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Abstract

The expansion of renewable energy sources (RES) leads to a growth of uncertainty in the
power distribution network operation. The inherent variability and intermittency of RES
present significant challenges to the efficient and reliable operation of power systems. To
address these challenges, operational planning performed by distribution system operators
should evolve, in particular, to allow the efficient utilization of different flexibility mecha-
nisms (so-called levers), such as active power modulation and reactive power management.
Decisions on lever activation are based on the resolution of an alternating current optimal
power flow problem (AC-OPF). This thesis develops algorithms for handling two stochastic
AC-OPF models. These optimization problems are simultaneously nonconvex, nonsmooth,
and discrete. The thesis aims to grasp these complexities accurately, by addressing the AC
power flow equations without relying on convexification and by handling interdependent
uncertainties either through a joint probability constraint or via scenario decomposition to
cope with the discrete levers.

More specifically, the first proposed methodology addresses a continuous version of
the joint chance-constrained AC-OPF. A first contribution of this work is the design of a
numerical procedure (oracle) that enables the representation of the probability constraint as a
difference of two convex functions. This step is followed by applying a known Difference-of-
Convex (DoC) bundle method to the resulting continuous optimization problem. A second
contribution concerns a new bundle algorithm with stronger convergence guarantees under
weaker assumptions. For the chance-constrained AC-OPF, this algorithm provides a critical
(generalized KKT) point. The work builds upon the employed DoC bundle method and
proposes a different master program and an original rule to update proximal parameter. The
algorithm is capable of handling a broad class of nonsmooth and nonconvex optimization
problems beyond the stochastic AC-OPF framework, provided the objective and constraint
functions can be represented as differences of convex and weakly convex (CwC) functions.
The practical performance of the algorithm is illustrated through numerical experiments on
some nonconvex stochastic problems and is compared to the DoC bundle method for the
chance-constrained AC-OPF in a 33-bus distribution network.
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The second proposed methodology addresses operational planning rules for power mod-
ulation and curtailment, like priority and fairness, which result in logical and discrete
formulations. The numerical results demonstrate the limitations of the bundle method for in-
tegrating integer variables. As an alternative, an optimization model is proposed that assigns
a binary variable to each scenario and maximizes the number of satisfied scenarios within
a limited budget. Applying penalization and block coordination allows separating those
discrete considerations from the stochastic AC-OPF component, which is then decomposed
into an individual deterministic AC-OPF for each scenario. Although it lacks theoretical
convergence guarantees, the relevance of this approach is validated in practice.



Résumé

L’expansion des sources d’énergie renouvelable accroît le degré d’incertitude dans
l’exploitation des réseaux de distribution d’électricité. La variabilité et l’intermittence
inhérentes à ces énergies posent aussi d’importants défis aux gestionnaires de réseaux au
niveau opérationnel. La gestion prévisionnelle doit ainsi évoluer pour intégrer des leviers de
flexibilité, telles la modulation de puissance active et la gestion de puissance réactive. La
décision relative à l’activation de ces leviers se traduit par un problème d’Optimal Power
Flow. Cette thèse développe des algorithmes de résolution pour deux modèles stochastiques
en courant alternatif (AC-OPF). Ces problèmes d’optimisation sont, à la fois, non-convexes,
non-lisses et discrets. Cette thèse vise à appréhender ces complexités, sans recourir à la
convexification des équations de flux de puissance, et en considérant l’interdépendance des
incertitudes, via une contrainte probabiliste jointe ou une décomposition par scénarios dans
le cas de leviers discrets.

Précisément, la première méthodologie proposée s’applique à une version continue de
l’AC-OPF sous contrainte probabiliste jointe. Une contribution de ce travail porte sur la
conception d’une procédure numérique (oracle) traitant la contrainte probabiliste comme la
différence de deux fonctions convexes. L’oracle est alors associé à une méthode de faisceaux
pour les problèmes DoC (différence de convexes). Une seconde contribution porte sur le
développement d’un nouvel algorithme de faisceaux offrant des garanties de convergence
plus fortes sous des hypothèses plus faibles. Il produit ainsi un point critique (satisfaisant
des conditions KKT généralisées) de l’AC-OPF probabiliste. Basé sur la méthode DoC
précédente, cet algorithme exploite un programme maître différent, ainsi qu’une règle origi-
nale de mise à jour du paramètre proximal. Il s’applique à la classe générale des problèmes
d’optimisation non-convexes et non-lisses dont objectif et contraintes sont modélisables
comme différence de fonctions convexes et faiblement convexes (CwC). L’évaluation em-
pirique de l’algorithme est menée sur différents problèmes non-convexes et stochastiques.
Ses performances pratiques sont comparées à celles de la méthode DoC sur un cas d’étude
de l’AC-OPF probabiliste dans un réseau de distribution à 33 nœuds.

La seconde méthodologie proposée considère des règles discrètes en gestion prévi-
sionnelle, telles que des règles de priorité et d’équité pour la modulation de puissance.
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L’expérimentation montre les limites de la méthode des faisceaux pour intégrer des variables
entières. Comme alternative, il est proposé un modèle d’optimisation attachant une variable
binaire par scénario, et maximisant le nombre de scénarios réalisés dans un budget limité.
La dualisation des contraintes couplantes et la coordination par blocs permettent de séparer
les règles discrètes de l’AC-OPF stochastique, qui se décompose, à son tour, en AC-OPF
déterministes individuels par scénario. Si la convergence théorique n’est plus garantie par
cette séparation, la pertinence pratique de l’approche est illustrée numériquement.
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Chapter 1

Introduction

This chapter discusses the paradigm shift for distribution system operators (DSOs) driven
by the large-scale integration of renewable energy sources (RES) and advancements in grid
technologies. We review regulatory and contractual incentives such as Feed-in Tariffs (FiT)
and Smart Connection Points (SCP) related to RES adoption, along with the operational
tools DSOs employ for effective grid management. Special emphasis is placed on short-term
operational planning, particularly active power modulation and curtailment control levers —
the core focus of this thesis.

The mathematical framework explores optimization methods for DSO operational plan-
ning, with a focus on stochastic optimization to address uncertainties in RES generation. The
discussion highlights the shift from deterministic approaches to chance-constrained models,
which ensure reliable grid operation under probabilistic constraints. These models lead to
nonconvex and nonsmooth optimization problems, presenting significant theoretical and
computational challenges.

The chapter then outlines the key contributions of this thesis, including theoretical and
numerical results, followed by its organizational structure. It concludes with an overview of
peer-reviewed publications and conference presentations derived from this research.

Ce chapitre aborde le changement de paradigme des gestionnaires de réseaux de dis-
tribution (GRD), induit par l’intégration massive des énergies renouvelables (ENR) et les
avancées technologiques dans les réseaux électriques. Nous évoquons les dispositifs régle-
mentaires et contractuels liés au déploiement des ENR, notamment les offres de raccordement
de référence (ORR) et les offres de raccordement intelligentes (ORI), ainsi que les outils
opérationnels déployés par les GRD pour la gestion du réseau. Un accent particulier est mis
sur la gestion prévisionnelle à court terme, plus spécifiquement sur les leviers de modulation
et de réduction de la puissance active, qui constituent l’axe central de cette thèse.
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Les méthodes d’optimisation pour la gestion prévisionnelle sont ensuite explorées, avec
un focus particulier sur l’optimisation stochastique pour tenir compte des incertitudes liées
à la production des ENR. La discussion souligne la transition des approches déterministes
vers des modèles à contraintes probabilistes, qui garantissent un fonctionnement fiable du
réseau dans un cadre stochastique. Ces modèles conduisent à des problèmes d’optimisation
non-convexes et non-lisses, posant d’importants défis théoriques et numériques.

Le chapitre présente ensuite les principales contributions de cette thèse, incluant les
résultats théoriques et numériques, puis sa structure organisationnelle. Il se termine par
un aperçu des publications scientifiques et des présentations en conférence issues de cette
recherche.

1.1 Industrial context

The use of renewable energy sources (RES) is becoming increasingly important as the world
seeks to transition to more sustainable and environmentally friendly energy systems. Many
countries are setting new targets to achieve carbon neutrality. For example, in Europe, several
programs and initiatives have been introduced, including Green Deal, Fit to 55, or RePower
EU. These initiatives outline progressively ambitious goals, supported by concrete measures
to promote, in particular, the development of renewable energies and the electrification of
the transport sector [15]. A closer analysis of these initiatives highlights the key role of
transmission and distribution power systems as strategic infrastructures in achieving those
objectives.

Variable and intermittent by nature, RES such as solar and wind power pose significant
challenges to the efficient and reliable operation of power systems. To address these chal-
lenges, system operators must adopt a more proactive approach to network planning and
operation [39]. This shift primarily concerns distribution system operators (DSOs), as a tra-
ditional fit-and-forget approach has historically been used for distribution grid management.
However, this concept would require tremendous investments in grid expansion to meet the
demand of modern distribution systems. The new approach involves optimizing multi-annual
investments in human resources, infrastructure, and technology, as well as adopting new
solution methods and operating tools.

In this context, many European DSOs are implementing an integrated approach that aligns
network planning, operational planning, and real-time operations over a continuous time
horizon, enabling faster and more efficient integration of new distributed energy resources
(DER). This approach is highlighted, for example, in the multi-annual network development
plan of Enedis [36], the largest DSO in France. Typically, this methodology involves
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characterizing major investments several years in advance, identifying and prioritizing
medium-term investments, optimizing work schedules in the short term, and operating
networks in an efficient and coordinated manner.

Although a DSO is responsible for the operation of the distribution network, its activities
may be subject to unbundling rules. For instance, in Europe, DSOs are prohibited from
owning or operating generating units. Consequently, their observability and level of control
are limited, which in practice increases uncertainty in power generation and consumption
and makes it more challenging for the DSO to effectively manage the grid. In this regard, the
mechanisms used to ensure the network operation can be informally divided into two groups.
The first group includes the techniques implemented to motivate the grid users, both power
producers and consumers, to adapt their behavior in a specific way. As these incentives
include different agents of the distribution system, they are often developed by governments
and regulators, as part of broader political decisions. One such tariff-based incentive will be
discussed in the next section. The second group consists of mechanisms, often referred to as
"levers", that can be directly implemented and activated by DSOs for the network operational
planning. The modeling and optimization of these mechanisms are the focus of this thesis.
We will introduce the concept of levers, along with the DSO’s objectives and main challenges
in this context, later in the introduction.

1.1.1 Feed-in tariffs and smart connection points

Feed-in tariffs (FiT) for renewable generation were among the first incentive measures
implemented by governments to encourage the development of RES [155]. According to
the [40, 155], FiT tariffs can be defined as "the price per unit of electricity that a utility or
supplier has to pay for renewable electricity from private generators". These tariffs allowed
RES production units to inject all the energy they produced while receiving a fixed and
economically attractive remuneration.

In this context, system operators had to prepare to accommodate the contractualized
production capacity, which required significant investments in grid infrastructure to handle
peak active power production from RES. Depending on the circumstances, this resulted in
substantial costs for these producers, delays in commissioning, or even temporary limitations
on the power injection during reinforcement works.

Nowadays, considering the level of maturity of the RES technologies — particularly wind
and solar photovoltaic — FiTs are increasingly being replaced by alternative mechanisms [77].
Among these alternatives are smart and interruptible connection points (SCPs) and contracts,
which have been proposed to mitigate the need for grid reinforcement [5] and are now being
implemented across Europe [45]. Under such contracts, the DSO is permitted to temporarily
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reduce the contractual consumption or generation capacity at a connection point of DERs.
This approach increases the hosting capacity of existing systems, enabling faster integration
of RES while reducing investment costs.

1.1.2 Operational planning

The operational planning for a DSO can be divided into long-term planning and short-term,
in accordance with the objectives that need to be met. The former focuses on long-term
goals such as planning construction and maintenance works, whereas the latter addresses
operational constraints to ensure effective grid access for users while respecting legal,
contractual, and technical requirements. Short-term operational planning typically spans a
time scale ranging from 30 minutes to one month. Although these two aspects of planning are
closely interconnected — long-term decisions influence short-term actions, and short-term
decisions must align with long-term goals — our focus will be on short-term operational
planning for the medium voltage (MV) network and its framework.

Short-term operational planning involves anticipating the network operational constraints
(we will refer to these constraints as technical constraints or simply grid constraints) and
addressing them using various control levers [91]. The first step, the detection of potential
operational constraints, is based on forecasts of power production and consumption by grid
users. Once constraints are identified, a decision is made regarding which control levers
to activate from the available set to resolve the predicted issues. These options include,
among others, active power modulation and curtailment, reactive power regulation, and
network topology reconfiguration [121]. While this work focuses on modeling active power
modulation and curtailment, the proposed methodology is not limited to these specific levers
and can be adapted to incorporate models for other control actions.

The rules governing active power modulation and curtailment — essentially distinguished
by the direction of power change — depend on the type of grid connection contract. Pro-
duction facilities connected via FiT contracts are authorized to inject any time up to the
maximum active power requested during the connection. Consequently, the DSO has no
contractual authority to modulate or curtail power from FiT-connected users under normal
operating conditions. Curtailment of such units is only permitted under critical operating
conditions and must be financially compensated by the DSO. In contrast, SCP contracts
guarantee each producer a minimum level of power injection into the grid. Within the bounds
defined by these contracts, the DSO can perform power modulation at a relatively low cost.
However, any curtailment beyond those limits is treated as a denial of service, similar to FiT
arrangements. As for consumers, any curtailment of their power usage is treated as a forced



1.1 Industrial context 5

outage. For modeling purposes, this effectively places consumers in the same category as
FiT grid users.

1.1.3 Operational planning methods

The decision on lever activation is taken in practice using operational planning tools specifi-
cally tailored to these needs. These tools have already been deployed and are continuously
being improved to address emerging challenges, such as those highlighted above and de-
scribed in [36]. These improvements include mathematical optimization-based approaches
to solving problems, which represent a complete shift in the operational planning paradigm
for DSOs. By integrating practical rules, use-case scenarios, and contractual obligations into
mathematical models, this approach leads to a more systematic and efficient decision-making
process. Ongoing efforts focus on deploying advanced methods capable of handling addi-
tional challenges and opportunities, such as uncertainty in DER production, interaction with
external actors (e.g., flexibility providers and TSOs), and integrating these tools into IT and
OT systems.

The employed optimization methods must handle power flow equations to ensure techni-
cal constraints are satisfied. Combined with the objective of minimizing costs associated with
the operational solution, this results in an alternating current optimal power flow (AC-OPF)
problem. AC-OPF is, in general, an optimization problem with continuous variables that is
nonconvex and strongly NP-hard, as shown in various studies [12]. Several simplified formu-
lations and solution methods have been proposed [43, 101], including classical optimization
methods that rely mainly on convex relaxations or approximations [82, 48], nondeterministic
search techniques (also known as heuristic, stochastic or random search methods) [44],
and machine learning methods [57]. In an industrial optimization approach [122], non-
convex relationships are approximated by piecewise linear functions, while logical and
discrete formulations representing operational planning rules are introduced. This results in
a mixed-integer linear programming model (MILP) [122].

Traditional OPF models assume the system parameters are deterministic, which is hardly
compatible with the integration of RES. Therefore, modeling uncertainties has become an
important research topic in the field of power systems in the context of the energy transition.
The next section explains the emerging challenges and provides an overview of approaches
developed to address the resulting optimization models.
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1.2 Mathematical context

1.2.1 OPF under uncertainties

Solution methodologies to address OPF models with uncertainties are diverse and include
meta-heuristic methods, as well as robust and stochastic approaches. Meta-heuristic methods,
in particular, have gained increasing attention in the field of power and energy systems
within the last ten years [19], due to their ability to search for implementable decisions
with relatively low computational cost. An overview of such methods can be found in [96].
However, the quality of the obtained decisions can be difficult to assess in practice, as no
optimality certificate is provided from a theoretical point of view.

Robust optimization methods rely on constructing an uncertainty set and searching for a
reliable solution for any scenario realization in that set. This approach is proposed for the
distribution network management in [65, 116, 150] with different types of uncertain data.
For instance, uncertainties are solely on renewable energy sources in [65], whereas [150]
deals with stochastic load composition. The authors in [116] describe multi-period grid
management applying a convex hull technique to define an uncertainty set. Solutions obtained
with robust optimization methods are optimal for the worst-case scenario and thus tend to
be conservative. In contrast, stochastic optimization methods assume that the probability
distribution of uncertain variables is known [114, Chapter 1] and, in general, enable obtaining
a less conservative decision.

One widespread approach in stochastic programming is chance-constrained optimization,
where one searches for a decision that minimizes costs while satisfying a set of random
constraints with a prescribed probability level (also known as security level) [114, 6]. Chance-
constrained optimization models are intuitive and straightforward to explain. However, they
are generally difficult to solve, because they often lack essential mathematical properties
such as convexity and differentiability [126]. The use of chance constraints for energy
management is discussed in detail in [142], where the authors show how to ensure feasibility
to the greatest extent possible while aligning with the goals of the system operator. This
approach is widely used for different energy-related problems, including hydro-reservoir
and gas network management [141, 54, 52]. In this thesis, we focus on chance-constrained
formulations for operational planning models in power grid management.

