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MINLP for climate

Bingo ! decomposition methods

• combinatorics 2𝑛/2 + 2𝑛/2
• hybrid & recycle tools

(non)convex optimization + CO

• difference-of-convex 𝑦 − 𝑦2 ≤ 0
• monotropic programming [Rockafellar’88]

• variable splitting and alternate projection
e.g. Douglas-Rachford operator, ADMM,
alternate convex search
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Applications

load shifing for NL systems with storage
• unsync energy consumption/load service

• get more efficient operating points

• align consumption with energy surplus

ex: pump scheduling in water networks
with V. Sessa, A. Tavakoli, G. Bonvin, A. Lodi

traffic assignment and network design

• public infrastructures and traffic congestion

ex: discrete network design problem
with M. Levin, D. Rey

operating the power distribution grid
• stability when intermittent RES/new usages

• modulation/curtailment s.t. priority/fairness

ex: joint chance-constr discrete AC-OPF
with K. Syrtseva, P. Javal, W. de Oliveira

energy models in prospective analysis

• evaluate policies and guide political action

• long-term capacity expansion planning

ex: Markal-TIMES (IEA-ETSAP, 1980)
with G. Siggini, E. Assoumou, S. Selosse
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Common block structure
lower operation level: min nonlinear cost flows

single (water, power) or multiple (drivers, materials) commodities

upper decision level: network configurations with coordination

• variable topology: arc interdiction (switch on/off a pump, road/process investment)

• variable boundary conditions (uncertain demand, dynamic demand/supply)

interdependencies

• discrete time planning: sequence of stationary flows linked by investment decisions

• storage nodes: sequence-dependent sequence of flows

• traffic: flow-dependent individual travel times

• OPF: synchronized uncertainties and modulation
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bilevel model, multiple followers

min𝑦,𝑥,𝑢 􏾜𝑘 𝑐𝑜𝑠𝑡(𝑦𝑘, 𝑥𝑘)
𝑠.𝑡. 𝑥𝑘 ∈ 𝑚𝑖𝑛𝑐𝑜𝑠𝑡𝑓𝑙𝑜𝑤(𝑦𝑘, 𝑢𝑘) ∀𝑘𝑢𝑘 = 𝑠𝑡𝑎𝑡𝑒(𝑢¬𝑘, 𝑥¬𝑘) ∀𝑘.

• 𝑥 arc flow

• 𝑦 binary arc interdiction/activation

• 𝑢 implied boundary conditions

ex: pump scheduling

min𝑦0/1,𝑥,𝑢􏾜𝑡 𝑐𝑡(𝑦𝑡, 𝑥𝑡)
𝑠.𝑡.𝑥𝑡 ∈ 𝑚𝑖𝑛𝑐𝑜𝑠𝑡𝑓𝑙𝑜𝑤(𝑦𝑡, 𝐷𝑡, 𝑢𝑡) ∀𝑡𝑢𝑡+1 = 𝑢𝑡 + 𝜎⊤𝑥𝑡 ∀𝑡𝑈𝑡 ≤ 𝑢𝑡 ≤ 𝑈𝑡 ∀𝑡.

• known demand𝐷𝑡, dynamic tariff 𝑐𝑡 at each time 𝑡
• flow 𝑥𝑡 when switching pumps 𝑦𝑡 given tank levels 𝑢𝑡
• sequence dependency 𝑢𝑡 → 𝑥𝑡 → 𝑢𝑡+1
• tank levels 𝑢𝑡 with tight bounds⇒ feasibility issue
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𝑚𝑖𝑛𝑐𝑜𝑠𝑡𝑓𝑙𝑜𝑤: monotropic program
primal (distribution): 𝑥 solves𝒫 ∶ min𝑥 􏾜𝑎 𝑓𝑎(𝑥𝑎) + 𝑢⊤𝑅𝐸⊤𝑅𝑥𝑠.𝑡. 𝐸⊤𝑆 𝑥 = 𝐷𝑆

dual (differential): 𝑢 solves𝒟 ∶min𝑢 􏾜𝑎 𝑓∗𝑎(𝑣𝑎) + 𝐷⊤𝑆 𝑢𝑆𝑠.𝑡. 𝑣 ∶= −𝐸𝑢
strong duality: (𝑥, 𝑢) solves𝒮 ∶ 𝐸⊤𝑆 𝑥 = 𝐷𝑆, 𝑣 ∶= −𝐸𝑢􏾜𝑎 􏿴𝑓𝑎(𝑥𝑎) + 𝑓∗𝑎(𝑣𝑎)􏿷 + 𝑢⊤𝑅𝐸⊤𝑅𝑥 + 𝐷⊤𝑆 𝑢𝑆 ≤ 0.

