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Abstract
This work evaluates techniques for computing a lower bound for

the Standard Fractional Quadratic Program (StFQP). These results
may be useful to be integrated into algorithms to globally solve this
type of problem. Moreover, we implement computational experiments
to assess the trade-off between cost and tightness of the computed
lower bounds.
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1. Introduction

Let A,B ∈ Rn×n be real symmetric matrices, with B positive-definite (PD),
and let the standard simplex be denoted by ∆ :=

{
x ∈ Rn

+ | e⊤x = 1
}

, where
e = (1, . . . , 1)⊤ ∈ Rn. With this notation in place, we define the Standard
Fractional Quadratic Program (StFQP) as follows

min
x∈∆

λ(x) :=
x⊤Ax

x⊤Bx
. (1)

Since B is PD, the function λ is well-defined over the feasible set ∆.
Problem (1) can model a wide range of applications in economics, finance,
communication, and engineering [9]. In this case, the aim is to optimize the
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performance of a given system expressed as the ratio of two functions to
accurately represent the balance between two aspects of the system, such
as production cost versus production time, return versus risk of an invest-
ment.

Contrary to the case where the numerator is a linear function and the de-
nominator is concave, a stationary point (SP) of StFQP (1) is not necessarily
a global minimum because the objective function is not quasi-convex. In
this case, computing a global solution is known to be NP-hard [1].

The computation of a stationary point for StFQP can be implemented by
exploiting its relation with the class of the symmetric Eigenvalue Comple-
mentarity Problem (EiCP) [9]. In fact, by applying the Karush–Kuhn–Tucker
(KKT) conditions to (1), one shows that any SP x̄ with associated value
λ̄ = λ(x̄) must satisfy the following system

x ≥ 0, e⊤x = 1, Ax− λBx ≥ 0, x⊤(Ax− λBx) = 0, (2)

so that (λ̄, x̄) is a solution of EiCP(A,B) defined in (2). This problem was
introduced by Seeger [13] in the special case where B is the identity matrix,
and later extended to any PD matrix B by Queiroz et al. [12]. Modern state-
of-the-art algorithms for symmetric EiCPs (including ADMM [8], SPL [6],
DC-programming [10], spectral BAS [2], etc.) can compute these comple-
mentarity eigenpairs from (2) and generate SPs of (1). By (2), the global
minimizer of StFQP is the eigenvector associated with the smallest comple-
mentary eigenvalue λmin of the pair (A,B). Then, thanks to the combinato-
rial nature of the EiCP, a procedure able to compute all complementarity
eigenvalues could be applied and λmin can be obtained after sorting these
values. However, it is important to mention that the number of comple-
mentary eigenvalues grows exponentially with problem dimension, and
enumerating all is only possible for small instances [5].

Other effective methods to calculate SPs of (1) include a sequential algo-
rithm by Júdice et al. [9], which applies a efficient implementation of the
Dinkelbach’s method to the linear quadratic fractional problem obtained
linearizing the numerator in (1). Moreover, Boţ et al. [4] propose an ex-
trapolated proximal subgradient algorithm, which computes SPs of more
general nonconvex and nonsmooth fractional programs.
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2. On lower bounds for StFQP

In this work, we are interested in evaluating lower bounds for StFQP, that
is, we search for ℓ which satisfies the following

ℓ ≤ λ(x∗), (3)

where λ(x∗) is the global optimal value of (1).
Computing a tight lower bound is essential in many solvers using branch

and bound techniques, for pruning the search tree and speeding conver-
gence. However, excessively costly computations for obtaining a good ℓ
can prevent these benefits, so the art lies in balancing bound-tightening ef-
fort against enumeration work. Inspired by the study of Bomze et al. [3] re-
garding lower bounding techniques for the Standard Quadratic Program,
and motivated by the need for an efficient global solver for the fractional
case, this work presents a systematic comparison of both emerging and
classical bounding strategies, with the dual aim of deepening theoretical
insights and guiding an improvement of optimization algorithms for (1).

Early on, Preisig [11] derived lower (and upper) bounds for (1) by op-
timizing the quadratic forms in the numerator and denominator indepen-
dently, using their extreme eigenvalues to localize the quotient.

Through copositive optimization and its tight semidefinite program-
ming (SDP) relaxations, Amaral et al. [1] show that the StFQP can be re-
formulated as a linear optimization problem over the completely positive
cone C∗

n. From that, they derive a hierarchy of SDP relaxations by replacing
C∗
n with the doubly nonnegative cone Pn ∩ Nn ⊃ C∗

n. These bounds strictly
dominate the usual convex-envelope approaches (RLT/LP), although they
are computationally expensive for large instances.

For the case where B is the identity, Fernandes et al. [5] introduced al-
gebraic procedures for finding bounds based on the localization set of the
classical eigenvalues associated with the matrix A. Recently, He et al. [7]
extended this result, proposing two Gershgorin-type localization sets for
EiCP with B being the identity. In this work, we generalize these bounds
to the case of an arbitrary PD matrix B.

We additionally carry out a comparison of the lower bound obtained
by the methods discussed above from both theoretical and computational
aspects. This analysis aims to determine the effectiveness of each method
in providing accurate lower bounds while considering the computational
resources they require.
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