In the framework of OPF problems, most chance-constrained models rely on convex
approximations or linearizations of power flow equations and deal with individual probability
constraints, i.e., correlations between random variables are ignored. In [154] an OPF problem
with load uncertainties is considered, where probability constraints are represented with
individual bounds on state variables. The model equations are linearized at the random
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vector expected value, establishing a monotonic relation between the output and a random
input. This enables the treatment of probability constraints with respect to the distribution of
random variables. An analytical reformulation of chance constraints for the direct current
optimal power flow (DC-OPF) model with Gaussian distributions is proposed in [103]. This
approach is generalized in [104] to accommodate a broader class of distributions with a given
mean vector and covariance matrix. A partial linearization of AC power flow equations is
applied in [102] to transform the individual chance constraints into deterministic ones at the
forecasted operating point. This transformation assumes relatively small forecast errors in
model uncertainties. Another approximation is introduced in [25], where chance constraints
are used to enforce voltage regulation with prescribed probability. The authors address
chance constraints with a convex relaxation closely related to the concept of conditional
value at risk (CVaR) and exploit linearizations of power flow equations.

Reference [11] deals with minimizing an average generation cost over random renew-
able power injections, while controllable generators mitigate power fluctuations. Chance
constraints are imposed separately for each type of operational limit and reformulated as
second-order cone constraints. The model is thus reduced to a deterministic convex opti-
mization problem, more precisely, a second-order cone program (SOCP), and resolved with
a cutting-plane algorithm. A SOCP reformulation is also used for the case of individual
chance constraints in [94, 10]. Paper [84] presents a robust modification of the approach
given in [11], which addresses the uncertainty in parameters of probability distributions by
restricting them to an uncertainty set.

1.2.2 Joint chance-constrained models

To address the strong correlation between the renewable generation profiles and loads, a joint
chance-constrained formulation is used in [144, 100]. Despite recent advances in theory and
numerical methods for chance-constrained problems, dealing with multivariate probability
functions in optimization problems generally remains a challenging task. This amounts
to computing numerically a multidimensional integral, a difficult task for even moderate
dimensions [127]. The situation becomes even more demanding for assessing (sub)gradients.
For this reason, a common practice is to estimate the probability function with scenario-
based methods, such as Monte-Carlo simulations using a finite sample of scenarios [97].
In the latter work, the authors analyze the convergence properties of the sample average
approximation when the sample number goes to infinity and show how to construct good
approximate solutions.

To mitigate the complexity of joint chance constraints, a decomposition into a series
of individual chance constraints is commonly used in the OPF literature. This approach is
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applied in [8], where the individual chance constraints are then reformulated analytically. A
key challenge of this decomposition is selecting appropriate security levels for the individual
chance constraints. In [68] this issue is addressed by employing an iterative decomposition
process that provides a less conservative solution. However, even with the optimal selection
of individual security levels, this approach cannot guarantee an optimal solution to the
original joint chance-constrained problem [18].

Another group of references addresses the joint chance constraint without decomposition.
These approaches rely on two key steps: transforming the underlying AC-OPF into a convex
model and converting the joint chance constraint into a deterministic form. The latter
step often relies on sample-based approaches, which do not require particular assumptions
on the distribution. For instance, a method based on empirical quantiles is applied to a
DC-OPF model in [99] giving rise to a continuous nonlinear programming (NLP) model.
Another scenario-based technique is applied in [146, 143], which guarantees satisfaction
of the original constraint in probabilistic sense. This technique requires convexity of the
underlying problem, and these works exploit semidefinite programming (SDP) relaxations
for AC-OPF models. In [143] an alternative approach involving an analytical reformulation
of the probability constraint is proposed for the case of a multivariate Gaussian distribution.

1.2.3 Chance-constrained OPF with discrete variables

Incorporating discrete variables and logical formulations significantly enhances the ability to
model real-world decision-making processes. They are widely employed in operational plan-
ning problems such as goods distribution, production scheduling, and machine sequencing,
where decisions are naturally binary (yes/no, on/off) or involve selecting among discrete op-
tions [95]. Meanwhile, such variables and formulations introduce a fundamentally different
and inherently combinatorial challenge. In contrast to continuous optimization, where the
primary concern is often how to find the optimum, discrete problems could, in principle, be
solved by enumerating all possible configurations. However, as the problem size increases,
this quickly becomes a computationally challenging task. As a result, the key question shifts
to: how can these problems be solved efficiently? In addition to this change in perspective,
theoretical framework and solution methodologies differ: standard constraint qualification
conditions fail at isolated feasible points, and concepts like gradients are not well-defined in
the discrete setting.

These factors introduce additional complexity to chance-constrained OPF models. The
literature on such models remains relatively limited, and existing approaches often rely
on linear approximations of power flow equations, along with simplifications of the joint
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chance-constrained framework. As a result, an overall formulation is typically reduced to a
mixed-integer linear approximation to ensure tractability.

In [3], the authors address discrete curtailment of renewable generation in the context of
transmission grid operations. They propose a chance-constrained DC-OPF model with two
joint chance constraints that separately incorporate the limits on power generation outputs
and transmission line flows. Discrete curtailment decisions are modeled through discrete
variables included in the deterministic part of the formulation. To handle the computational
complexity of the chance constraints, the authors employ a robust approximation technique
and a sample-based approach to construct suitable uncertainty sets. These methods lead to a
MILP approximation of the original problem.

Another approach to the chance-constrained operational framework is proposed in [69].
The authors seek to identify minimum-cost operational planning decisions such that the
system can be operated while satisfying a certain probabilistic security criterion. Adopting
DC approximation of power flow equations, a deterministic MILP model representing the
planning process for a finite number of scenarios is constructed. The employed two-step
algorithm iteratively refines the scenario set to balance cost and reliability. In the first step, the
scenario set is enlarged, and an associated operational planning cost is calculated by solving
the MILP. In the second step, inappropriate scenarios are eliminated based on feasibility and
cost considerations.

Papers [151, 115] deal with the two-stage framework, which additionally models either a
proactive role of prosumers [151] or a preliminary step of contracting flexibilities in a day-
ahead market by DSO [115]. The chance-constrained operational planning aspect remains
integral to one of the stages. Both papers employ linearizations of AC power flow equations
but address the chance constraints differently. In [151], individual chance constraints are
reformulated as second-order cone constraints, which results in a mixed-integer second-
order cone programming (MISOCP) problem. In [115], the authors adopt a scenario-based
approach to a joint chance constraint and compare two reformulation techniques, Big-M
method and McCormick relaxations, both leading to MILP models.

1.3 Contributions and organization of the thesis

This thesis focuses on joint-chance constrained AC-OPF models to address short-term
operational planning for medium voltage (MV) distribution networks, specifically, power cur-
tailment and modulation levers. From an optimization perspective, the resulting problems are
simultaneously nonconvex, nonsmooth, and discrete, making them particularly challenging.
Some level of simplification is unavoidable when tackling these problems.
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The main paradigm of this thesis, which sets the proposed approaches apart from most
existing methods discussed in the previous section, is the commitment to address these
complexities without preliminary relaxations or approximations. Rather than simplifying the
original problem upfront, which often results in an accumulation of errors from approxima-
tions, the underlying complexities are decomposed. Some approximations, when necessary,
are introduced later in the process.

In Chapter 2, we consider a continuous version of the joint chance-constrained AC-OPF,
addressing two complexities of the model, nonconvexity and nonsmoothness. This model, in-
troduced in [67], incorporates a simplified version of power curtailment and modulation rules,
avoiding logical variables and discrete formulations. The solution approach is structured
into three steps, and our contribution includes the first of them. We propose a parallelizable
numerical procedure (oracle) enabling decomposing the underlying formulation in probability
constraint into a deterministic AC-OPF per scenario. Using this procedure and applying
Monte-Carlo simulations, the chance constraint is approximated by a difference of two convex
functions. This step contains all the approximations used in the method. A known algorithm,
the DoC bundle method [129], originally designed to handle optimization problems with the
objective function and constraints being differences of two convex functions (DoC), is then
applied to the resulting model. However, since this model does not meet several favorable
assumptions, the algorithm is not guaranteed to provide a critical point to the original model.
Therefore, two challenges arise: finding a critical point to the resulting continuous model
and incorporating discrete variables to represent operational planning rules.

To address the first challenge, we propose a new bundle algorithm in Chapter 3, with
stronger convergence results under weaker assumptions. A detailed convergence analysis
and a comparison with the DoC bundle method are also included. This algorithm applies to a
broad class of nonsmooth and nonconvex optimization problems, provided the objective and
constraint functions can be represented as differences of convex and weakly convex functions
(CwC). As a weakly convex function can, in theory, be decomposed itself as a difference of
two convex functions, the class of optimization problems remains unchanged. However, in
practice, the CwC structure often arises more naturally in certain applications, whereas a DoC
decomposition of the associated problems may not be available. This explains the practical
interest of the new method, going beyond the chance-constrained AC-OPF framework. In
contrast to the DoC bundle method, the new algorithm provides a critical (generalized KKT)
point in the latter framework.

Next, in Chapter 4, we propose a model for operational planning rules that address priority
and fairness in power curtailment, resulting in additional logical and discrete deterministic
constraints. These rules are based on the notion of priority levels — a concept that generalizes
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FiT and SCP contracts by explicitly defining the order in which power curtailment is applied
to producers. The new model thus incorporates binary variables along with the joint chance
constraint and the underlying AC-OPF, resulting in the three announced complexities. We
begin Chapter 5 by testing the ability of the DoC bundle method to handle these additional
constraints, which does not yield reliable numerical results. As an alternative approach, we
assign a binary variable to each scenario and transition to a new model that maximizes the
number of satisfied scenarios under a budget constraint, partly employing the methodology
proposed in [2]. This transition allows for separating discrete formulations and breaking
down the stochastic component into a deterministic AC-OPF per scenario, enabling the use
of existing solvers and methods to address these components independently.

Finally, all the proposed methods for the joint chance constrained AC-OPF models are
tested in a 33-bus distribution network. The practical performance of the new bundle method
is illustrated on several nonconvex stochastic problems and compared to the DoC bundle
method for the chance-constrained AC-OPF on the same network. The numerical results are
presented in the corresponding chapters.

Since the proposed methodology provides a deterministic AC-OPF per scenario as one of
the final outputs that are addressed with existing methods, we investigate an SDP relaxation
of the resulting AC-OPF in Chapter 6. While the discussed methods can readily incorporate
this relaxation, further considerations and numerical testing are required. Additionally,
several perspectives for alternative approaches to the new model are discussed, along with
the limitations of the presented approach and its potential application to other operational
planning models.

Articles in peer-reviewed journals and presentations in conferences. The main content
of Chapter 2 appeared in [123], and the content of Chapter 3 was published in [124]. The
following presentations were delivered based on the material presented in this Thesis:

• "Scenario-Based Decomposition for Optimal Power Curtailment with Priority-Level
Producers" by K. Syrtseva, W. de Oliveira, S. Demassey:

– PGMO Days, Palaiseau, France, November 2024.

• "Joint Chance Constraint and Difference-of-Convex Approach for Operational Planning
of Distribution Network" by K. Syrtseva, W. de Oliveira, S. Demassey:

– Optimisation et Energie sous contraintes climatiques (journée ROD-RADIA),
Lyon, France, November 2024 (in French).

– Électricité de France, Palaiseau, France, November 2024 (in French).
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– Energy System Modelling for Transition to a net-Zero 2050 for EU via REPow-
erEU (work group Man0EUvRE), online, November 2024.

• “Difference-of-Convex Approach to Chance-Constrained OPF” by K. Syrtseva, W. de
Oliveira, S. Demassey, H. Morais, P. Javal, and B. Swaminathan:

– ROADEF, Amiens, France, March 2024 (in French).

– Mines Paris, Centre de Mathématiques Appliquées, Sophia Antipolis, France,
December 2023.

– PGMO Days, Palaiseau, France, November 2023.

– Électricité de France, Palaiseau, France, September 2023 (in French).

• “Minimizing the Difference-of-Convex and Weakly Convex functions via Bundle
method” by K. Syrtseva, W. de Oliveira, S. Demassey, and W. van Ackooij:

– SIAM Conference on Optimization, Seattle, USA, June 2023.

– PGMO Days, Palaiseau, France, November 2022.

– Électricité de France, Palaiseau, France, September 2022 (in French).

• “Optimization Approaches to Stochastic Problems”:

– Mines Paris, Centre de Mathématiques Appliquées, Sophia Antipolis, France,
January 2024 (for students of the Master program of Advanced Studies in Energy
Systems Optimization).



Chapter 2

Continuous Model and
Difference-of-Convex Approach

In this chapter, we consider an operational planning problem that includes the activation
of power modulation and power curtailment levers modeled as a joint chance-constrained
AC-OPF. For now, we adhere to the framework of levers proposed in [67], where the priori-
tization between SCP and FiT users is addressed through differences in power modulation
costs (without discrete and logical conditions). The solution method involves adopting a
Difference-of-Convex (DoC) 1 approach, which enables tackling the resulting optimization
problem without convexification or linearization of the core OPF equations. Furthermore,
the approach yields a natural and parallelizable scenario decomposition. The method starts
with a reformulation of the employed model as a DoC optimization problem, which is the
main novelty of the present chapter. Next, a proximal bundle method algorithm developed
in [129] is applied to solve it.

The main content of this chapter has appeared in [123] (K. Syrtseva, W. de Oliveira, S.
Demassey, H. Morais, P. Javal, and B. Swaminathan (2023). "Difference-of-Convex approach
to chance-constrained Optimal Power Flow modelling the DSO power modulation lever for
distribution networks". Sustainable Energy, Grids and Networks).

Ce chapitre modélise un problème de gestion prévisionnelle intégrant l’activation de
leviers de flexibilité, notamment la modulation et la réduction de la puissance active. Ce
problème est modélisé comme un AC-OPF (Optimal Power Flow en courant alternatif)
sous contrainte probabiliste jointe. Pour l’instant, nous adoptons le cadre des leviers de
[67], où la priorisation entre les utilisateurs ORI et ORR repose sur des différences de

1The standard abbreviation for Difference-of-Convex is DC. To avoid confusion with "Direct Current" in
OPF problems, we refer to the former as DoC.



14 Continuous Model and Difference-of-Convex Approach

coûts de modulation de puissance (sans conditions discrètes ou logiques). La méthode de
résolution consiste à adopter une méthode de faisceaux pour les problèmes DoC (différence
de convexes). Cette méthode permet de résoudre le problème d’optimisation sans recourir ni
à une convexification ni à une linéarisation des équations de flux de puissance. De plus, elle
induit naturellement une décomposition par scénarios parallélisable. Le modèle est d’abord
reformulé sous la forme d’un problème d’optimisation DoC, ce qui constitue la contribution
principale de ce chapitre. Puis, un algorithme de méthode des faisceaux, développé dans
[129], est appliqué pour résoudre le problème d’optimisation obtenu.

Le contenu principal de ce chapitre a été publié dans [123] (K. Syrtseva, W. de Oliveira, S.
Demassey, H. Morais, P. Javal, et B. Swaminathan (2023). "Difference-of-Convex approach
to chance-constrained Optimal Power Flow modelling the DSO power modulation lever for
distribution networks". Sustainable Energy, Grids and Networks).

2.1 Operational planning under uncertainties: framework
and contributions

2.1.1 Optimal Power Flow (OPF) under uncertainties

In this chapter, we model an operational planning problem as a joint chance-constrained
optimization problem. For a given parameter α ∈ [0,1] and a probability measure P, the
problem we investigate in this work can be synthetized as follows:

min
Levers

{ Levers activation cost } (2.1.1a)

s.t. Activated levers satisfy contractual constraints (2.1.1b)

P

[
Existence of a grid state within bounds

satisfying stochastic power-flow equations

]
≥ 1−α. (2.1.1c)

In this formulation, the decision variables are related to the activation of flexibility con-
tracts (levers), which in our problem corresponds to DSO decisions on power modulation and
power curtailment of distributed generation, and limitations on power supply to consumers
(energy not supplied). Each grid user, who may be either a producer or a consumer, is
characterized by its grid connection contract (FiT or SCP in our case). Depending on the
contracts, levers activated by the DSO must satisfy specific deterministic constraints.

Stochastic equations are related to technical decision feasibility: given a DSO decision
and a scenario realization on power generation and loads, grid operating conditions must
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remain within technical limits. The literature varies in the types of these limits: these bounds
may apply, for instance, to generation output, line flows, voltage magnitudes, transmission
line capacities, or other parameters. We will precise the technical limits in Subsection 2.2.2.
Similar framework is addressed, for instance, in [99, 146] and [143].

In practice, a decision on levers activation satisfying all the bounds and stochastic power
flow equations for all the possible scenarios may not exist. Hence, it makes sense to search
for a reliable, affordable decision that satisfies the stochastic constraints with a probability
level of at least 1−α . Observe that, if we take α = 0 and a solution of problem (2.1.1) exists,
then such a solution is robust over all the possible scenarios. The decision maker can thus
adjust her risk aversion by appropriately setting the parameter α: small α reflects high risk
aversion.

