanks
- nonlinear efficiency
- · dynamic electricity tariff



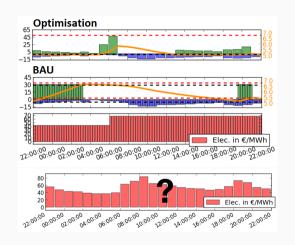
- water/energy storage tanks
- nonlinear efficiency
- · dynamic electricity tariff

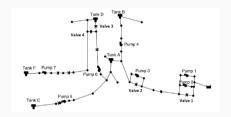


- water/energy storage tanks
- nonlinear efficiency
- dynamic electricity tariff



- water/energy storage tanks
- nonlinear efficiency
- · dynamic electricity tariff





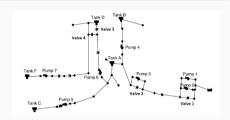
nonconvex flow/head loss equation  $\Delta h = \phi(q)$ 

friction in pipes









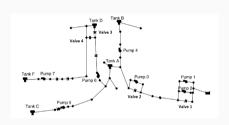
nonconvex flow/head loss equation  $\Delta h = \phi(q)$  friction in pipes discharge in pumps pump head gain





# mixed integer nonconvex model $min \sum C_t \gamma_t(q_t, x_t)$ : $\underline{H}^{R} \le h_{t}^{R} \le \overline{H}^{R}$ $h_{t+1}^R = h_t^R + \sigma q_t^R$ $q_t^S = D_t^S$ $(\Delta h_t - \phi(q_t))^{\top} x_t = 0$ $q_t^{\top}(1-x_t) = 0$

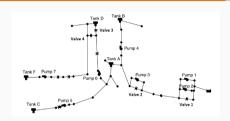
on/off switch  $x_{ta} \in \{0,1\}$  arc flow  $q_{ta}$  and head loss  $\Delta h_{ta}$  reservoir/service node inflow  $q_{tr}^R$ ,  $q_{ts}^S$  and head  $h_t$ 



 $(q_t, h_t)$  is the unique head/flow equilibrium on open arcs  $x_t$  with node inflow  $D_t^S$  or head  $h_t^R$ 

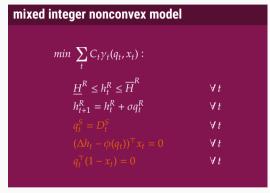
# mixed integer nonconvex model $min \sum C_t \gamma_t(q_t, x_t)$ : $\underline{H}^R \le h_t^R \le \overline{H}^R$ $h_{t+1}^R = h_t^R + \sigma q_t^R$

on/off switch  $x_{ta} \in \{0,1\}$  arc flow  $q_{ta}$  and head loss  $\Delta h_{ta}$  reservoir/service node inflow  $q_{tr}^R$ ,  $q_{ts}^S$  and head  $h_t$ 

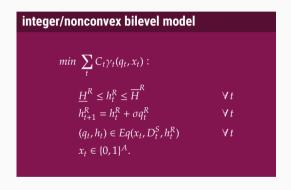


 $(q_t,h_t)$  is the unique head/flow equilibrium on open arcs  $x_t$  with node inflow  $D_t^{\rm S}$  or head  $h_t^{\rm R}$ 

- computing  $(q_t, h_t) \in Eq(x_t, D_t^S, h_t^R)$  is easy (Todini & Pilati's Newton algorithm/EPANET)
- but optimizing  $(x_t)_t$  is hard

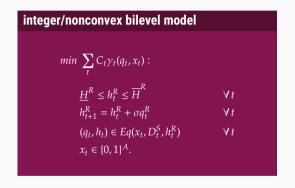


on/off switch  $x_{ta} \in \{0,1\}$  arc flow  $q_{ta}$  and head loss  $\Delta h_{ta}$  reservoir/service node inflow  $q_{tr}^R$ ,  $q_{ts}^S$  and head  $h_t$ 



#### approximation or relaxation simplify some of the hardest parts

- PWL approx [Morsi12,...]
- linear relax [Burgschweiger09]
- · lagrangian relax [Ghaddar15]
- convex relax + simulation [Bonvin21]
- → complexity/accuracy trade-off



#### 1. approximation or relaxation

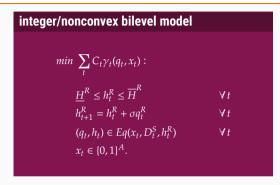
simplify some of the hardest parts

- PWL approx [Morsi12,...]
- linear relax [Burgschweiger09]
- lagrangian relax [Ghaddar15]
- convex relax + simulation [Bonvin21]
- → complexity/accuracy trade-off

#### 2. simulation-optimization

fix 0/1 config  $x \Leftrightarrow$  simulate hydraulics (q, h)

- metaheuristics e.g. GA [Mackle95,...]
- Benders decomposition [NaoumSawaya15]
- linear opt approx [Bonvin&Demassey19]
- → slow convergence/many infeasibilities



tight tank limits, long time steps



 $\Rightarrow$  scarce/sparse feasibility set in discrete x-space

#### 1. approximation or relaxation

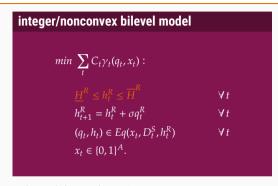
simplify some of the hardest parts

- PWL approx [Morsi12,...]
- linear relax [Burgschweiger09]
- lagrangian relax [Ghaddar15]
- convex relax + simulation [Bonvin21]
- → complexity/accuracy trade-off

