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decision aid: compute one of the best possible options

mathematical optimization machine learning

solve an analytical model predict from data

certificates for feasiblity and optimality no certificate
accuracy/complexity trade-off data/computation intensive

models are based on data forecasts algorithms are based on optimization

combine MO and ML when models are complex but certificates required
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Optimisation
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Pump 7
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nonconvex flow/head loss equation Ah = ¢(q)
friction in pipes discharge in pumps
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mixed integer nonconvex model
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(s, hy) is the on

open arcs x; with node inflow Df or head hR

- computing (q;, ) € Eq(x;, D, hR) is easy )
(Todini & Pilati's Newton algorithm/EPANET) ~ On/off switchx;,€ {0,1}
arc flow g,, and head loss A,
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SEARCH THE CONTINUOUS hR-SPACE

Sketch of the algorithm

fix the tank level profiles AR
compute all equilibria (q;, ;) € Eq(x;, D7, kR) for all config x; ¥ ¢
select the config/equilibrium of minimal cost C,y(g;, x;) V £

stopif iR ~ kR + g or update AR
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Step 2: compute all equilibria (g;, ;) € Eq(x,, D7, hY)

splitting the equilibrium problems in time and in space enables us to enumerate the sub-configurations

—R
Step 4: update tank level profiles AR both hR | ~ hR + gRand HX <hR <H Vit

we adapted a variable splitting scheme alike ADMM: no convergence proof in this nonconvex case

Step 0: tank level profiles 1R

we built a deep learning model to predict the optimal profiles from history

- using a (time) scaling mechanism to save on the training phase
- using Monte-Carlo dropouts to restart/diversify the search



EXPERIMENTAL EVALUATION

P2

+ 50 instances
[VanZyl04]

- stop at the first
feasible solution

« HA: deep learning + variable splitting

- BC: exact algorithm [Bonvin21] + BCpre preprocessing [Tavakoli22]
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CONCLUSION

- integration of machine learning, simulation and optimization

- time and space decomposition

- reasoning on the implied storage state variables instead of the discrete decision control variables
- practical scalability ? theoretical convergence ?

- other applications in water management ?
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