In the proposed approach, the primary goal is to secure the required level 1−α , with
α > 0, for the system: we search for an implementable decision that is feasible with a
probability of at least 1−α . As we will see shortly, the goal is obtained without any stringent
assumption on the probability distribution or modeling simplifications such as linearization
and convexification of core OPF equations. The deterministic case α = 0 is not within the
scope of the proposed methodology, which is applicable but not tailored for this case. In
Section 2.2, we introduce a realistic mathematical model for (2.1.1) that is consequently
nonconvex, nondifferentiable, and thus challenging.

We adhere to the principle to keep the model complexity, including AC-OPF and joint
chance constraint, without preliminary simplifications. As discussed in Chapter 1, new
mathematical approaches are required to face nonconvexity and nondifferentiability in
problem (2.1.1). Based on the observation that requirement under the probability in (2.1.1c)
can be written as a difference of two convex functions, we apply a Difference-of-Convex
(DoC)2 optimization approach to tackle the problem.

2.1.2 Chance-constrained optimization and the DoC approach

A function is called DoC if it is expressible as the difference of two convex functions.
As already investigated in [63] and [129], probability functions can be approximated as
accurately as one wishes by DoC functions. In Subsection 2.3.1, it is shown how to model
the existence requirement in (2.1.1c) by a DoC function. Therefore, we end up with a
composition of DoC functions that is itself DoC, and thus we can approximate probability

2The standard abbreviation for Difference-of-Convex is DC. To avoid confusion with "Direct Current" in
OPF problems, we refer to the former as DoC.
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constraint (2.1.1c) with a DoC constraint:

P

[
Existence of a grid state within bounds

satisfying stochastic power-flow equations

]
≥ 1−α

≈ c1(x)− c2(x)≤ 0,

where c1,c2 : Rn→ R are (nondifferentiable) convex functions. Given this approximation,
we will show how to construct a DoC optimization model for problem (2.1.1) fitting into the
following structure:

min
x∈X

f (x) (2.1.2a)

s.t. c(x) := c1(x)− c2(x)≤ 0, (2.1.2b)

where X is a nonempty bounded polyhedron contained in Rn and f : Rn→ R is a convex
function as well. In the present work, we will refer to (2.1.2) as a DoC optimization problem.

DoC programming forms an important subfield of nonconvex programming, as it covers
a large class of nonconvex optimization problems from real-life applications. At the same
time, convex analysis apparatus enables to establish optimality conditions for DoC problems
and design algorithms to solve them. These facts explain the increasing interest in this field,
which started in the 80s [74]. Important facts about DoC programming such as optimality
conditions and duality can be found in the tutorial paper [28]. The survey article [74] gives a
large spectrum of examples and algorithm developments in this field. Currently, most used
algorithms are based on iterative linearizations of components f2 and c2 [74], on penalization
technique applied to the DoC constraint [73], and on improvement functions that combine
constraint and objective in a single level [129]. The latter is a well-known and successful
strategy in the nonsmooth optimization literature [110, 7, 90, 129]. In particular, a bundle
method with improvement function is proposed in [129] for dealing with DoC-constrained
DoC-problems. Due to its good numerical performance reported in [129], we choose this
bundle algorithm – denoted by DoC bundle method – to tackle our DoC optimization
model (2.1.2) of the chance-constrained OPF problem (2.1.1).

2.1.3 Contributions and organization of the chapter

Our main contribution is the design of an oracle (black-box) that enables finding a DoC
decomposition of the constraint under probability sign in (2.1.1c), which imposes the OPF
solution to be in the required bounds. This fills a critical gap, allowing the DoC approach from
[129] to be applied to a joint chance-constrained AC-OPF. Once future random events are
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approximated through a sample of N scenarios, our oracle makes accessing the probability
constraint parallelizable, while the DoC bundle method efficiently handles the resulting
optimization problem. The method’s performance is demonstrated on a 33-bus distribution
network in two use cases.

The remainder of this chapter is organized as follows. Section 2.2 is dedicated to
the modeling of short-term operational planning on grid users power modulation under
uncertainties as a chance-constrained OPF. A reformulation of the obtained problem as a
DoC model is given in Section 2.3, followed by an explanation of DoC bundle method. In
Section 2.4, numerical results for two use cases are provided, while Section 2.5 discusses
the approach’s advantages and limitations. Finally, Section 2.6 closes the chapter with some
concluding remarks.

2.2 Chance-constrained OPF model

In what follows the chance-constrained OPF model is described by setting the decision
variables, state variables and constraints. The employed notation is introduced along the way.

2.2.1 Decision variables and random vector

We denote by N the set of buses of the grid, and by A the set of lines. The set A consists
of pairs (i, j) with i, j ∈N such that there is a conductor between the nodes i and j. Among
the end buses, there is one slack bus sb ∈N and other buses with at most one connected grid
user. Each grid user is either a producer or a consumer. The set of all grid users is denoted by

˜N ⊂N , identifying a grid user i ∈ ˜N with a corresponding bus i ∈N . Let G and L be
the subsets of producers and consumers, respectively. We wish to determine the active power
pi (positive for generation and negative for consumption) and reactive power qi of each grid
user i ∈ ˜N , based on the following decomposition:

pi = pφ

i (ξ )− pppγ

i − pppβ

i , qi = qφ

i (ξ )−qqqγ

i −qqqβ

i . (2.2.1)

For buses i∈N \
( ˜N ∪{sb}

)
with no grid users, excluding the slack bus, we set pi = qi = 0.

The active and reactive power demand (production and consumption), pφ

i (ξ ) and qφ

i (ξ ), are
the uncertain parameters of our model, given as scenario realizations of a random vector
ξ ∈ Ξ ⊂ Rd . In case of considered flexibility contracts, the decision bears on pppγ

i ∈ R, the
active power modulation for an SCP grid user i ∈ G within the bounds of its guaranteed
power, and on pppβ

i ∈R, which denotes, either the active power curtailment beyond the bounds
of guaranteed power of an SCP producer or the active power curtailment for a FiT producer,
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or the energy not supplied to a consumer i ∈L . We introduce also pair variables for reactive
power modulation: qqqγ

i for SCP grid users within the bounds of their guaranteed power; qqqβ

i

for FiT and SCP grid users beyond the bounds of their guaranteed power, and for consumers.
Consumers are modeled as if they have a FiT contract. In fact, each reactive power variable
is a function of the paired active power variable, which will be defined in Subsection 2.2.3.
This formulation was chosen for its generality and flexibility, allowing for straightforward
adaptation to cases involving other DSO control levers, such as reactive power regulation (in
the specific case of active power modulation and curtailment, the reactive power variables can
be eliminated from the model). As the decision must be taken before a scenario realization
is known, the aforementioned decision variables do not depend directly on ξ . In order to
distinguish different types of decision variables, we denote by NSCP ⊂ G the set of indexes
for pppγ and qqqγ , and by NFiT ⊂L that for pppβ and qqqβ . To simplify the notation, if there is no
need to distinguish user types, we will denote decision variables by

p := ({pppγ

i }i∈NSCP, {pppβ

i }i∈NFiT ) ∈ Rn

q := ({qqqγ

i }i∈NSCP, {qqq
β

i }i∈NFiT ) ∈ Rn

with n = |NSCP|+ |NFiT |.
On the contrary, the state variables |Vi| and δi representing voltage magnitude and angle

at bus i ∈ N \ {sb} in polar formulation (the slack bus serves as a reference bus with
|Vsb| = 1 pu and δsb = 0), as well as psb and qsb representing active and reactive power at
slack bus, depend on the scenario realization ξ . Given ξ , as well as the active and reactive
power pi and qi for all i ∈ ˜N , state variables result from power-flow analysis, using standard
Gauss-Seidel, Newton-Raphson or similar methods [53].

Our problem thus has two main types of variables. First, the power modulation variables
pi and qi are determined for all i ∈NSCP∪NFiT before realization of the uncertain event.
Then, after a scenario ξ is observed, which defines the power production and consumption,
pφ

i (ξ ) and qφ

i (ξ ) for each grid user i ∈ ˜N , a grid-state defined by the values |Vi| and δi,
i ∈N , and psb, qsb, has to be determined and checked against the operational conditions. In
the next two subsections, we will detail how these two types of variables are combined in our
chance-constrained OPF.

2.2.2 Power flow constraints under probability sign

The grid operating conditions are constrained by technical limits, which can be expressed
as bounds on voltage variables and constraints on the power variables at the slack bus.
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More specifically, we denote upper and lower bounds on voltage variables by |Vi|,δi and
|Vi|,δi, respectively. Constraints on active and reactive power at slack bus psb and qsb, are
represented by a set Fsb defined in Demand Connection Code [22] and depicted in Figure 2.1.
In addition, other congestion constraints are formulated as thermal limits on the current
transit: for each line (i, j) belonging to the set A , we impose an upper limit (Imax

i, j )2 on
a quadratic form li, j from the current (thermal constraints employed for the use cases are
described in Subsection 2.4.3).

Fig. 2.1 Feasible P-Q diagram for slack-bus following Demand Connection Code.

All in all, we get the following set of constraints:

δi ≤ δi ≤ δi, ∀i ∈N \{sb} (2.2.2a)

|Vi| ≤ |Vi| ≤ |Vi|, ∀i ∈N \{sb} (2.2.2b)

li, j(|Vi|, |Vj|,δi,δ j)≤ (Imax
i, j )2, ∀(i, j) ∈A (2.2.2c)

(psb,qsb) ∈Fsb. (2.2.2d)
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In order to ease the model representation, let us define the following functions (here the sum
is taken over all buses k connected to the bus i, including bus i):

LR
i (p,δ , |V |,ξ ) :=(

pφ

i (ξ )− pppγ

i − pppβ

i
)
+∑

k∼i
Y R

i,k|Vi||Vk|cos(δi−δk)

+∑
k∼i

Y I
i,k|Vi||Vk|sin(δi−δk)

LI
i (q,δ , |V |,ξ ) :=(

qφ

i (ξ )−qqqγ

i −qqqβ

i
)
+∑

k∼i
Y R

i,k|Vi||Vk|sin(δi−δk)

−∑
k∼i

Y I
i,k|Vi||Vk|cos(δi−δk).

These functions define the stochastic power flow equations of our problem, where Y R
i,k and

Y I
i,k represent the real and imaginary parts of the element (i,k) in the bus admittance matrix

Y , respectively.
We can now mathematically state the requirements under the probability sign in prob-

lem (2.1.1) by defining the following random set

X(ξ ) :=

(p,q)

∣∣∣∣∣
there exist |V |,δ , psb,qsb satisfying (2.2.2),

LR
i (p,δ , |V |,ξ ) = 0 for all i ∈N ,

LI
i (q,δ , |V |,ξ ) = 0 for all i ∈N

 . (2.2.3)

This set is generally nonconvex and may contain holes and disconnected regions, as illustrated
on IEEE test cases in [76].

Note that variables |V |,δ , psb,qsb depend directly on the random event ξ , whereas (p,q)
must be decided before realization of ξ . We are thus interested in finding a decision (p,q)
belonging to the random set X(ξ ) with probability 1−α , which is represented by a probability
constraint in our optimization model: P

[
(p,q) ∈ X(ξ )]≥ 1−α .
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2.2.3 Chance-constrained OPF formulation

We continue by defining the deterministic constraints of the problem. We start with the
conservative bound on generation and consumption

pφ

i := min
ξ∈Ξ

pφ

i (ξ ) for all i ∈ G

p̄φ

i := max
ξ∈Ξ

pφ

i (ξ ) for all i ∈L .

When the support set of the random vector ξ is represented by finitely many Monte-Carlo
scenarios, Ξ is a finite set, and thus computing pφ

i , p̄φ

i is a straightforward task. This
parameter enters in our optimization problem for bounding the decision variables on active
power curtailment and modulation, pppβ and pppγ . The power curtailment must satisfy both
contractual and technical bounds, for all realizations of the random vector ξ . Hence, we set
the following constraints:

0≤ pppβ

i ≤ pφ

i and qqqβ

i = tanφi pppβ

i , i ∈NFiT ∩G

p̄φ

i ≤ pppβ

i ≤ 0 and qqqβ

i = tanφi pppβ

i , i ∈NFiT ∩L ,

where cosφi is the given power factor associated with grid user i. Meanwhile, for i ∈NSCP,
the bounds on power modulation are determined contractually. They can be modeled as
fractions of the installed power. Due to the data used in practice, we implemented them as a
fraction of pφ

i . All in all, the operational constraints are modeled as follows :

a−pφ

i ≤ pppγ

i ≤ a+pφ

i and qqqγ

i = tanφi pppγ

i ,

with a− ∈ [−1,0] and a+ ∈ [0,1].
As for the objective function, we consider the case when f (p,q) is convex, Subsec-

tion 2.4.3. However, our approach remains valid as long as the objective function is DoC
using the algorithm proposed in [129].
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Based on the assumptions described in the previous paragraphs, it is now possible to
present the chance-constrained model for the considered stochastic OPF problem:

min
p,q

f (p,q) (2.2.4a)

s.t. 0≤ pppβ

i ≤ pφ

i ∀i ∈NFiT ∩G (2.2.4b)

p̄φ

i ≤ pppβ

i ≤ 0 ∀i ∈NFiT ∩L (2.2.4c)

qqqβ

i = tanφi pppβ

i , ∀i ∈NFiT (2.2.4d)

a−pφ

i ≤ pppγ

i ≤ a+pφ

i , ∀i ∈NSCP (2.2.4e)

qqqγ

i = tanφi pppγ

i , ∀i ∈NSCP (2.2.4f)

P
[
(p,q) ∈ X(ξ )]≥ 1−α. (2.2.4g)

2.3 DoC reformulation and Bundle method

In this section, we first propose a DoC model for problem (2.2.4), and then we show how
to solve it by the bundle method of [129]. The proposed model is built upon two DoC
reformulations: one exact for the mathematical requirement (p,q) ∈ X(ξ ) and another
approximate for the probability measure P, as detailed in Subsections 2.3.1 and 2.3.2.
Subsection 2.3.3 recalls the main details of the chosen optimization algorithm for solving the
underlying problem.

2.3.1 DoC reformulation of the condition (p,q)∈X(ξ )

Let ξ ∈ Ξ be fixed. For notational convenience, we will denote the decision variables (p,q)
of our problem by x ∈ R2n. Our development starts by noting that the squared distance
function to X(ξ ), i.e.,

d2
X(ξ )(x) := min

z∈X(ξ )

1
2
∥z− x∥2,

yields the following useful relation:

x := (p,q) ∈ X(ξ ) ⇐⇒ d2
X(ξ )(x) = 0, x ∈ R2n.
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Since the set X(ξ ) given in (2.2.3) is not convex, the squared distance function is nonconvex.
The following development shows that it is a DoC function:

d2
X(ξ )(x) = min

z∈X(ξ )

{1
2
∥x∥2−⟨z,x⟩+ 1

2
∥z∥2

}
=

1
2
∥x∥2− max

z∈X(ξ )

{
⟨z,x⟩− 1

2
∥z∥2

}
= g1(x,ξ )−g2(x,ξ ).

Indeed, for any arbitrary ξ fixed, the convexity of both functions

g1(x,ξ ) :=
1
2
∥x∥2 (2.3.1a)

g2(x,ξ ) := max
z∈X(ξ )

{
⟨z,x⟩− 1

2
∥z∥2

}
(2.3.1b)

with respect to x directly results from the definition of convexity. Moreover, observe that
g1−g2 is non-negative. As a result, we have the following DoC reformulation for checking
whether (p,q) satisfies the constraints in (2.2.3):

x = (p,q) ∈ X(ξ ) ⇐⇒ g1(x,ξ )−g2(x,ξ )≤ 0.

While g1 is a simple quadratic function, g2(·,ξ ) is more involved: it is the optimal
value of a nonconvex optimization problem and is thus generally nondifferentiable. Its
subdifferential at a given point x is given by

∂g2(x,ξ ) :=
{

s2(ξ ) ∈ R2n : g2(z,ξ )≥ g2(x,ξ )+ ⟨s2(ξ ),z− x⟩ ∀ z ∈ R2n
}

= arg max
z∈X(ξ )

{
⟨z,x⟩− 1

2
∥z∥2

}
= arg min

z∈X(ξ )

1
2
∥z− x∥2,

which corresponds to the set of projections of x onto X(ξ ). If the set X(ξ ) were convex (and
closed), then the above projection problem would have had a unique solution and, thus, g2

would have been differentiable. However, even for nonconvex X(ξ ), differentiability at x
can still occur if the projection of x onto X(ξ ) is unique. This condition corresponds to the
squared distance function d2

X(ξ ) having a unique minimizer at x.
Note that evaluating g2 at a given point x and computing one of its subgradient (an

element of the subdifferential) amounts to projecting x onto the set X(ξ ) given in (2.2.3).
This task can be accomplished (at least approximately) by OPF tools because this projection
problem is indeed an OPF with a quadratic objective function. A numerical procedure
(oracle) for accessing the DoC function g1(x,ξ )− g2(x,ξ ) and its first-order information
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is as follows. Here, we use the notation xk = (pk,qk) to highlight that this point is fixed,
conceivably given by an algorithm at its iteration k.

Oracle 1. Black-box for the DoC function g1(x,ξ )−g2(x,ξ ).