• with 𝑓𝑎 l.s.c; in apps: 𝑓𝑎 (energy dissipation) smooth, strictly convex⇒ unique flow 𝑥

• 𝑓′𝑎 resistance (potential loss), 𝑢𝑆 potential (pressure, voltage, Wardrop’s node price)
• 𝑓∗𝑎 = ∫𝑓′−1𝑎 : 𝑓∗𝑎(𝑣𝑎) = −𝑓𝑎(𝑓′−1𝑎 (𝑣𝑎)) + 𝑣𝑎𝑓′−1𝑎 (𝑣𝑎) convex conjugate: not polynomial
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feasible solution for pump scheduling

min𝑦0/1,𝑥,𝑢􏾜𝑡 𝑐𝑡(𝑦𝑡, 𝑥𝑡) (1)

𝑠.𝑡.𝑥𝑡 ∈ 𝑚𝑖𝑛𝑐𝑜𝑠𝑡𝑓𝑙𝑜𝑤(𝑦𝑡, 𝐷𝑡, 𝑢𝑡) ∀𝑡 (2)𝑢𝑡+1 = 𝑢𝑡 + 𝜎⊤𝑥𝑡 ∀𝑡 (3)𝑈𝑡 ≤ 𝑢𝑡 ≤ 𝑈𝑡 ∀𝑡. (4)

• solutions in discrete space 𝑦 are sparse and scarce

• dualizing time coupling (3) in LR [Ghaddar’15] or variable
copy 𝑢 = 𝑈 in ADMM [Ulusoy’25] does not fix 𝑢𝑡

• dualizing (3) and fixing level variables 𝑢 splits in both
time and space, with few 𝑦𝑡 variables in each
component: enumerate and solve𝑚𝑖𝑛𝑐𝑜𝑠𝑡𝑓𝑙𝑜𝑤
independently
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search the 𝑢-space
min𝑢∈𝑈 𝑧(𝑢) =min𝑦0/1,𝑥􏾜𝑡 𝑐𝑡(𝑦𝑡, 𝑥𝑡) + 𝜇𝑡(𝑢𝑡+1 − 𝑢𝑡 − 𝜎⊤𝑥𝑡)

𝑠.𝑡.𝑥𝑡 ∈ 𝑚𝑖𝑛𝑐𝑜𝑠𝑡𝑓𝑙𝑜𝑤(𝑦𝑡, 𝐷𝑡, 𝑢𝑡) ∀𝑡.
• 𝑧: first-order information, smoothness,
convexity ?

• alternate convex search:
1/ 𝑃(𝑢𝑗): fix 𝑢 = 𝑢𝑗 get (𝑦𝑗, 𝑥𝑗)
2/ 𝑃(𝑦𝑗, 𝑥𝑗): fix (𝑦, 𝑥) = (𝑦𝑗, 𝑥𝑗) get 𝑢𝑗+1
3/ (update 𝜇)

partial split

• keep𝑚𝑖𝑛𝑐𝑜𝑠𝑡𝑓𝑙𝑜𝑤 (2) in 𝑃(𝑢) as a constraint but drop it from 𝑃(𝑦, 𝑥)
• start from a (learned) trial point 𝑢0, repair feasibility by alternate search

• penalty/multipliers update policy: ADMM [Boyd’00] or PADM [Geißler’17]
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option 1: partial split and PADM-like

given penalty vector 𝜇, increase 𝜇 when ‖𝑢𝑗 − 𝑢𝑗+1‖∞ ≤ 𝜖,
1: fix levels 𝑢, then compute (𝑦, 𝑥)𝑃(𝑢) ∶ min(𝑦,𝑥) 􏾜𝑡 𝑐𝑡(𝑦𝑡, 𝑥𝑡) + 𝜇⊤𝑡 ‖𝑢𝑡+1 − 𝑢𝑡 − 𝜎⊤𝑥𝑡‖1

𝑠.𝑡. ∶ 𝑥𝑡 ∈ 𝑚𝑖𝑛𝑐𝑜𝑠𝑡𝑓𝑙𝑜𝑤(𝑦𝑡, 𝐷𝑡, 𝑢𝑡)∀𝑡.
solve𝑚𝑖𝑛𝑐𝑜𝑠𝑡𝑓𝑙𝑜𝑤𝑡 independently on any graph component 𝑏, 0/1 vector 𝑦𝑡𝑏↓ ↑ stop when ‖𝑢𝑡+1 − 𝑢𝑡 − 𝜎⊤𝑥𝑡‖∞ < 𝜖
2: fix command (𝑦, 𝑥), then compute 𝑢𝑃(𝑦, 𝑥) ∶ min𝑢 􏾜𝑡 𝑐𝑡(𝑥𝑡, 𝑦𝑡) + 𝜇⊤𝑡 ‖𝑢𝑡+1 − 𝑢𝑡 − 𝜎⊤𝑥𝑡‖1 ∶ 𝑢 ∈ [𝑈,𝑈]
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option 2: partial split and ADMM-like

