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MINLP FOR CLIMATE

decomposiion methods

- combinatorics 22 + 212

+ hybrid & recycle tools

(non)convex optimization + CO

- difference-of-convex y — y? < 0
+ monotropic programming [Rockafellar'88]

- variable splitting and alternate projection
e.g. Douglas-Rachford operator, ADMM,
alternate convex search




APPLICATIONS

load shifing for NL systems with storage operating the power distribution grid
- unsync energy consumption/load service - stability when intermittent RES/new usages
- get more efficient operating points + modulation/curtailment s.t. priority/fairness

* align consumption with energy surplus ex: joint chance-constr discrete AC-OPF

ex: pump scheduling in water networks with K. Syrtseva, P Javal, W. de Oliveira

with V. Sessa, A. Tavakoli, G. Bonvin, A. Lodi - - -
energy models in prospective analysis
assignment and network design - evaluate policies and guide political action

* public infrastructures and traffic congestion - long-term capacity expansion planning

ex: discrete network design problem ex: Markal-TIMES (IEA-ETSAR 1980)
with M. Levin, D. Rey with G. Siggini, E. Assoumovu, S. Selosse



COMMON BLOCK STRUCTURE

single (water, power) or multiple (drivers, materials) commodities

upper decision level: network configurations with coordination

- variable topology: arc interdiction (switch on/off a pump, road/process investment)
- variable boundary conditions (uncertain demand, dynamic demand/supply)
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COMMON BLOCK STRUCTURE

lower operation level: min nonlinear cost flows

single (water, power) or multiple (drivers, materials) commodities

upper decision level: network configurations with coordination

- variable topology: arc interdiction (switch on/off a pump, road/process investment)
- variable boundary conditions (uncertain demand, dynamic demand/supply)

interdependencies

- discrete time planning: sequence of stationary flows linked by investment decisions
- storage nodes: sequence-dependent sequence of flows

- traffic: flow-dependent individual travel times

+ OPF: synchronized uncertainties and modulation



BILEVEL MODEL, MULTIPLE FOLLOWERS

r]}’lxill;l 2 cost(y, xi) « xarc flow
b

5., € mincostflow(y, ) Vk + y binary arc interdiction/activation
olbo dk kr Yk
+ u implied boundary conditions

uy = state(u_y, x_;) Vk.
ex: pump scheduling
ylg/qlin 3 ciye xp) + known demand D,, dynamic tariff ¢, at each time ¢
T

5.1, € mincostflow(yy Dy ) Vt + flow x; when switching pumps y; given tank levels u;

Uy =t + 0T, Vi - sequence dependency u; — X; — Uy

U s<uy <l Yt + tank levels u, with tight bounds = feasibility issue



mincost f low: MONOTROPIC PROGRAM

primal (distribution): x solves
#: min zu] falx,) + ufEgx

s.t. Egx = Dg

- with f, l.s.c;in apps: f, (energy dissipation) smooth, strictly convex = unique flow x



mincost f low: MONOTROPIC PROGRAM

primal (distribution): x solves KKT (equilibrium): (x, u) solves
P mxin Efu(xu) +ugEfx & :Eix = Ds
’ Ug = Uj —Uj = fu(xu) Va:(i,j)
s.t. Egx = Dg
dual (differential): u solves strong duality: (x, u) solves
Z :min Ef;(va) +Ddug & E{x =Ds,v:=-Eu
u
! E(fa(xﬂ)+f;(va )+uRERx+DSu5 <0.
s.t.v:=—-Eu a

+ with f, l.s.c;inapps: f, (energy dissipation) smooth, strictly convex = unique flow x
- f4 resistance (potential loss), ug potential (pressure, voltage, Wardrop's node price)

fa= [ ik fa@s) = —fa(fi1(©,)) + v, f47 (v,) cOnVex conjugate: not polynomial



FEASIBLE SOLUTION FOR PUMP SCHEDULING

+ solutions in discrete space y are sparse and scarce

+ dualizing time coupling (3) in LR [Ghaddar'15] or variable
copy u = U in ADMM [Ulusoy'25] does not fix u;

- dualizing (3) and fixing level variables u splits in both
time and space, with few v, variables in each
component: enumerate and solve mincost flow

ygl/lffu ;Ct(y“xf) M independently
s.t.x; € mincost flow(y;, Dy, 1) Yt (2) o
Upq = Uy + 0 X vt (3) H_:
Uz=sus< u, vVt (4) |:




SEARCH THE u-SPACE

« z: first-order information, smoothness,

convexity ?
VAR = T Ef: €1y, %) + pulbyag =ty = 0Tx1) - alternate convex search:
s.t.x; € mincost flow(y;, Dy, 1) vt 1/ P(uj): fixu = u/ get (yj/ xj)
2/ P(y, %): fix (y, x) = (, ») get w/*1
3/ (update p)

partial split




OPTION 1: PARTIAL SPLIT AND PADM-LIKE

given penalty vector , increase p when ||/ — uwi*l|,, <e,

1: fix levels u, then compute (v, x)

1 T stop when [fuyy — 1, =0T/l <€

2: fix command (y, x), then compute u




OPTION 2: PARTIAL SPLIT AND ADMM-LIKE

Given multipliers u and penalty p:

1: fix levels u, then compute (y, x)

P(u) : rggl Z iy x) + pf (U — 4y — 07 x) + §||”t+1 - =0T x|}
t
s.t. : x, € mincost flow(y,, D;, u;)V t¥ b.

£,-regularization is separable here

2: fix command (y, x), then compute u

i P
P(y,x) : TN DS (0, o) + if (s =14y = 07,) + ity = 1 = 0Ty
t

3: update 1 = p; + p* (U — 14y — 0" X;)



EXPERIMENTS: LEARNED PROFILES © + PARTIAL SPLIT

- 30initial trials u (deep learning + MonteCarlo dropout) + interpolation T =12 — 24

- stop at first feasible solution, or best within 30s [D., Sessa, Tavakoli'24] (no parallelization)

« compare with first solution from SOA Branch-and-Check [Bonvin, D., Lodi"21] w/wo advanced
preprocessing [Tavakoli, D., Sessa’22] on Van Zyl benchmark
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EXPERIMENTS: LEARNED PROFILES © + PARTIAL SPLIT

- 30 initial trials u (deep learning + MonteCarlo dropout) + interpolation T = 12 — 48

- stop at first feasible solution, or best within 30s [D., Sessa, Tavakoli'24] (no parallelization)

« compare with first solution from SOA Branch-and-Check [Bonvin, D., Lodi"21] w/wo advanced
preprocessing [Tavakoli, D., Sessa’22] on Van Zyl benchmark
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OPTION 3: FULL SPLIT ON THE STRONG-DUALITY MODEL

step 1: fix level u, then compute schedule and flow (y, x)

w(ug) remains separable in time and space

each is separable in primal (x) /dual (15) parts, corresponding each to a follower mincost f low
augmented with leader costs ¢ and multipliers p, A:

perturbed primal perturbed dual




CONCLUSION

- fixing coupling variables vs relaxing coupling constraints: keep structure, split deeper
(time/space/primal-dual), linearize bilinear terms

- alternative bilevel view: (leader) implied continuous storage variables (follower) discrete decisions
» alternative ML/MIP hybrid: ML for optimality, MIP for feasibility

- generalization to hilevel programming and MPEC (with Antonio Sasaki and Valentina Sessa)

» convergence for partial split ?
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