1: Let (pk,qk) ∈ R2n and event/scenario ξ ∈ Ξ be given
2: if (pk,qk) belongs to the set X(ξ ) in (2.2.3) then
3: Set (p̃, q̃)← (pk,qk)

4: else
5: Let (p̃, q̃) be a solution of the (scenario-dependent) OPF

min
(p,q)∈X(ξ )

1
2
∥(p,q)− (pk,qk)∥2. (2.3.2)

6: end if

7: Set g1(pk,qk,ξ )← 1
2∥p

k∥2 + 1
2∥q

k∥2 and sk
1(ξ )←

(
pk

qk

)

8: Set g2(pk,qk,ξ )← ⟨pk, p̃⟩− 1
2∥p̃∥

2 + ⟨qk, q̃⟩− 1
2∥q̃∥

2 and sk
2(ξ )←

(
p̃
q̃

)
9: Return the first order information (g1(pk,qk,ξ ),sk

1(ξ )) and (g2(pk,qk,ξ ),sk
2(ξ )).

Step 2 amounts to solving a system of power flow equations and verifying if the com-
puted solution (δ , |V |, psb,qsb) satisfies the bounds specified in (2.2.2). This task can be
accomplished relatively quickly using standard Gauss-Seidel, Newton-Raphson or similar
methods [53]. If the power flow solution is operational, then (pk,qk) automatically solves
the OPF of Step 5: there is no need for calling an OPF solver, but only a (simpler) power
flow algorithm. However, if the computed solution of the power flow equations does not
satisfy (2.2.2), then we say that (pk,qk) is infeasible for the future event ξ . In this case, an
OPF solver must be applied to compute a point (p̃, q̃) that is feasible for the scenario ξ and
as close as possible to (pk,qk). The most time-consuming task in Oracle 1 is thus Step 5,
which is not necessarily executed for all considered scenarios. Such a step thus amounts to
answering the following question: given that (pk,qk) is infeasible for scenario ξ ,

what is the smallest necessary perturbation on (pk,qk) to render it feasible?

The answer is (p̃, q̃)− (pk,qk), which is nothing but the opposite direction to the subgradient
sk

1(ξ )− sk
2(ξ ). This fact explicitly reveals the practical role of the subgradients computed by

Oracle 1: it guides the optimization process to seek for a better candidate solution (at the
next iteration). However, caution is necessary: in this analysis, the oracle only sees the given
individual scenario ξ . It is thus necessary to account for all the scenarios and the probability
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measure in a higher-level oracle (that, for the same point (pk,qk), can call Oracle 1 in parallel
over the scenarios). That is the goal in the following subsection.

2.3.2 DoC reformulation of probability constraint

This subsection aims at presenting a DoC approximation for the probability constraint (2.2.4g).
From the previous subsection we have

P[(p,q) ∈ X(ξ )] ≡ P[g1(p,q,ξ )−g2(p,q,ξ )≤ 0],

with g1,g2 two convex functions given in (2.3.1). Hence,

P[(p,q) ∈ X(ξ )]≥ 1−α

is equivalent to
P[g1(p,q,ξ )−g2(p,q,ξ )> 0]≤ α.

Next, we follow the lead of [129] to approximate the probability measure by a DoC function.
To this end, let v(ξ ) = g1(p,q,ξ )−g2(p,q,ξ ) be the random variable of interest, E[·] the
expected value operator w.r.t. P, and let 1(0,∞)(·) denote the characteristic function of
the segment (0,∞), that equals to 1 if v > 0, and 0 if v ≤ 0. Recall the following useful
equivalence:

P[v(ξ )> 0] = E[1(0,∞)(v(ξ ))].

The main source of difficulties is that 1(0,∞)(·) is not convex and, even worse, it is discontinu-
ous at 0. As in [63] and [129], we now approximate the characteristic function by a DoC one.
Given a small parameter t > 0, the discontinuous characteristic function can be approximated
by the continuous one

ζ
t(v) :=


0, if v≤ 0
v
t , if 0 < v≤ t

1, if t < v.

(2.3.3)

Observe that limt↓0 ζ t(v) = 1(0,∞)(v) and ζ t(v) has the following DoC decomposition:

ζ
t(v) = max

{v
t
,0
}
−max

{
0,

v− t
t

}
.
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Fig. 2.2 Function ζ t(v) for t = 10−4, t = 10−5 and t = 10−6.

Hence, the following expected value

E[ζ t(g1(p,q,ξ )−g2(p,q,ξ ))]

is an approximation of the probability

P[g1(p,q,ξ )−g2(p,q,ξ )> 0].

Such approximation is as good as one wishes: the smaller is the parameter t > 0, the closer
ζ t(·) is to 1(0,∞)(·). Furthermore, the composition of DoC functions under the expectation is
itself a DoC function:

ζ
t(g1(p,q,ξ )−g2(p,q,ξ )) =

max{g1(p,q,ξ ),g2(p,q,ξ )}
t

− max{g1(p,q,ξ ),g2(p,q,ξ )+ t}
t

+1.

It is well-known that the expectation E[·] can be efficiently approximated via Monte-
Carlo simulation by considering a fixed sample of scenarios randomly generated according
to the distribution of ξ . As usual in the stochastic programming literature, in our numerical
experiments we randomly generate a sample of N scenarios Ξ := {ξ 1, . . .ξ N} and estimate
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the convex functions

E
[max{g1(p,q,ξ ),g2(p,q,ξ )}

t

]
+1 and E

[max{g1(p,q,ξ ),g2(p,q,ξ )+ t}
t

]
.

(2.3.4)

by their sample average approximations. The justification of such an approach is well
documented in the literature (e.g., [97]), and specialized to the DoC setting in [63] and [67,
Subsection 7.7.2]. Hence, we can approximate the probability constraint (2.2.4g) with the
following DoC constraint

c1(p,q)− c2(p,q)≤ 0,

where 
c1(p,q) :=

1
N

N

∑
j=1

max{g1(p,q,ξ j),g2(p,q,ξ j)}+ t(1−α),

c2(p,q) :=
1
N

N

∑
j=1

max{g1(p,q,ξ j),g2(p,q,ξ j)+ t}
(2.3.5)

are convex functions. As a result, we have our DoC optimization model for the chance-
constrained problem (2.2.4): min

(p,q)∈X
f (p,q)

s.t. c1(p,q)− c2(p,q)≤ 0,
(2.3.6a)

where
X := {(p,q) ∈ R2n : (2.2.4b)− (2.2.4f)} (2.3.6b)

is a polyhedral set. As discussed in Subsection 2.1.2, this optimization problem fits the
structure of (2.1.2), and we can apply the DoC bundle method of [129] to tackle it.

The case of a discrete probability distribution. Consider a probability distribution with
N outcomes. Then, this DoC reformulation is a relaxation of the chance constraint at a given
point.

Indeed, the inequality 1(0,∞)(v)≥ ζ t(v), which is satisfied for all v and t > 0, leads to

E[1(0,∞)(v(ξ ))]≥ E[ζ t(v(ξ ))].
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Due to the equivalence

P[x ∈ X(ξ )]≥ 1−α ⇐⇒ E[1(0,∞)(v(ξ ))]≤ α, (2.3.7)

we conclude that P[x ∈ X(ξ )]≥ 1−α implies E[ζ t(v(ξ ))]≤ α .
Applying (2.3.5) for N scenarios, we obtain the following equivalence:

E[ζ t(g1(p,q,ξ )−g2(p,q,ξ ))]≤ α ⇐⇒ c1(p,q)− c2(p,q)≤ 0,

which means that the DoC reformulation is a relaxation of the chance constraint.

2.3.3 DoC Bundle method

We start by noting that oracles for the functions in problem (2.3.6) are readily available. In-
deed, f is a convex function and thus simple. Furthermore, an oracle for c1 and c2, providing
their values and first-order information, is readily implementable thanks to Oracle 1 and
assumption that we have finitely many scenarios to represent the future random events: given
x := (p,q) ∈ X , an oracle provides (c1(x),s1 ∈ ∂c1(x)) and (c2(x),s2 ∈ ∂c2(x)). Although
such an oracle can be run in parallel over N scenarios, it is not a straightforward one: it
requires calling Oracle 1 N times for the same given x = (p,q). Accordingly, N deterministic
power flow problems (Step 2 of Oracle 1) and nx ≤N deterministic OPFs (Step 5 of Oracle 1)
must be solved to compute the function values and a pair of subgradients for c1 and c2

via (2.3.5). We highlight that the number nx of deterministic OPFs to be solved to access the
probability constraint depends on the quality (in terms of feasibility) of the point x = (p,q).
This is an intuition from constraint (2.2.4g): at a feasible point x of problem (2.2.4), we have
that nx ≤ αN.

Given these oracles, we can go further and briefly present the solution methodology,
which has many numerical advantages: it does not require a feasible initial point, nor penalty
parameters, and numerical experience suggests that the approach is likely to escape bad-
quality critical points. The interested reader is referred to [129] for a detailed presentation
of DoC bundle method, as well as its mathematical properties. In that paper, the algorithm
is given for a general case of DoC objective function, while the version presented below is
adapted for convex objective. We start with the improvement function definition, an essential
tool for presenting the algorithm. For a given parameter τ̂ ∈ R2, the improvement function is
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defined as

Hτ̂(x) = max{ f (x)− τ̂ f ,c(x)− τ̂c}, (2.3.8)

for c(x) = c1(x)− c2(x).

It allows us to define the following convexly-constrained DoC problem

min
x∈X

Hτ̂(x), (2.3.9)

which has the notable property that if τ̂ = ( f ∗,0), with f ∗ the optimal value of (2.3.6), then
any solution to problem (2.3.9) solves (2.3.6). However, as f ∗ is unknown, the parameter
τ̂ must be iteratively updated as follows: given x̂ ∈ X , a candidate point to solve (2.3.6)
produced by the algorithm, we set

τ̂ :=
(
τ̂ f , τ̂c

)
=
(

f (x̂)+ρ max{c(x̂),0}, σ max{c(x̂),0}
)
, (2.3.10)

where ρ > 0 and σ ∈ [0,1) can be freely chosen. With this rule, the theory presented
in [129] ensures that the following algorithm computes a point satisfying necessary optimality
conditions to problem (2.3.9).

We highlight that Algorithm 1 is a simplified version of the one presented in [129]. For
instance, the prox-parameter µ > 0 can be updated iteratively, the number of constraints in
the quadratic (master) program can be kept bounded, and the objective function can be DoC.
According to Theorems 1 and 2 from [129], convergence analysis can be summarized as
follows.

Theorem 2.3.1. If the stopping-test tolerance is set to zero (Tol= 0), then any cluster point
of the sequence of stability centers x̂ generated by Algorithm 1 satisfies certain necessary
optimality conditions (criticality) for problem (2.3.9). Moreover, if Tol> 0, then Algorithm 1
stops after finitely many steps, and the last stability center is an approximate critical point of
(2.3.9). Under the additional assumption that c2 is continuously differentiable at x̂, the same
statements hold for problem (2.1.2).

In summary, the necessary optimality conditions ensured by Algorithm 1 are extensions
of the well-known Karush-Kuhn-Tucker conditions in mathematical optimization of differ-
entiable functions. We refer the interested reader to [129, Section 4.4] and Chapter 3 for a
dedicated discussion. However, the latter statement of Theorem 2.3.1 cannot be applied in
our case, as g2(·,ξ ) is nondifferentiable for any scenario ξ , and consequently, so is c2. We
address this challenge in Chapter 3 by proposing an improvement of the method developed
in [129] that yields stronger optimality conditions under weaker assumptions.
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Algorithm 1 DoC bundle method

1: Given x0 ∈ X , α ∈ [0,1], choose µ > 0 and κ ∈ (0,1). Set x̂← x0 and τ̂ as in (2.3.10)
2: Compute ( f (x0),s0

f ∈ ∂ f (x0)) and (ci(x0),s0
i ∈ ∂ci(x0)), i = 1,2

3: for k = 0,1,2 . . . do
▷ Trial point

4: Let xk+1 be the x-part solution of the quadratic program

min
x∈X ,r∈R4

r4−⟨sk
2,x⟩ + µ

2 ∥x− x̂∥2

s.t. f (x j)+ ⟨s j
f ,x− x j⟩ ≤ r1, j = 0, . . . ,k

c1(x j)+ ⟨s j
1,x− x j⟩ ≤ r2, j = 0, . . . ,k

c2(x j)+ ⟨s j
2,x− x j⟩ ≤ r3, j = 0, . . . ,k

r1 + r3− τ̂ f ≤ r4
r2− τ̂c ≤ r4

▷ Stopping test
5: if ∥xk+1− x̂∥ ≤ Tol then
6: Stop and return x̂
7: end if

▷ Oracles call
8: Compute ( f (xk+1),sk+1

f ∈ ∂ f (xk+1)) and (ci(xk+1),sk+1
i ∈ ∂ci(xk+1)), i = 1,2

▷ Descent test
9: if Hτ̂(xk+1)≤ Hτ̂(x̂)−κ

µ

2 ∥x
k+1− x̂∥2 then

▷ Stability center update
10: Set x̂← xk+1 and update τ̂ as in (2.3.10).
11: end if

12: end for

2.4 Results

2.4.1 Network

The current research study utilizes a medium voltage distribution network, inspired by
[9, 117], consisting of 33 buses, accommodating 31 loads and with a total peak consumption
of approximately 16.6 MW. The network incorporates three distributed generation (DG)
units, comprising two biomass plants (one with SCP contract connected in bus 12 with an
installed capacity of 6.97 MW and another with FiT contract connected in bus 29 with an
installed capacity of 3.86 MW), and one wind farm with a FiT contract connected in bus
32 with an installed capacity of 0.47 MW. The network is connected to the high-voltage
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network in bus 1 which is considered the slack bus in the present study. The consumption
and generation values were defined to have the network operating near its technical limits
creating the need for flexibility activation. This is an extreme case, with a much higher
number of constraints compared to a realistic situation. The schematic representation of the
network is illustrated in Figure 2.3.

Fig. 2.3 Medium voltage distribution network, 32 buses.

2.4.2 Scenario generation

In order to test the proposed DoC approach on the test network described in Subsection
2.4.1, we use Enedis Open Data [37] on July 27,2020, to construct load and generation
profiles for N scenarios (unless otherwise specified, N = 1000). Three types of grid users are
considered: biomass generation, wind generation and consumption (data based on small and
medium enterprises). For each grid user i ∈N , we denote the provided data by (p̃φ

i , q̃
φ

i ).
Next, we attribute an individual variance σ2

i : 0.0248 pu for biomass generation type, 0.01 pu
for wind generation type, and 4 different values in the range between 6.01 · 10−5 pu and
0.01 pu for consumers. Consider covariance matrix Σ with Σi, j = ri, jσi ·σ j, where ri, j = 1
if the types of users i and j coincide, and 0 otherwise; and a normalization matrix A with
Ai, j = 0.5 if the user i = j is a generator, Ai, j = 5000 if the user i = j is a consumer, and 0
otherwise. Applying the procedure described in [61], we compute the nearest symmetric
positive semidefinite matrix Σ̃ to Aσ . Finally, we generate vectors pφ and qφ following
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multivariate Gaussian distributions with the means p̃φ and q̃φ , respectively, and covariance
Σ̃.

2.4.3 Parameters of DoC approach

In what follows Pbase = 1 MW, Vbase = 12.66 kV and Ibase = 78.99A.
The upper and lower bounds in (2.2.2b) are defined in the network design manual of

a French DSO [33, Annex 1.3] specifically related to connection contracts for grid users,
and represent ±5% of nominal voltage for MV network. The upper and lower bounds on
δ in (2.2.2a) are set to ±π

2 . For all (i, j) ∈A , thermal constraints (2.2.2c) are reduced to
|Ii, j|2 ≤ (Imax

i, j )2. In order to simplify computations of Oracle 1, we convexify the set Fsb

in (2.2.2d) in the following form:

S =

{
(psb,qsb) ∈ R2 : pmin

sb ≤ psb ≤ pmax
sb , qmin

sb ≤ qsb ≤ qmax
sb ,

qsb ≥
−0.48pmax

sb

−pmin
sb +0.25pmax

sb
psb +

0.48pmax
sb pmin

sb

−pmin
sb +0.25pmax

sb

}
.