#### 2. simulation-optimization

fix 0/1 config  $x \leftrightharpoons$  simulate hydraulics (q, h)

- metaheuristics e.g. GA [Mackle95,...]
- Benders decomposition [NaoumSawaya15]
- linear opt approx [Bonvin&Demassey19]
- → slow convergence/many infeasibilities



tight tank limits, long time steps



 $\Rightarrow$  scarce/sparse feasibility set in discrete *x*-space

#### 1. approximation or relaxation

simplify some of the hardest parts

- PWL approx [Morsi12,...]
- linear relax [Burgschweiger09]
- lagrangian relax [Ghaddar15]
- convex relax + simulation [Bonvin21]
- → complexity/accuracy trade-off

#### 2. simulation-optimization

fix 0/1 config  $x \leftrightharpoons$  simulate hydraulics (q, h)

- metaheuristics e.g. GA [Mackle95,...]
- Benders decomposition [NaoumSawaya15]
- linear opt approx [Bonvin&Demassey19]
- → slow convergence/many infeasibilities

# SEARCH THE CONTINUOUS $h^R$ -SPACE

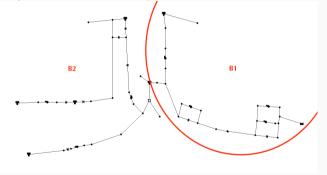
#### Sketch of the algorithm

- 1. fix the tank level profiles  $h^R$
- 2. compute all equilibria  $(q_t, h_t) \in Eq(x_t, D_t^S, h_t^R)$  for all config  $x_t \forall t$
- 3. select the config/equilibrium of minimal cost  $C_t \gamma_t(q_t, x_t) \ \forall \ t$
- 4. stop if  $h_{t+1}^R \approx h_t^R + q_t^R$  or update  $h^R$

# SEARCH THE CONTINUOUS $h^R$ -SPACE: IN PRACTICE

Step 2: compute all equilibria  $(q_t, h_t) \in Eq(x_t, D_t^S, h_t^R)$  for all config  $x_t \, \forall \, t$ 

splitting the equilibrium problems in time and in space enables us to enumerate the sub-configurations



# SEARCH THE CONTINUOUS $h^R$ -SPACE: IN PRACTICE

Step 2: compute all equilibria  $(q_t, h_t) \in Eq(x_t, D_t^S, h_t^R)$  for all config  $x_t \forall t$ 

splitting the equilibrium problems in time and in space enables us to enumerate the sub-configurations

Step 4: update tank level profiles  $h^R$  closer to satisfy both  $h^R_{t+1} \approx h^R_t + q^R_t$  and  $\underline{H}^R \leq h^R_t \leq \overline{H}^R \; \forall \; t$ 

we adapted a variable splitting scheme alike ADMM: no convergence proof in this nonconvex case

### SEARCH THE CONTINUOUS $h^R$ -SPACE: IN PRACTICE

Step 2: compute all equilibria  $(q_t, h_t) \in Eq(x_t, D_t^S, h_t^R)$  for all config  $x_t \forall t$ 

splitting the equilibrium problems in time and in space enables us to enumerate the sub-configurations

Step 4: update tank level profiles  $h^R$  closer to satisfy both  $h^R_{t+1} \approx h^R_t + q^R_t$  and  $\underline{H}^R \leq h^R_t \leq \overline{H}^R \; \forall \; t$ 

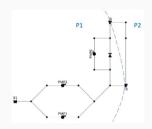
we adapted a variable splitting scheme alike ADMM: no convergence proof in this nonconvex case

Step 0: compute initial tank level profiles  $h^{R'}$ 

we built a deep learning model to predict the optimal profiles from history

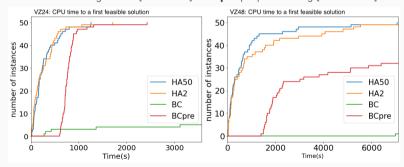
- using a (time) scaling mechanism to save on the training phase
- using Monte-Carlo dropouts to restart/diversify the search

#### **EXPERIMENTAL EVALUATION**



- 50 instances [VanZyl04]
- stop at the first feasible solution

- **HA**: deep learning + variable splitting
- **BC**: exact algorithm [Bonvin21] + **BCpre** preprocessing [Tavakoli22]



#### Conclusion

- integration of machine learning, simulation and optimization
- time and space decomposition
- reasoning on the implied storage state variables instead of the discrete decision control variables
- practical scalability? theoretical convergence?
- other applications in water management?

#### REFERENCES

- **S.Demassey, V. Sessa, A. Tavakoli** Deep learning and alternating direction method for discrete control with storage. In International Symposium on Combinatorial Optimization 2024.
- A. Tavakoli, V. Sessa, S. Demassey Strengthening mathematical models for pump scheduling in water distribution. In 14th International Conference on Applied Energy 2022.
- **G. Bonvin, S. Demassey, A. Lodi** Pump scheduling in drinking water distribution networks with an LP/NLP-based branch and bound. Optimization and Engineering 2021.
- **G. Bonvin, S. Demassey** Extended linear formulation of the pump scheduling problem in water distribution networks. In International Network Optimization Conference 2019.
- papers available at https://sofdem.github.io/
- code available at https://github.com/sofdem/gopslpnlpbb