Given multipliers 𝜇 and penalty 𝜌:
1: fix levels 𝑢, then compute (𝑦, 𝑥)𝑃(𝑢) ∶ min(𝑦,𝑥) 􏾜𝑡 𝑐𝑡(𝑦𝑡, 𝑥𝑡) + 𝜇⊤𝑡 (𝑢𝑡+1 − 𝑢𝑡 − 𝜎⊤𝑥𝑡) + 𝜌2 ‖𝑢𝑡+1 − 𝑢𝑡 − 𝜎⊤𝑥𝑡‖22

𝑠.𝑡. ∶ 𝑥𝑡 ∈ 𝑚𝑖𝑛𝑐𝑜𝑠𝑡𝑓𝑙𝑜𝑤(𝑦𝑡, 𝐷𝑡, 𝑢𝑡)∀𝑡∀𝑏.ℓ2-regularization is separable here

2: fix command (𝑦, 𝑥), then compute 𝑢𝑃(𝑦, 𝑥) ∶ min𝑢∈𝑈 􏾜𝑡 𝑐𝑡(𝑥𝑡, 𝑦𝑡) + 𝜇⊤𝑡 (𝑢𝑡+1 − 𝑢𝑡 − 𝜎⊤𝑥𝑡) + 𝜌2 ‖𝑢𝑡+1 − 𝑢𝑡 − 𝜎⊤𝑥𝑡𝑏‖22
3: update 𝜇𝑡 = 𝜇𝑡 + 𝜌 ∗ (𝑢𝑡+1 − 𝑢𝑡 − 𝜎⊤𝑥𝑡)
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Experiments: learned profiles 𝑢 + partial split
• 30 initial trials u (deep learning + MonteCarlo dropout) + interpolation 𝑇 = 12 → 24
• stop at first feasible solution, or best within 30s [D., Sessa, Tavakoli’24] (no parallelization)
• compare with first solution from SOA Branch-and-Check [Bonvin, D., Lodi’21] w/wo advanced
preprocessing [Tavakoli, D., Sessa’22] on Van Zyl benchmark

T=24 cpu log(s)

T=24 opt gap 11
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option 3: full split on the strong-duality model
step 1: fix level 𝑢𝑅, then compute schedule and flow (𝑦, 𝑥)𝑤(𝑢𝑅) ∶ min(𝑦,𝑥) 􏾜𝑡 𝑐𝑡(𝑦𝑡, 𝑥𝑡) + 𝜇⊤𝑡 (𝑢𝑡+1 − 𝑢𝑡 − 𝜎⊤𝑥𝑡𝑅) + 𝜆𝑡𝑆𝐷𝑡(𝑥𝑡, 𝑢𝑡) ∶ (1 − 𝑦𝑡)𝑥𝑡 = 0, 𝑥𝑡𝑆 = 𝐷𝑡𝑆∀𝑡
with 𝑆𝐷𝑡(𝑥𝑡, 𝑢𝑡) = ∑𝑎 𝑓𝑎(𝑥𝑡𝑎) + 𝑓∗𝑎(𝑣𝑡𝑎) + 𝑢⊤𝑡𝑅𝑥𝑡𝑅 + 𝐷⊤𝑡𝑆𝑢𝑡𝑆 and 𝑣𝑡 = −𝐸𝑢𝑡𝑤(𝑢𝑅) remains separable in time and space

each is separable in primal (𝑥) /dual (𝑢𝑆) parts, corresponding each to a follower𝑚𝑖𝑛𝑐𝑜𝑠𝑡𝑓𝑙𝑜𝑤
augmented with leader costs 𝑐 and multipliers 𝜇, 𝜆:
perturbed primal𝒫𝑡(𝑦𝑡, 𝑢𝑡𝑅) ∶min𝑥𝑡 𝜆𝑡𝑓(𝑥𝑡) + (𝜆𝑡𝑢𝑡𝑅 − 𝜇𝑡 + 𝑐1𝑡 )⊤𝑥𝑡𝑠.𝑡. ∶ 𝑥𝑡𝑆 = 𝐷𝑡𝑆, (1 − 𝑦𝑡)⊤𝑥𝑡 = 0.

perturbed dual𝒟𝑡(𝑦𝑡, 𝑢𝑡𝑅) ∶min𝑢𝑡𝑆 𝜆𝑡𝑓∗(𝑣𝑡) + 𝜆𝑡𝐷⊤𝑡 𝑢𝑡𝑆𝑠.𝑡. ∶ 𝑣𝑡 = −𝐸𝑢𝑡.
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conclusion

• fixing coupling variables vs relaxing coupling constraints: keep structure, split deeper
(time/space/primal-dual), linearize bilinear terms

• alternative bilevel view: (leader) implied continuous storage variables (follower) discrete decisions

• alternative ML/MIP hybrid: ML for optimality, MIP for feasibility

• generalization to bilevel programming and MPEC (with Antonio Sasaki and Valentina Sessa)

• convergence for partial split ?
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