In our model, the objective function is convex and has the following structure (all the
coefficients are non-negative):

f (p,q) = f1(p)+ f2(p), (2.4.1a)

where

f1(p) = ∑
i∈NSCP

Ci
SCP|ppp

γ

i |+ ∑
i∈NFiT∩G

Ci
FiT,g|ppp

β

i |+ ∑
i∈L

Ci
FiT,l|ppp

β

i | (2.4.1b)

and

f2(p) = ∑
i∈NSCP

ci
SCP(pppγ

i )
2 + ∑

i∈NFiT∩G
ci

FiT,g(pppβ

i )
2 + ∑

i∈L
ci

FiT,l(pppβ

i )
2. (2.4.1c)

The values of coefficients in (2.4.1b) and (2.4.1c) are given in Table 2.1. Our motivation for
this choice is as follows. First, the component f1(p) reflects the cost of lever activation (since
coefficients in Table 2.1 are set as dimensionless quantities, this cost is expressed in pu).
As the power modulation of a FiT producer is more expensive compared to that of an SCP
grid user, the inequality 3 Ci

FiT,g≫C j
SCP should be respected for i, j ∈ G . Moreover, as the

limitation on the power supply to a consumer is more expensive than the power curtailment
of a producer, the inequality Ci

FiT,l ≫C j
FiT,g should be satisfied for i, j ∈NFiT . Thus, the

3The relation “a≫ b" means that a is much greater than b.
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following relation Ci
FiT,l ≫C j

FiT,g≫Ck
SCP is respected in (2.4.1b). Further, as a penalty for

the energy not supplied is defined by a regulator, we set Ci
FiT,l = C j

FiT,l for all consumers
i, j ∈L . Since the contracts may differ depending on generation technology, we fix different
coefficients for biomass generation and wind generation. Meanwhile, the quadratic terms are
introduced as a penalty that encourages fairness in power modulation among the same types
of users, as the minimum in (2.4.1c) is attained at a point where activation of levers is equal
among grid users with equal coefficients. Thus, we set ci

FiT,l = c j
FiT,l for i, j ∈NFiT , i.e. we

impose the coefficients to be equal for FiT consumers. We also assume that the quadratic
coefficients are equal among FiT producers of the same generation type.

Table 2.1 Coefficients in the objective function (2.4.1) for each grid user (GU).

GU Contract Type Coeff. in f1(p) Coeff. in f2(p)

12 SCP Biomass generation 4.2 ·10−5 0
12, 29 FiT Biomass generation 4.2 ·10−3 0.01
32 FiT Wind generation 0.02 0.1
Others FiT Consumption 1 1

Unless otherwise specified, the approximation parameter t from (2.3.3) is set to 10−5.
The choice of parameters in DoC bundle method [129] is as follows: ρ = 107, σ = 0.5,
κ = 0.9, µmin = 10−6, µmax = 106 and µ0 = 102. The stopping test parameter Tol is set to
10−7 unless otherwise specified. To test the performance of the presented DoC approach
for the chance-constrained problem (2.2.4), we set 11 values of the safety parameters 1−α

ranging from 0.75 to 1 with a step size of 0.025 (the case α = 0 is tested as an extreme one,
the algorithm is not designed for deterministic framework). The algorithm is initialized with
a zero vector that corresponds to the initial state of the grid, i.e. without levers activation.

A tailored rule is implemented for updating the prox-parameter µk: it is decreased after
two consecutive updates of the stability center, and increased if the stability center remains
unchanged for more than five consecutive iterations. This approach is motivated by the
following considerations. Choosing a large prox-parameter tends to yield solutions close
to the previous stability center, which can help satisfy the stopping criterion more rapidly.
However, if µk increases too quickly and reaches µmax prematurely, the algorithm may lose
flexibility. To avoid this, the prox-parameter is decreased when the stability center is updated
too frequently. This adaptive update rule balances two dynamics.

We consider two cases: one where only voltage constraints are detected (buses 9, 10,
11, 15, 16 and 17) in the initial state of the grid, and another with an additional congestion
constraint. For the second case, we set an upper limit on current for the line connecting
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buses 2 and 19. The constraint value is chosen in such a way that it is violated for 533
scenarios in the initial state of the grid.

Numerical experiments were performed using MATLAB R2020a on a personal computer
with the following characteristics: Windows 10 Professional, 32 Go, Intel i7-10850H (6
cores). Gurobi 9.5.1 was employed for solving the convex quadratic program in Algorithm 1,
and the Parallel Computing Toolbox was used to parallelize the calls to Oracle 1. The
Newton-Raphson method was applied to solve the power flow equations in Step 2.

2.4.4 Case 1: Voltage constraints

For the default values of parameters N = 1000, Tol= 10−7 and t = 10−5, and each value of
the safety parameter, the algorithm manages to find a feasible critical point with an average
execution time of 1665 seconds ranging from 1059 (1−α = 0.875) to 2279 (1−α = 0.775)
seconds. For several values of the safety parameter 1−α , Figure 2.4 illustrates the number
nxk ≤N of different deterministic OPF problems solved at every iteration k (see Oracle 1, Step
5). Recall that an OPF solver is called in Oracle 1 only if, for given scenario ξ and current
point xk = (pk,qk), no solution (δ , |V |, psb,qsb) of a system of power flow equations satisfies
the bounds in (2.2.2). Note that nxk approaches αN as the iteration number k increases. This
is as expected, as we have already argued in Subsection 2.3.3. Note, however, that nxk cannot
coincide with αN due to our approximation (2.3.3) of the characteristic function.

Fig. 2.4 Number of deterministic (scenario-based) OPF problem solved per iteration for
different values of the safety parameter 1−α .
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Figure 2.5 shows that increasing the stopping test parameter Tol or reducing the number
N of scenarios improves the execution time. The average improvement among all values of
the safety parameter if increasing the stopping test tolerance from 10−7 to 10−5 is 34.6%. As
Figure 2.6 shows, power modulation cost represented by (2.4.1b) in the objective function, is
not very sensitive to the change of parameter Tol in the range [10−7, 10−5]. The maximum
relative difference between the cost for the reference case with Tol= 10−7,N = 1000, and
the case with Tol= 10−5 (N = 1000) among all values of the safety parameter is 3.8%. The
analogous difference for the reference case and the case with Tol = 10−6 (N = 1000) is
2.7%. Figure 2.6 also shows that, on the contrary, a decrease in a number of scenarios N has
an important impact on the power modulation cost, therefore on the solution of the problem
as well. It confirms an interest in the proposed approach enabling to treat large number of
scenarios: even if considering fewer scenarios is more efficient in terms of execution time,
the obtained solution is less robust with respect to future events.

Fig. 2.5 Execution time for different number of scenarios N and stopping test parameter Tol.

To check the validation of the chance constraint, we compare the targeted value of the
safety parameter 1−α with the observed value defined as the ratio of scenarios satisfying
the power flow equations. The tests have been performed for three values of parameter t that
participates in the DoC approximation of the probability constraint (2.3.3), t = 10−4,10−5

and 10−6, Figure 2.7. The values of parameters N and Tol are set by default. In the initial
state of the grid, without lever activation, the ratio of scenarios satisfying the power flow
equations is equal to 0.545. Figure 2.7 shows that it gets closer to the targeted safety
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Fig. 2.6 Comparison of power modulation cost for different number of scenarios N and
stopping test parameter Tol.

parameter after optimization. We observe that the gap between the latter and the ratio of
scenarios satisfying the power flow equations tends to decrease with an increase in safety
parameter 1−α for all parameter values t. However, the gap remains always positive due to
the approximation of the probability function used for DoC formulation (see Subsection 3.2).
Moreover, Figure 2.7 reveals that, for a fixed value of the safety parameter 1−α , the ratio
of scenarios satisfying the power flow equations is always higher for a smaller parameter t.
This illustrates, as expected, an increase in accuracy as t goes to zero. Thus, for 1−α = 0.9
the required ratio constitutes 0.84, 0.876 and 0.893 for t = 10−4, t = 10−5 and t = 10−6,
respectively. This accuracy can be improved by considering a larger number of scenarios:
for N = 10000 the analogous figures are 0.8427, 0.8822, and 0.8941 for t = 10−4, t = 10−5

and t = 10−6, respectively. Power modulation cost is not very sensitive to the change of
parameter t. The maximum relative difference between the cost for the reference case with
t = 10−5 and the case with t = 10−4 among all values of the safety parameter is 3.9%. The
analogous difference between the reference case and the case with t = 10−6 is 3.4%.

The values of all parameters are set by default in what follows (N = 1000, Tol= 10−7,
t = 10−5). As the targeted safety parameter increases, the volume of active power modulation
grows linearly up to 1−α = 0.925 and accelerates afterward, as illustrated in Figure 2.8.
We observe that the same tendency is valid for the volume supplied by FiT grid users, whose
share in total power curtailment remains within 69− 77%. Meanwhile, an SCP grid user
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Fig. 2.7 Comparison of targeted safety parameter 1−α with the obtained one for t = 10−4,
t = 10−5 and t = 10−6.

supplies the remaining part of the volume within the bounds of her guaranteed power for all
values of the safety parameter. This situation illustrates that the use case is indeed extreme,
as FiT users need to be actively engaged even at the lowest safety level 1−α = 0.75. Power
modulation cost, represented by (2.4.1b) in the objective function, follows the same upward
trend as power modulation volume. It is consistent with the price formation, which is linear
in the volume. Therefore, a slight decrease in safety parameters implies a reduction in the
total cost of power modulation. This result aligns with our expectations from probabilistic
modeling of power flow constraints.

Computing maximum and average amplitudes of constraint violations over all scenarios
where a constraint violation is detected, we compare them with an average volume of power
modulation supplied by one grid user. Without lever activation, the maximum amplitude
of constraint violation is 0.0339 pu, whereas the average is 0.0057 pu. Figure 2.9 reveals
a notable decrease in the maximum amplitude of constraint violation while increasing the
system reliability up to 0.0102 pu for α = 0 and a significant growth in the average volume
of power modulation. This confirms that the higher the volume of levers activated, the less
amplitude of constraint violation is. To ensure the system reliability with 1−α ≥ 0.9, the
average power modulation volume exceeds the maximum amplitude of constraint violation.
The gap between the two figures drastically increases as 1−α approaches 1 due to the
stochastic character of our problem: if we did not have to deal with uncertainties and the
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Fig. 2.8 Cost and volume of power modulation.

scenario realization was known, covering the maximum amplitude of constraint violation
would have been sufficient.

Meanwhile, the average amplitude of constraint violation fluctuates near the value
0.0045 pu with a slight tendency to decrease. These upward and downward trends in
the amplitude of constraint violation lead to the following conclusions. More reliable but
costly solutions cover risky scenarios that allow a higher amplitude of constraint violation.
Although this tendency is not directly implied by the chance-constrained formulation, it is
expected for our problem, as resolving one voltage constraint often helps mitigate others due
to their interdependence. The fact that it does not apply to the curve of average amplitude
highlights that the chance-constrained formulation is not made to reduce the latter, since it
imposes no specific requirements on the amplitude of constraint violations.

2.4.5 Case 2: Voltage and congestion constraints

The algorithm finds a critical point with an average execution time of 1947 seconds ranging
from 1353 (1−α = 0.85) to 2850 (1−α = 0.825) seconds. However, for the deterministic
case α = 0, the algorithm does not manage to find a feasible solution possibly because none
exists. The ratio of scenarios satisfying the power flow equations is equal to 0.266 for the
initial state of the grid. As Figure 2.10 shows, this ratio approaches the targeted value of
the safety parameter once lever activation is optimized. However, for 1−α > 0.95, the
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Fig. 2.9 Volume of power modulation and amplitudes of constraint violation.

difference between the targeted and obtained value of the safety parameter increases. This
can be due to the fact that a robust solution may not exist. The difference between the targeted
and obtained value of the safety parameter represents 4.6% of the targeted value for α = 0,
whereas, initially, it was only 3.4% for 1−α = 0.75. The gap for α = 0 is significant due to
the infeasibility of the obtained solution.

Similarly to the case without congestion constraints, power modulation cost repeats the
growth dynamics of power modulation volume, Figure 2.11. The part supplied by FiT grid
users constitutes 79% to 87% of the total volume, and the remaining part is due to an SCP
grid user within the bounds of her guaranteed power. However, compared to the previous
case, the growth acceleration of power modulation cost and volume is less pronounced as the
safety parameter goes to 1. Moreover, these values become almost stable at 1−α = 0.975
and α = 0, which is consistent with the fact that the corresponding number of covered
scenarios is very close (953 for 1−α = 0.975 and 954 for α = 0). Thus, except for the
deterministic case with α = 0 when the obtained solution is not feasible, a small decrease in
the safety parameter allows us to reduce the total cost of lever activation.

As in the previous case, we compute the average and maximum amplitudes of voltage
constraint violation. These values are calculated over all scenarios where a voltage constraint
violation is detected (scenarios where only a congestion constraint is violated, are not in-
cluded). Without lever activation, they remain the same as for the case without congestion
constraints. Meanwhile, maximum and average amplitudes of congestion constraint viola-
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Fig. 2.10 Comparison of targeted safety parameter 1−α with the obtained one.

Fig. 2.11 Cost and volume of power modulation.

tions calculated over all scenarios where a congestion constraint violation is detected, are
0.3851 pu and 1.5155 pu, respectively. As the order of magnitude of congestion constraint
violation is greater than that of voltage constraint violation, the corresponding values are
plotted separately, Figure 2.12 and Figure 2.13. All in all, they illustrate the same trends
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as in the previous case, namely, a steady decrease in the maximum amplitude of constraint
violation, both for voltage and congestion constraints. At the same time, Figure 2.12 reveals
a significant growth in the average volume of power modulation while increasing the system
reliability. Thus, the conclusion that an increase in the volume of lever activation reduces the
maximum amplitude of constraint violation remains valid.

Fig. 2.12 Volume of power modulation and amplitudes of constraint violation (excluding
congestion constraint violation).

Comparing curves of average power modulation volume in Figure 2.9 and Figure 2.12,
we observe that it is higher for the case with congestion constraint. Moreover, the average
power modulation volume always exceeds the maximum amplitude of voltage constraint
violation in the latter case. This is due to the stochastic character of our problem, but also to
the additional amplitude of congestion constraint violation that should be covered by power
modulation. Meanwhile, the curve of maximum power modulation volume is higher in the
first case. It can be explained by the curtailment of grid users downstream of the congestion
constraint, which weakens voltage constraints at other buses of the grid and reduces the
amplitude of their violation for scenarios not covered. Furthermore, the ratio of scenarios
where congestion constraint is violated among all not covered scenarios remains within
47−59% and tends to slightly increase as the safety parameter goes to 1. In other words,
more reliable but costly solutions are more prone to cover scenarios without congestion
constraints.
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Fig. 2.13 Amplitudes of congestion constraint violation.

Comparing the activation of levers for grid users downstream the line connecting buses
2 and 19 (congestion constraint in Case 2) in two considered use cases, we observe that
there is no power curtailment of those grid users for all values of the safety parameter
1−α , α > 0 in Case 1. Meanwhile, they are curtailed in Case 2 for all values of the safety
parameter 1−α , α > 0. As the voltage constraints are the same in both use cases, we
conclude that their curtailment resolves only the congestion constraint. Moreover, we also
observe that the power curtailment is not equal among those users, although all of them are
consumers. Consequently, the soft constraint imposed by quadratic terms (2.4.1c) in the
objective function, is not sufficient to force an equal power curtailment inside the same group
of grid users. This is due to the nonconvex nature of the optimization model.

2.5 Discussion

The proposed methodology enables the integration of uncertainties in distribution network
operational planning problems modeled as a joint chance-constrained OPF. One main ad-
vantage of this approach is its versatility: no particular assumption on the system or type of
uncertainties is necessary. For instance, no matter the (random) system one has in mind, as
long as the objective function is DoC, the random set X(ξ ) in (2.2.3) can be mathematically
defined, and a solver able to handle the scenario-based optimization problem (2.3.2) is avail-
able, the presented methodology applies. In other words, given a DoC objective function
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and any system represented by X(ξ ), all one needs to make the approach functional is an
implementable Oracle 1.

Thanks to Oracle 1, this approach naturally decomposes along scenarios and allows
for parallel computations. Therefore, the decision variables that depend explicitly on the
random vector can be handled in different processors. As a result, the algorithm’s QP
master program is independent of the number N of scenarios used to estimate the probability
function. However, the algorithm’s computational burden depends on N as Oracle 1 needs to
be called N times per iteration.

The above observation is related to the approach’s main limitation: Oracle 1 is assumed
to be exact, i.e., a globally optimal solution to (2.3.2) must be computed whenever Step 5 of
Oracle 1 is accessed. This requirement is strong as it requires projecting a point onto the non-
convex set X(ξ ). One way to overcome this difficulty is to consider convex approximations
of X(ξ ), a path we have not explored in this chapter (we have studied an SDP relaxation of
OPF (2.3.2) with modified constraints on voltage angles in Subsection 6.1.1). Instead, we
have taken the problem of projecting onto X(ξ ) as it is: a difficult nonconvex OPF problem.
However, instead of employing a global optimization solver, we have applied a local solver
based on the interior-point algorithm. In other words, we have run Algorithm 1 with a
potentially inexact oracle. As such, the convergence analysis provided in [129] does not
apply. We mention in passing that certain DoC (bundle) methods can handle inexact oracles
provided their errors asymptotically vanish. This is the case of Algorithm 1 in [28], whose
general presentation encompasses several methods. However, that paper addresses only the
convexly-constrained setting, a simpler setting than the one considered here. Extending that
analysis (on inexact oracles) to our more general DoC-constrained setting is an interesting
direction for future research.

A further limitation of this method is the requirement that the deterministic set X in (2.3.6)
must be convex (note that X should not be confused with X(ξ ), which is generally nonconvex).
This excludes the situation where the vector of decision variable x (equal to (p,q) in our
application) must satisfy binary constraints. However, a binary constraint z ∈ {0, 1} can be
reformulated as a combination of convex and DoC constraints

z ∈ {0,1} ≡ z ∈ [0,1] and z− z2 ≤ 0.

Thus, binary constraints can, in principle, be handled by our approach, as the DoC proximal
bundle algorithm can address multiple DoC constraints. We have applied this reformulation
trick to the new model of power curtailment described in Chapter 4.2, where binary variables
are used to model operational planning rules. However, this technique did not result in good
numerical performance in practice. For more details, see Section 5.1. As a result, we have
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abandoned the DoC approach in the context of the chance-constrained problem with discrete
variables. Chapter 5 outlines the alternative path we chose for this case.

Another aspect related to the additional assumption on the differentiability of the second
convex component c2 in Theorem 2.3.1, which is not satisfied in our case, encouraged us to
explore how to strengthen the DoC bundle method and eliminate this condition. In addition,
this study led us to the algorithm generalization, so that it no longer relies on an explicit DoC
decomposition of the involved functions. Chapter 3 focuses on the generalization of DoC
bundle method and its convergence analysis, while Section 3.8 compares the performance of
the two algorithms on the first use case presented in this chapter. Although the new algorithm
provides a more cost-effective solution, achieving criticality leads to an increase in execution
time.

2.6 Conclusion

This chapter presents a formulation of the distribution network operational planning problem
as a joint chance-constrained AC-OPF, modeled as a Difference-of-Convex-constrained
optimization problem. In this formulation the decision bears on the activation of flexibility
(power modulation) from SCP and FiT grid users. This approach takes into account the
correlation between RES generation profiles and load profiles, which represent uncertainties
of the model via a joint probability constraint approximated with scenarios. The solution
methodology consists of model reformulation as a DoC optimization problem with the use
of a parallelizable special numerical procedure (oracle), and the subsequent use of a DoC
proximal bundle method.

The case study on a 33-bus network accommodating 31 loads, among which three DG
units (one with SCP contract and two with FiT contracts), has been analyzed. Numerical
experiments, considering 1000 load and generalization profile scenarios, evidence the ap-
proach’s advantages and limitations in addressing joint chance-constrained OPF problems
without linearization and convexification of power flow equations: decisions that are robust
against future events are computed at the expense of more computational burden. Further,
running times can be kept at acceptable levels depending on the available computational
resources (number of available processors), the efficiency of the employed deterministic
OPF solver, and the number of scenarios used to approximate the probability constraint.
The approach demonstrates flexibility concerning the balance between model accuracy and
computational efficiency while keeping solutions’ robustness close to prescribed values.



Chapter 3

Convex-Weakly-Convex Algorithm

This chapter is dedicated to developing the Convex-Weakly-Convex (CwC) bundle method.
This direction was initially chosen to strengthen the convergence properties of the DoC
bundle method discussed in Chapter 2. As noted in Subsection 2.3.3, the latter does not
guarantee providing a critical point for the DoC model (2.1.2) of the chance-constrained
AC-OPF. The new algorithm addresses this limitation effectively. Furthermore, the new
method applies to a broad class of nonsmooth and nonconvex optimization problems beyond
this framework, with the objective and constraints being the difference of convex and weakly
convex functions. The practical performance of the algorithm is illustrated by numerical
experiments on some nonconvex stochastic problems.

The main content of this chapter has appeared in [124] (K. Syrtseva, W. de Oliveira, S.
Demassey, and W. van Ackooij (2024). "Minimizing the difference of convex and weakly
convex functions via bundle method". Pacific Journal of Optimization).

Ce chapitre présente le développement d’une méthode de faisceaux dédiée aux problèmes
d’optimisation dont l’objectif et les contraintes sont modélisables comme différence de
fonctions convexes et faiblement convexes (CwC). Initialement, cette approche a été conçue
pour renforcer les propriétés de convergence de la méthode de faisceaux DoC présentée
dans le Chapitre 2. Comme évoqué dans la Sous-section 2.3.3, cette dernière ne garantit
pas l’obtention d’un point critique pour le modèle DoC (2.1.2) de l’AC-OPF sous contrainte
probabiliste jointe. Le nouvel algorithme permet de surmonter les limitations mentionnées.
De plus, il s’applique à une large classe de problèmes d’optimisation non-lisses et non-
convexes au-delà de ce cadre, où la fonction objectif et les contraintes sont CwC. La
performance pratique de l’algorithme est illustrée par des expérimentations numériques sur
des problèmes stochastiques non-convexes.
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Le contenu principal de ce chapitre a été publié dans [124] (K. Syrtseva, W. de Oliveira,
S. Demassey, et W. van Ackooij, (2024). "Minimizing the difference of convex and weakly
convex functions via bundle method". Pacific Journal of Optimization.)

3.1 Motivation and main contributions

In this chapter, we present a bundle method for nonsmooth and nonconvex optimization
problems of the form

min
x∈X

f (x) s.t. c(x)≤ 0, (3.1.1a)

where X is a nonempty bounded polyhedron contained in an open convex set O ⊂ Rn, and
functions f : O→R and c : O→R are decomposable as the difference of convex and (locally)
weakly convex functions. More specifically, we assume that the following convex-weakly
convex (CwC) decompositions are available:

f (x) = f1(x)− f2(x) and c(x) = c1(x)− c2(x), (3.1.1b)

with f1,c1 : O → R convex and f2,c2 : O → R weakly convex functions on some neigh-
bourhood of each x ∈ O . We adopt the more general definition of weakly convex functions
(see Definition 3.2.2 below) given in [145, Def. 4.2] so that we can exploit the equivalence
between the families of locally weakly convex and Lower-C2 functions [113, Thm. 1.3, Cor.
1.3] to highlight the breadth of our approach. In particular, we have in mind the following
settings for f2 (as well as for c2):

i) f2(x) = φ(x) is a (possibly nonsmooth) convex function;

ii) f2(x) =−h(x) with h having Lipschitz continuous gradient;

iii) f2(x) = φ(x)−h(x), with φ and h as given above;

iv) f2(x) is the optimal value of maxt∈T F(t,x), with T a (possibly nonconvex) compact set
and F of class C2;

v) f2(x) = φ(G(x)), with φ : Rm→ R convex and Lipschitz and G : Rn→ Rm a smooth
mapping with Lipschitz Jacobian.

Analogous settings for c2, and their combinations with the ones for f2, are covered by our
analysis (see Section 3.2 below for details).

Weakly convex functions enjoy favorable properties in so much as that they can be recast
as DoC functions [56]. Hence, problem (3.1.1) can, in theory, be recast as a DoC-constrained
DoC program, a setting that proves practical if explicit DoC decompositions are available;
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see for instance [75, 70, 118, 90, 49, 129, 128, 120] and references therein. However, if
no DoC decomposition is known for f or c, the DoC machinery is unsuitable, and the
methods proposed in these references are not applicable. This is already the case for the
more straightforward items ii) and iii) above if the underlying Lipschitz constant is unknown
and no upper bound is readily available1 The situation becomes even more complicated for
items iv) and v): in general, there are no formulae, rules, or practical insights to obtain a DoC
decomposition for f2 in these cases (see Example 3.1.1 below for a particular case of iv). A
strategy to handle problem (3.1.1) via DoC programming algorithms is to replace functions fi

and ci (i = 1,2) with fi(x)+
µ

2 ∥x∥
2 and ci(x)+

µ

2 ∥x∥
2 for a large parameter µ > 0 estimating

upper bounds on the unknown weakly-convex moduli µ f and µc of f2 and c2 (see Proposition
3.2.4), hoping that f2(x)+

µ

2 ∥x∥
2 and c2(x)+

µ

2 ∥x∥
2 are convex on X . As, in general, there is

no reliable way to assert the convexity of these latter functions, DoC programming algorithms
applied in this context must be understood as heuristics. Remarkably, the work [140] exploits
such a strategy by combining a dynamic rule to update µ with a nonconvexity test to achieve
convergence, but only in a probabilistic sense. Differently, for a class of nonconvex two-stage
stochastic problems, the authors of [79] exploit an implicitly convex-concave structure of the
objective function and propose an algorithm based on the so-called partial Moreau envelope
that disregards DoC decompositions at the price of non-negligible computational costs.

In contrast to the above references, we investigate a bundle method approach for tack-
ling (3.1.1), which neither requires explicit DoC decompositions of the involved functions
(in particular, bounds on the weakly-convex moduli µ f and µc need not be known), nor
relies on (often costly) Moreau envelopes. For the method to work, it suffices to dispose of
a difference of convex and weakly convex (CwC) decomposition of the involved functions,
as in (3.1.1b). Compared to DoC, the latter structure appears more naturally in applications
(see [67, § 7.5]) and, at the time of writing the article [124], has yet to be exploited to
design optimality conditions and numerical algorithms. This chapter aims to fill this gap.
Currently, research on the problems involving CwC functions is ongoing. For example,
the behavior of Difference-of-Convex algorithm (DCA) for unconstrained optimization is
studied in [109], while the authors of [27] apply a progressive decoupling algorithm (PDA)
for minimizing CwC functions over a linear subspace. Meanwhile, the paper [112] focuses
on the generalization of proximal methods on a broader class of nonsmooth and nonconvex
problems.

Our approach broadens and enhances the method proposed in [129] for dealing with
DoC-constrained DoC-problems, and its particular case given in Subsection 2.3.3, in two

1It is worth noting that in many practical problems, mainly those from data science, an upper bound on such
a constant can often be computed, although it may be quite large.
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ways. First, the availability of DoC decompositions is no longer needed, which makes
our approach applicable to a larger scope of problems. Second, it is ensured to compute
critical points for the original problem without any additional assumption on the second
components: f2 and c2 need not be continuously differentiable as assumed in [129, Thm. 2].
In addition, it has a lower cost per iteration (the master subproblem has fewer constraints than
the one of [129]). Similarly to [129], our approach builds upon a problem reformulation via
improvement function, a well-known and successful strategy in the nonsmooth optimization
literature [110, 7, 90]. However, due to the above modifications, the convergence analysis
of our extension of the method proposed in [129] must be done anew. Furthermore, a new
criticality definition for the reformulated problem links directly with (necessary) optimality
conditions for the original problem (3.1.1), which makes it a major ingredient for these
enhancements. Such a criticality concept is introduced and analyzed in Section 3.3 below,
where we also extend the alternative characterization of Bouligand stationarity given in [98]
to our CwC setting. Before that, we motivate this work with the following example that
presents a class of problems (of great practical appeal) where the CwC decomposition arises
upon applying a well-known interior-penalty strategy.

Example 3.1.1 (Nonconvex two-stage programming). Let Ξ := {ξ 1, . . .ξ S} be a set of
scenarios and πs > 0 the probability of occurrence of event ξ s, s = 1, . . . ,S. Consider the
following nonconvex two-stage program min

x∈X
f1(x)+

S

∑
s=1

πsQ(x;ξ
s)

s.t. c1(x)− c2(x)≤ 0
with Q(x;ξ ) :=

 min
y∈Y

q(x,y;ξ )

s.t. ψi(x,y;ξ )≤ 0, i = 1, . . . ,m.

(3.1.2)
Assume that:

- f1,c1,c2 : Rn→ R are convex (possibly nonsmooth) functions;

- X ⊂ Rn, Y ⊂ Rn2 are two (non-empty) convex and bounded polytopes;

- q,ψi : Rn×Rn2×Ξ→ R, i = 1, . . . ,m, possess the following characteristics: q(·, ·,ξ )
and ψi(·, ·,ξ ) are twice-continuously differentiable for every ξ ∈Ξ fixed and, moreover,
q(x, ·,ξ ) and ψi(x, ·,ξ ) are convex for every x and ξ fixed;

- the constraints in the subproblem Q(x;ξ ) satisfy the Slater condition: for every x ∈ X
and ξ ∈ Ξ, there exists y◦(x;ξ ) ∈ Y such ψi(x,y◦(x;ξ ),ξ )< 0, i = 1, . . . ,m.

As presented in Chapter 2, the DoC constraint c1(x)− c2(x)≤ 0 above is particularly useful
in this stochastic programming setting to model chance constraints.
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Under the above assumptions, evaluating the recourse function Q(x;ξ ) amounts to solving
a well-defined convex optimization problem on variable y. Although this essential property is
present, the recourse function itself fails to be convex on variable x (but Q(·;ξ ) is continuous
as a result of [13, Prop. 4.4]). Furthermore, without further assumptions, computing a
(generalized) subgradient of Q(·;ξ ) at x as well as asserting additional properties about this
function are challenging tasks. This could for instance be done if the constraints satisfy a
further Aubin or Lipschitz like property upon exploiting [92, Chapter 4]. Still though, most
likely, at best we would be dealing with subdifferentials inclusions - and concrete algorithms
to handle such general “marginal functions" would be unavailable.

A possible manner to curtail these difficulties is to approximate the recourse function
with a more tractable one. As explained in [14], with the help of the log-barrier penalty
function and a penalization parameter ε > 0, we may approximate Q(x;ξ ) with

Qε(x;ξ ) := min
y∈Y

q(x,y;ξ )− 1
ε

m

∑
i=1

log(−ψi(x,y;ξ )). (3.1.3)

Given the above assumptions, it is well known that Qε(x;ξ ) ↓ Q(x;ξ ) as ε ↓ 0 (e.g., [14, §
2.2] and [13, p. 266]), and thus the model{

min
x∈X

f1(x)− f2(x)

s.t. c1(x)− c2(x)≤ 0
with f2(x) :=

S

∑
s=1

πs[−Qε(x;ξ
s)]

is an accurate approximation of (3.1.2) when ε > 0 is small enough. Furthermore, as
−Qε(x;ξ ) = maxy∈Y

1
ε ∑

m
i=1 log(−ψi(x,y;ξ ))−q(x,y;ξ ) is a weakly convex function (c.f.

item iv) above), this model fits the structure (3.1.1). We highlight that Qε(x;ξ ) is gener-
ally a nonsmooth (nonconvex) function; hence, the above problem is challenging. To our
knowledge, no practical and mathematically sound optimization algorithm could tackle
this class of problems before this work. For instance, [88] requires f2 to be smooth, [14]
introduces an additional Tikhonov regularization term to (3.1.3) to ensure smoothness of
Qε(x;ξ ), and [79] assumes q(·, ·,ξ ) and ψi(·, ·,ξ ) to be concave-convex functions. In all
these references, function c2 is absent. Being nonsmooth, we mention in passing that a (gen-
eralized) subgradient of f2 at x can be computed and seen to be ∑

S
s=1 πsg(y(x;ξ s)), where

g(·) := ∇x[
1
ε ∑

m
i=1 log(−ψi(x, ·;ξ s))−q(x, ·;ξ s)] is the gradient w.r.t. x of the objective func-

tion of (3.1.3) multiplied by −1, and y(x;ξ ) is an arbitrary optimal solution of (3.1.3) (see
Proposition 3.2.1 and [105, Thm. 7.3]). □

Our approach is still applicable in a more general case, where the probability vector
π in the above example is a function (of class C2) of the first-stage variable x, i.e., πs(x),
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s = 1, . . . ,S. Hence, the class of optimization problems considered in this chapter includes
the challenging family of stochastic programming recourse models with decision-dependent
uncertainty (e.g. [59] and [79]).

The remainder of this chapter is organized as follows. Section 3.2 recalls essential defini-
tions, key elements, and well-known concepts from variational analysis. Necessary optimality
conditions for problem (3.1.1) are presented in Section 3.3 as well as the problem reformula-
tion via an improvement function. Once the link between the reformulated and the original
problem is established in the same section, Section 3.4 focuses on an improvement-function-
based bundle method for problem (3.1.1). Section 3.5 presents the method’s convergence
analysis to critical points, while Section 3.7 illustrates the practical performance of our
approach on some nonconvex stochastic optimization problems and a compressed sensing
problem. Finally, it is compared to the DoC bundle method from Chapter 2 in Section 3.8.

Notation. The following notation is employed throughout the chapter. For a real number
a, we denote by [a]+ the value max{a,0}. For any points x,y ∈ Rn, ⟨x,y⟩ stands for the
Euclidean inner product, and ∥·∥ for the associated norm, i.e., ∥x∥=

√
⟨x,x⟩. For a convex set

X , NX(x) stands for its normal cone at the point x, i.e., the set {y : ⟨y,z−x⟩⩽ 0 for all z∈X}
if x ∈ X and the empty set otherwise. The Bouligand tangent cone to a (possibly nonconvex)
set W ⊂ Rn at a point w ∈W is the set TW (w) of all tangent directions in the following
sense: d ∈ TW (w) if there exist a sequence of vectors {wk} ⊂W converging to w and a
sequence of positive scalars tk→ 0 such that d = limk→∞(wk−w)/tk. The indicator function
of X ⊂ Rn is defined as iX(x) = 0 if x ∈ X and iX(x) = +∞ otherwise. The convex hull of
a set X is convX and the relative interior is denoted by riX . The domain of a function
ϕ :Rn→ (−∞,+∞] is represented by Dom(ϕ) = {x ∈ Rn : ϕ(x)<+∞}. Notation O stands
for an open convex set of the Euclidean space Rn and, given the definitions of f and c, we
have that O ⊂Dom( f ) and O ⊂Dom(c). The component functions of f and c are f1, f2,
and c1,c2 respectively: f1 and c1 are convex, whereas f2 and c2 are weakly convex on some
neighbourhood of every x ∈O . Finally, f ∗ stands for the Legendre-Fenchel transform of a
function f : Rn→ (−∞,+∞].

3.2 Definition and prerequisites

This section starts by recalling the concept of (generalized) directional derivatives and
subdifferentials. Basic subdifferential calculus is summarized in Proposition 3.2.1 below,
followed by the definitions of weakly convex and lower-C2 functions. The section closes
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with Proposition 3.2.4 asserting that the definition of (locally) weakly convex function can
be globally extended to the whole convex and compact set X .

A function f : O → R is said to be locally Lipschitz continuous if for each x′ ∈ O there is
a neighbourhood Vx′ ⊂O of x′ such that, for some Lx′ ≥ 0,

|f(x)− f(y)| ≤ Lx′∥x− y∥ ∀ x,y ∈Vx′.

The function f is said to be Lipschitz continuous on O if Lx′ = L can be taken independent of
x′ ∈ O , and Vx′ in the above inequality is replaced with O .

Directional derivatives and subdifferentials. Let φ : O → R be a convex function. Then
φ is locally Lipschitz continuous and, for each x ∈ O , the directional derivative

φ
′(x;d) := lim

τ↓0

φ(x+ τd)−φ(x)
τ

exists (and is finite) in every direction d ∈Rn [93, Prop. 2.81 and Cor. 2.82]. Such a derivative
can be represented by φ ′(x;d) = maxs∈∂φ(x)⟨s,d⟩, where ∂φ(x) is the subdifferential of φ at
point x:

∂φ(x) := {s ∈ Rn : φ(y)≥ φ(x)+ ⟨s,y− x⟩ ∀y ∈ Rn} . (3.2.1)

The elements of ∂φ(x) are referred to as the subgradients of φ at x. The approximate
subdifferential is defined, for ε ≥ 0, by

∂εφ(x) := {s ∈ Rn : φ(y)≥ φ(x)+ ⟨s,y− x⟩− ε ∀y ∈ Rn} .

Let f : O→R be a locally Lipschitz continuous function. Then the generalized directional
derivative defined by

f◦(x;d) := limsup
x′→ x, τ ↓ 0

f(x′+ τd)− f(x′)
τ

is finite for all x ∈ O in every direction d ∈ Rn [20, Prop. 2.1.1(a)]. Such a mathematical
concept permits us to define the Clarke subdifferential of f at x ∈ O ,

∂
Cf(x) := {g ∈ Rn : ⟨g,d⟩ ≤ f◦(x;d) for all d ∈ Rn}, (3.2.2)
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which is a nonempty, convex, and compact subset of Rn [20, Prop. 2.1.2(a)] satisfying
f◦(x;d) =maxg∈∂ Cf(x)⟨g,d⟩. The elements of ∂ Cf(x) are referred to as generalized (or Clarke)
subgradients, as they are the usual subgradients, i.e., ∂ Cf = ∂ f, when f is convex [20,
Prop. 2.2.7]. Furthermore, when f is continuously differentiable, ∂ Cf(x) reduces to the
singleton {∇f(x)}. An alternative representation, in finite dimensions, of ∂ Cf(x) is (see [20,
Thm. 2.5.1])

∂
Cf(x) := conv

{
lim
ι→∞

∇f(xι),xι → x, f differentiable at xι

}
.

A fundamental result, often evoked in this chapter, is the following one [20, Prop. 2.1.2]:
the mapping ∂ Cf is locally bounded in the interior of Dom(f) := {x ∈ Rn : f(x)< ∞}. As a
result, the image ∂ Cf(X) of every bounded set X ⊂ O (⊂Dom(f)) is bounded in Rn. Useful
calculus rules of subdifferentials are listed in Proposition 3.2.1 below and rely on the concept
of regularity.

A locally Lipschitz continuous function f : O → R is subdifferentially regular (or simply
regular) at x ∈ O if for every d ∈ Rn the ordinary directional derivative at x exists and
coincides with the generalized one:

f ′(x;d) = f◦(x;d) ∀ d ∈ Rn.

It holds that smooth functions, as well as convex ones, are regular at every point in the interior
of their domains. Moreover, a finite linear combination (by non-negative scalars) of regular
functions at x is regular [20, Prop. 2.3.6].

Proposition 3.2.1. Let ft : O → R, t = 1,2, . . . ,m, be locally Lipschitz functions and x ∈O

an arbitrary point. Then

i) ∂ C[∑m
t=1 at ft ](x)⊂ ∑

m
t=1 at∂

Cft(x) for all a ∈ Rm, and equality holds if

• all but one of ft are smooth [20, Prop. 2.3.3 and Cor. 2];

• or if every ft is regular at x and a ∈ Rm
+ [20, Cor. 3];

ii) ∂ Cf(x)⊂ conv{∂ Cft(x) : t ∈ I(x)}, for f(x) = max
t=1,...,m

ft(x) and I(x) := arg max
t=1,...,m

ft(x),

and equality holds and f is regular if every ft is regular at x, [20, Prop. 2.3.12].

The last item can be strengthened when more structure is present, such as in the case of
weakly convex functions (see Eq. (3.2.3) below).

Weakly convex functions: definition and main properties.
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Definition 3.2.2 (Def. 4.2 [145]). A function f : O → R is said to be (locally) weakly convex
on O if, on some neighbourhood Vx′ ⊂ O of each x′ ∈ O , there exists µx′ ≥ 0 such that, for
all µ ≥ µx′

φ(x) := f(x)+
µ

2
∥x∥2 is finite and convex on Vx′ .

Furthermore, f is said to be weakly convex in the global sense on O if the above property
holds for Vx′ = O and µx′ = µ̄ ≥ 0 regardless of x′ ∈ O . □

Clearly, a convex function on O is weakly convex in the global sense: it suffices to take
µx′ = 0 and Vx′ = O for all x′ ∈O . When f is a smooth function with a Lipschitz continuous
gradient, then f is weakly convex in the global sense with µ = L the Lipschitz constant of
∇f [28, Prop. 1]. Moreover, it follows from [31, Lemma 4.2] that the family of composite
functions given in item v) of Section 3.1 is also weakly convex in the global sense.

Definition 3.2.2 implies that weakly convex functions are locally DoC: the decomposition
f(x) = φ(x)− µ

2 ∥x∥
2 holds on some neighbourhood of every x′ ∈ O . As a result, [107, Thm.

10.33] ensures that the class of weakly convex functions coincides with that of Lower-C2

functions; see also [113, Thm. 1.3, Cor. 1.3].

Definition 3.2.3 (Def. 10.29 [107]). (LC2 functions). A function f : O → R is said to
be Lower-C2 or LC2 on O if, on some neighbourhood Vx′ ⊂ O of each x′ ∈ O , there is a
representation

f(x) = max
t∈T

ft(x).

in which the functions ft are of differentiability class C2 on Vx′ and the index set T is a
compact space such that ft(x), ∇ft(x), and ∇2ft(x) depend continuously not just on x ∈Vx′

but jointly on (t,x) ∈ T ×Vx′ . □

In particular, if f is given by f(x) = max{f1(x), . . . , fm(x)} and all functions f1, ..., fm are
of class C2, then f is Lower-C2/weakly convex. Furthermore, the functions of item iv) are
also weakly convex, since they are Lower-C2 by definition.

An important property of LC2 /weakly convex functions is regularity [106, Thm. 1]: for
every x ∈ O , the equality f ′(x;d) = f◦(x;d) holds in every direction d ∈ Rn. Theorem 7.3
in [105] gives the following characterization of the Clarke subdifferential of f at x ∈O: for
I(x) = argmaxt∈T ft(x),

∂
Cf(x) = conv{∇xft(x) : t ∈ I(x)} for all x ∈ O. (3.2.3)

Furthermore, the concept of the approximate subdifferential can be generalized to the class
of weakly convex functions; for details, see [139]. When constrained to a compact convex



54 Convex-Weakly-Convex Algorithm

set X ̸= /0, we can say more about weakly convex functions. Indeed, the local property in
Definition 3.2.2 globally extends to the whole X , and we have the following result.

Proposition 3.2.4. Let f : O → Rn be a weakly convex function, and X ⊂O a compact and
convex set. Then there exist a real number µf ≥ 0 and an open convex set O ′ satisfying
X ⊂O ′ ⊂ O such that, for all µ ≥ µf:

i) the function φ(x) := f(x)+ µ

2 ∥x∥
2 is convex on O ′ and ∂φ(x) = ∂ Cf(x)+ µx for all

x ∈ O ′;

ii) for all s f ∈ ∂ C f (x) with x ∈ O ′, the following inequality holds

f(y)≥ f(x)+ ⟨s f ,y− x⟩− µ

2
∥y− x∥2 ∀y ∈ X . (3.2.4)

Proof. Since f : O → Rn is weakly convex, it follows by definition that, relative to some
neighbourhood Vx′ of each point x′ ∈ O , there exist µx′ > 0 such that for all µ ≥ µx′ the
function φ(x) = f(x)+ µ

2 ∥x∥
2 is finite and convex on Vx′ . In such a representation, there is

no loss of generality in assuming that Vx′ ⊂ O (if necessary we can define a new/smaller
neighbourhood as Vx′ ∩O for which the above conclusion obviously stands). By considering
all the points in X , let V := {Vx′ : x′ ∈ X} be the collection of all such neighbourhoods. Then,
by construction, V is an open cover of the compact set X and, by definition of compactness,
it has a finite open subcover, i.e., there exists finitely many points {x′1, . . . ,x′m} ⊂ X such
that O ′ := ∪m

i=1Vx′i
⊃ X , and by construction O ′ is an open subset of O . The first part of

item i) thus follows by taking µf := maxi=1,...,m µx′i
< ∞. By writing f(x) = φ(x)− µ

2 ∥x∥
2

and recalling Proposition 3.2.1 i) we get ∂ Cf(x) = ∂φ(x)−µx for all x ∈O ′. This concludes
item i).

To show item ii), let us now define φ̃(x) = f(x)+ µ

2 ∥x∥
2+ iO ′(x), an extended real-valued

convex function: φ̃ : Rn→ R∪{∞}. Note that for each x ∈O ′, there exists a neighbourhood
Vx ⊂ O ′ such that φ̃(x′) = φ(x′) for all x′ ∈ Vx. This fact permits us to conclude that
∂ φ̃(x) = ∂φ(x) for all x ∈ O ′. It thus follows from item i) that, for every x ∈ O ′ and every
s ∈ ∂ φ̃(x), there exists s f ∈ ∂ C f (x) such that s = s f + µx and the subgradient inequality
reads as

φ̃(y)≥ φ̃(x)+ ⟨s f +µx,y− x⟩ ∀y ∈ Rn,

i.e., f(y)+ µ

2 ∥y∥
2 + iO ′(y) ≥ f(x)+ µ

2 ∥x∥
2 + iO ′(x)+ ⟨s f + µx,y− x⟩ for all y ∈ Rn. The

latter simplifies to

f(y)+ iO ′(y)≥ f(x)+ ⟨s f ,y− x⟩− µ

2
∥y− x∥2 ∀y ∈ Rn.
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By restricting y to the set X and recalling that s f = s−µx∈ ∂ Cf(x) is an arbitrary subgradient
(because no restriction was imposed to s∈ ∂ φ̃(x)), the above inequality becomes (3.2.4).

Concerning the setting of this chapter where X is compact, the appealing DoC decomposi-
tion f(x) = φ(x)− µf

2 ∥x∥
2 is, unfortunately, unavailable: the threshold µf in Proposition 3.2.4

is in general unknown. This fact precludes the application of DoC techniques to optimiza-
tion problems featuring general Lower-C2/weakly convex functions. Interested readers are
referred to [140] for a strategy that uses approximated DoC decompositions based on item i)
of Proposition 3.2.4.

3.3 Necessary optimality conditions and problem reformu-
lation

Let f ,c : O→R be given by (3.1.1b). We highlight that some properties of their components
can be transferred to these functions. (To ease the presentation, let us focus only on f (x) =
f1(x)− f2(x), as the same conclusions hold for c.) For instance, f is locally Lipschitz
continuous because f1 and f2 are so. Furthermore, as f1 is convex and f2 is (locally) weakly
convex, they are both directional differentiable and these properties extend to f as well: for
every x ∈ O , the directional derivative of f is finite in every direction d ∈ Rn as result of the
following relation:

f ′1(x;d)− f ′2(x;d) = lim
τ↓0

[ f1(x+ τd)− f1(x)
τ

− f2(x+ τd)− f2(x)
τ

]
= f ′(x;d).

However, the important regularity condition of both f1 and f2 does not extend to f as a
mere fact that the latter is not a linear combination with non-negative coefficients of the two
former functions (see Proposition 3.2.1.i)). Hence, we cannot expect to have equality in the
following inclusion

∂
C f (x)⊂ ∂ f1(x)−∂

C f2(x)

unless one of the component functions is smooth at x. Such an inclusion impacts stationary
concepts as we will now discuss. Let us first consider the convexly-constrained problem

min
x∈X

f (x), with f (x) = f1(x)− f2(x). (3.3.1)
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A point x̄∈ X is said to be directional (d)-stationary for this problem if f ′(x̄;d)≥ 0 for all
d ∈TX(x̄). The following result generalizes [98, Prop. 5], where a specific case of problem
(3.3.1) with f2(x) = max{ψ1(x), . . . ,ψm(x)} and convex ψ1, . . . ,ψm is considered.

Proposition 3.3.1. A point x̄ ∈ X is d-stationary of problem (3.3.1) if, and only if,

x̄ ∈ argmin
x∈X

f1(x)− [ f2(x̄)+ ⟨s f2,x− x̄⟩] ∀ s f2 ∈ ∂
C f2(x̄).

Proof. Observe that TX(x̄) = cl{d ∈ Rn : d = t(x− x̄), x ∈ X , t ∈ R+} due to convexity of
X . Therefore, the definition of d-stationarity can be equivalently written as f ′(x̄;x− x̄)≥ 0
for all x ∈ X . Recall that f2 is (locally) weakly convex and thus regular, which implies that
f ′2(x̄;x− x̄) = maxs f2∈∂ C f2(x̄)⟨s f2,x− x̄⟩. Hence,

f ′(x̄;x− x̄)≥ 0 ∀ x ∈ X

⇔ f ′1(x̄;x− x̄)− f ′2(x̄;x− x̄)≥ 0 ∀ x ∈ X

⇔ f ′1(x̄;x− x̄)−⟨s f2,x− x̄⟩ ≥ 0 ∀ s f2 ∈ ∂
C f2(x̄), ∀ x ∈ X

⇔x̄ ∈ argmin
x∈X

f1(x)−⟨s f2,x− x̄⟩ ∀ s f2 ∈ ∂
C f2(x̄).

A point x̄ ∈ X is said to be Clarke-stationary to problem (3.3.1) if

0 ∈ ∂
C f (x̄)+NX(x̄). (3.3.2)

Furthermore, by following the lead of DoC programming (see for instance [28, §3.1]), x̄ ∈ X
is said to be a critical point if

0 ∈ ∂ f1(x̄)−∂
C f2(x̄)+NX(x̄). (3.3.3)

It is not difficult to see that this inclusion means that

x̄ ∈ argmin
x∈X

f1(x)− [ f2(x̄)+ ⟨s f2,x− x̄⟩] for some s f2 ∈ ∂
C f2(x̄).

Note that the concept of criticality is weaker than that of Clarke-stationarity, which in turn is
weaker than d-stationarity (because f ′(·;d)≤ f ◦(·;d) for all d ∈ Rn). However, criticality
and Clarke-stationarity coincide when at least one component function is smooth (in which
case f is regular). Furthermore, we can see from Proposition 3.3.1 and the above alternative
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characterization of criticality that the three concepts coincide when f2 is continuously
differentiable at x̄.

For the more general problem (3.1.1), x̄ ∈ X is said to be a Bouligand (B)-stationary
point of (3.1.1) if f ′(x̄;d)≥ 0 for all d ∈ TXc(x̄), with Xc the feasible set of (3.1.1). If the
considered point strictly satisfies the nonconvex constraint, i.e. c(x̄)< 0, then B-stationarity
condition is equivalent to d-stationarity condition for problem (3.3.1), as TXc(x̄) = TX(x̄).
Analogously, B-stationarity boils down to d-stationarity if constraint c(x) ≤ 0 is absent.
Necessary and sufficient conditions for B-stationarity are given in [98, Prop. 4] for the case
of DoC-constrained DoC problems. The next result deals with a more general case: we
assume that c2 is convex, while f2 remains a weakly-convex function.

Proposition 3.3.2. In addition to our assumptions on problem (3.1.1), let c2 : O → R be a
convex function and x̄ ∈ Xc := {x ∈ X : c(x)≤ 0} such that c(x̄) = 0. Moreover, assume that
the following constraint qualification (CQ) holds

cl
{

d ∈TX(x̄) : c′(x̄;d)< 0
}
=
{

d ∈TX(x̄) : c′(x̄;d)≤ 0
}
. (3.3.4)

Then, x̄ is a B-stationary point of problem (3.1.1) if and only if x̄ solves the convex problems{
min
x∈X

f1(x)− [ f2(x̄)+ ⟨s f2,x− x̄⟩]

s.t. c1(x)− [c2(x̄)+ ⟨sc2 ,x− x̄⟩]≤ 0

}
∀ s f2 ∈ ∂

C f2(x̄), ∀ sc2 ∈ ∂c2(x̄). (3.3.5)

Proof. Denote Ȳ (x̄) = {x ∈ X : c1(x) ≤ c2(x̄) + c′2(x̄;x− x̄)}. As the CQ (3.3.4) holds,
Proposition 2.1 of [128] ensures that

TXc(x̄) = TȲ (x̄)(x̄) = cl{d ∈ Rn : d = t(x− x̄), x ∈ Ȳ (x̄), t ∈ R+} .

Thus, the B-stationary definition is equivalent to

f ′(x̄;x− x̄)≥ 0 ∀ x ∈ Ȳ (x̄)

⇔ f ′1(x̄;x− x̄)≥ ⟨s f2,x− x̄⟩ ∀ s f2 ∈ ∂
C f2(x̄), ∀ x ∈ Ȳ (x̄). (3.3.6)

The stated result follows upon establishing the equivalence between (3.3.6) and (3.3.5).
[(3.3.6)⇒ (3.3.5)]. Suppose (3.3.6) holds and let sc2 ∈ ∂c2(x̄) be arbitrary. As

Y (sc2) := {x ∈ X : c1(x)≤ c2(x̄)+ ⟨sc2,x− x̄⟩} ⊂ Ȳ (x̄)
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due to convexity of c2, we conclude that f ′1(x̄;x− x̄)≥ ⟨s f2,x− x̄⟩ for all s f2 ∈ ∂ C f2(x̄) and
all x ∈ Y (sc2). Convexity of the latter set implies that x̄ minimizes f1(x)−⟨s f2 ,x− x̄⟩ over
Y (sc2) for all s f2 ∈ ∂ C f2(x̄). Thus, condition (3.3.5) holds because sc2 ∈ ∂c2(x̄) was taken
arbitrarily.

[(3.3.5)⇒ (3.3.6)]. To show the reverse implication, we proceed with a proof by con-
trapositive. Suppose that there exist s′f2 ∈ ∂ C f2(x̄) and x′ ∈ Ȳ (x̄) such that f ′1(x̄;x′− x̄) <
⟨s′f2 ,x

′− x̄⟩ (and hence x′ ̸= x̄), i.e., (3.3.6) does not hold. Let s′c2
∈ ∂c2(x̄) be such that

c′2(x̄;x′− x̄) = ⟨s′c2
,x′− x̄⟩. Therefore, x′ is feasible for the convex problem

min
x∈X

f1(x)− [ f2(x̄)+ ⟨s′f2,x− x̄⟩]

s.t. c1(x)− [c2(x̄)+ ⟨s′c2
,x− x̄⟩]≤ 0.

Together with our assumption f ′1(x̄;x′− x̄)< ⟨s′f2 ,x
′− x̄⟩, we have that d = x′− x̄ is a feasible

descent direction for the above problem, and thus x̄ cannot be one of its solution. Hence, x̄
does not satisfy (3.3.5). The proof is thus complete.

Note that convexity of c2 plays an important role in the above proposition. Indeed, if c2

is nonconvex, then the set {x ∈ X : c1(x)≤ c2(x̄)+ ⟨sc2,x− x̄⟩} is not necessarily a subset of
Xc and when solving the linearized subproblem (3.3.5) we may get a point that is infeasible
for the original problem (3.1.1).

Example 3.3.3. Let f1 = x, f2 = 0, c1 = 0, c2 = x3

3 and X = [−2,2]. We are not in the
framework of Proposition 3.3.2, since c2 is not convex on [−2,2], but weakly convex (with
modulus µ = 4). At x̄= 0, which globally solves (3.1.1), the convex problem (3.3.5) becomes
minx∈[−2,2] x (because we have dropped the trivial constraint 0≤ 0), and thus does not provide
a feasible point for the original problem. □

However, if the modulus µ is known for the weakly convex function c2, adding a quadratic
term in the constraint of the convex problem (3.3.5) makes the corresponding set feasible for
the original problem. Moreover, Proposition 3.3.2 is generalized in case of weakly convex
c2.

Corollary 3.3.4. Let c2 : O → R be a weakly convex function and µc ≥ 0 be a real number
from Proposition 3.2.4 corresponding to c2. Moreover, assume that the CQ (3.3.4) holds.
Then, x̄ is a B-stationary point of problem (3.1.1) if and only if, for any given µ ≥ µc, x̄ solves
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the convex problems{
min
x∈X

f1(x)− [ f2(x̄)+ ⟨s f2,x− x̄⟩]

s.t. c1(x)− [c2(x̄)+ ⟨sc2,x− x̄⟩]+ µ

2 ∥x− x̄∥2 ≤ 0

}
∀s f2 ∈ ∂

C f2(x̄), ∀sc2 ∈ ∂
Cc2(x̄).

(3.3.7)

Proof. Consider the convex functions c̃1(x) = c1(x)+
µ

2 ∥x∥
2 and c̃2(x) = c2(x)+

µ

2 ∥x∥
2 with

µ ≥ µc. The result follows from Proposition 3.3.2 by using instead the DoC decomposition
c(x) = c̃1(x)− c̃2(x) and by noting that, for an arbitrary s̃c2 ∈ ∂ c̃2(x̄), we obtain

c̃1(x)− [c̃2(x̄)+ ⟨s̃c2,x− x̄⟩] = c1(x)− [c2(x̄)+ ⟨sc2,x− x̄⟩]+ µ

2
∥x− x̄∥2

with sc2 = s̃c2−µ x̄, sc2 ∈ ∂ Cc2(x̄).

Except for some particular cases, checking B-stationarity numerically is out of reach.
Therefore, weaker stationarity concepts need to come into play: x̄ ∈ X is said to be Clarke-
stationary for (3.1.1) if there exists a Lagrange multiplier λ̄ such that{

0 ∈ ∂ C f (x̄)+ λ̄ ∂ Cc(x̄)+NX(x̄)

c(x̄)≤ 0, λ̄ c(x̄) = 0, λ̄ ≥ 0, x̄ ∈ X .
(3.3.8)

Analogously, x̄ is a critical point of (3.1.1) if there exists a Lagrange multiplier λ̄ such that{
0 ∈ ∂ f1(x̄)−∂ C f2(x̄)+ λ̄ [∂c1(x̄)−∂ Cc2(x̄)]+NX(x̄)

c(x̄)≤ 0, λ̄ c(x̄) = 0, λ̄ ≥ 0, x̄ ∈ X .
(3.3.9)

Observe that if f1 or f2 and c1 or c2 are smooth, then criticality boils down to Clarke
stationarity. Next, we revisit the proximal bundle method of [129] and extend it to the
more general setting of problem (3.1.1). To this end, the method must be modified, and its
convergence analysis must be done anew.

3.3.1 Problem reformulation via improvement function

Nonsmooth and noncovex constraints in optimization problems are in general numerically
treated via exact penalization [73, 81, 118, 66], linearization of certain components [98, 140],
and improvement functions [110, 7, 129]. The latter has a recognized good practical perfor-
mance, does not require the additional assumptions normally assumed in exact penalization
methods, and employs parameters that are simple to set. For these reasons, we handle
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problem (3.1.1) via the improvement function H : O×O → R given by

H(x;y) = max
{

f (x)− τ f (y), c(x)− τc(y)
}
, (3.3.10a)

with τ f (y) = f (y)+ρ[c(y)]+ and τc(y) = σ [c(y)]+, for ρ ≥ 0 and σ ∈ [0,1).
(3.3.10b)

Observe that if x̄ is a global solution of (3.1.1), then H(x; x̄)≥ 0 for all x ∈ X and H(x̄; x̄) = 0.
Improvement functions (also known as progress functions) have been considered within

bundle methods in [110, 138, 127] for convex problems, in [7] for a class of (nonconvex)
optimal control problems, and in [90, 129] for DoC-constrained DoC programs. In what
follows we exploit some relevant mathematical properties of (3.3.10) and its link to the
original problem (3.1.1). To this end, we need to consider necessary conditions for a point x̄
to be a local solution of the reformulated problem

min
x∈X

H(x; x̄) . (3.3.11)

As the second argument of H is fixed, it follows from (3.3.2) that x̄ ∈ X is a Clarke-stationary
point of (3.3.11) if

0 ∈ ∂
C
1 H(x̄; x̄)+NX(x̄), (3.3.12)

where ∂ C
1 H stands for the generalized subdifferential of H with respect to the first argument.

Proposition 3.2.1 ii) yields

∂
C
1 H(x̄; x̄)⊂


∂ Cc(x̄) if f (x̄)− τ f (x̄)< c(x̄)− τc(x̄)
conv

{
∂ C f (x̄), ∂ Cc(x̄)

}
if f (x̄)− τ f (x̄) = c(x̄)− τc(x̄)

∂ C f (x̄) if f (x̄)− τ f (x̄)> c(x̄)− τc(x̄).

Since we do not work with generalized subgradients of either f or c, but only with subgradi-
ents of the functions yielding their CwC decompositions (3.1.1b), we must consider a weaker
stationary definition: we say that x̄ ∈ X is a critical point of the composite problem (3.3.11)
with CwC decompositions (3.1.1b) if

0 ∈ NX(x̄)+


∂c1(x̄)−∂ Cc2(x̄) if f (x̄)− τ f (x̄)< c(x̄)− τc(x̄)
conv

{
∂ f1(x̄)−∂ C f2(x̄), ∂c1(x̄)−∂ Cc2(x̄)

}
if f (x̄)− τ f (x̄) = c(x̄)− τc(x̄)

∂ f1(x̄)−∂ C f2(x̄) if f (x̄)− τ f (x̄)> c(x̄)− τc(x̄).
(3.3.13)

Note that if both f and c are regular, then the above condition coincides with that of Clarke
stationarity: recall (3.3.2), Proposition 3.2.1 i), and observe that the set defined by the
expressions in the curly brackets above is nothing but ∂ C

1 H(x̄; x̄). The following result,
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inspired by both [7, Lemma 5.1] that deals with the (stronger) Clarke stationarity and [129,
Thm. 2] that works with the (weaker) criticality definition from DoC programming, links
condition (3.3.13) with criticality of the original problem.

Theorem 3.3.5. Let x̄ ∈ X be a point satisfying condition (3.3.13). Then, the following hold:

i) If c(x̄)> 0, then x̄ is a critical point (in the sense of (3.3.3)) of the optimization
problem

min
x∈X

c1(x)− c2(x). (3.3.14)

ii) If c(x̄) = 0 and x̄ is not a critical point of (3.3.14), then x̄ satisfies (3.3.9) for some
λ̄ > 0.

iii) If c(x̄)< 0, then x̄ satisfies (3.3.9) with λ̄ = 0.

Proof. With the τ function defined in (3.3.10b), note that

f (x̄)− τ f (x̄)− [c(x̄)− τc(x̄)] =


−[ρ +(1−σ)]c(x̄)< 0 if c(x̄)> 0,

0 if c(x̄) = 0,
−c(x̄)> 0 if c(x̄)< 0.

Hence,

c(x̄)> 0 ⇔ f (x̄)− τ f (x̄)< c(x̄)− τc(x̄),

c(x̄) = 0 ⇔ f (x̄)− τ f (x̄) = c(x̄)− τc(x̄),

c(x̄)< 0 ⇔ f (x̄)− τ f (x̄)> c(x̄)− τc(x̄),

and items i) and iii) follow directly from (3.3.13). To show item ii), recall that c(x̄) = 0 and
condition (3.3.13) ensures the existence of λ ∈ [0,1] such that

0 ∈ λ [∂ f1(x̄)−∂
C f2(x̄)]+(1−λ )[∂c1(x̄)−∂

Cc2(x̄)]+NX(x̄).

By assumption, x̄ is not a critical point of (3.3.14). Then 0 ̸∈ ∂c1(x̄)− ∂ Cc2(x̄)+NX(x̄),
implying that λ above must be strictly positive. Dividing the displayed inclusion by λ > 0
we obtain the criticality condition (3.3.9) with λ̄ = (1−λ )/λ > 0.

At item ii) above, the assumption that x̄ is not a critical point of (3.3.14) can be seen as a
constraint qualification, which turns out to be more restrictive than (3.3.4). Indeed, the latter
excludes d-stationary points of (3.3.14), but not necessarily critical ones. The following
example gives a critical point x̄ of (3.3.14) that satisfies (3.3.4) but not the criticality condition
(3.3.9) for the nonlinearly-constrained problem (3.1.1).
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Fig. 3.1 Function f (x) = 1
2x2− x in red and c(x) = max{x,2x}−max{2x,4x} in blue.

Example 3.3.6. Take c1(x)=max{x,2x}, c2(x)=max{2x,4x}, X = [−2, 2] and x̄= 0. Then
TX(x̄) =R, NX(x̄) = {0}, and x̄ is a critical point of (3.3.14) because 0 ∈ ∂c1(x̄)−∂c2(x̄) =
[1, 2]− [2, 4] = [−3, 0]. Furthermore, note that

c′1(x̄;d) = max
s∈[1,2]

sd =

{
2d if d ≥ 0

d if d ≤ 0
and c′2(x̄;d) = max

s∈[2,4]
sd =

{
4d if d ≥ 0
2d if d ≤ 0,

thus c′(x̄;d) = min{−d,−2d}. We conclude that {d ∈TX(x̄) : c′(x̄;d)< 0}=R+, whereas
{d ∈TX(x̄) : c′(x̄;d)≤ 0}=R+∪{0}, showing that x̄= 0 satisfies the CQ (3.3.4). However,
if we take f1(x) = 0 and f2(x) =−1

2x2 + x, the following system does not have a solution:{
0 ∈ ∂ f1(0)−∂ C f2(0)+ λ̄ [∂c1(0)−∂c2(0)]
λ̄ ≥ 0

≡{
0 ∈ −1+ λ̄ [−3,0]
λ̄ ≥ 0

≡

{
0 ∈ [−3λ̄ −1,−1]
λ̄ ≥ 0,

i.e., x̄ does not satisfy (3.3.9). Figure 3.1 illustrates the objective and constraint function in
this example: it is clear that x̄ is indeed a global maximizer of f (x) under the constraints
x ∈ X and c(x)≤ 0.

□

This example shows that, at item ii) of Theorem 3.3.5, we cannot replace the assumption
that x̄ is not a critical point of (3.3.14) with the CQ (3.3.4).
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3.3.2 The DoC setting

In the DoC setting, functions f2 and c2 are convex and the improvement function (3.3.10) is
DoC. Indeed, for x̄ fixed, we can write

H(x; x̄) = F(x; x̄)−G(x), with{
F(x; x̄) = max

{
f1(x)+ c2(x)− τ f (x̄), f2(x)+ c1(x)− τc(x̄)

}
,

G(x) = f2(x)+ c2(x).
(3.3.15)

Since F and G are convex functions, the criticality condition (3.3.3) for (3.3.11) (under this
DoC decomposition) reads as

0 ∈ ∂1F(x̄; x̄)−∂G(x̄)+NX(x̄), (3.3.16)

where ∂1F stands for the subdifferential of F with respect to the first argument. It turns out
that our new condition (3.3.13) is stronger than (3.3.16), used in [129].

Lemma 3.3.7. In addition to our basic assumptions on problem (3.1.1), suppose that f2 and
c2 are convex. Then the necessary optimality condition (3.3.13) implies (3.3.16).

Proof. Let x̄ ∈ X be a point satisfying (3.3.13). Let us first observe that since f2,c2 are
convex and thus regular, we have ∂G(x̄) = ∂ f2(x̄)+∂c2(x̄). A similar observation can be
made concerning the computation for F . Our analysis splits into three possible cases.

a) f (x̄)− τ f (x̄)< c(x̄)− τc(x̄). It follows from (3.3.13) that

0 ∈ NX(x̄)+∂c1(x̄)−∂c2(x̄)⊂ NX(x̄)+∂ f2(x̄)+∂c1(x̄)− [∂ f2(x̄)+∂c2(x̄)].

We claim that this inclusion implies (3.3.16). To see that, observe that the above
inequality implies f1(x̄)+ c2(x̄)− τ f (x̄) < f2(x̄)+ c1(x̄)− τc(x̄), which in turn
gives ∂1F(x̄; x̄) = ∂ f2(x̄)+ ∂c1(x̄). Therefore, the right-hand side of the above
inclusion is (3.3.16).

b) f (x̄)− τ f (x̄) = c(x̄)− τc(x̄). It follows from (3.3.13) that there exists λ ∈ [0,1]
such that

0 ∈ NX(x̄)+λ [∂ f1(x̄)−∂ f2(x̄)]+(1−λ )[∂c1(x̄)−∂c2(x̄)]

= NX(x̄)+λ [∂ f1(x̄)+∂c2(x̄)]−λ∂ f2(x̄)+(1−λ )∂c1(x̄)−∂c2(x̄)

⊂ NX(x̄)+λ [∂ f1(x̄)+∂c2(x̄)]+(1−λ )[∂ f2(x̄)+∂c1(x̄)]− [∂ f2(x̄)+∂c2(x̄)]

⊂ NX(x̄)+∂1F(x̄; x̄)−∂G(x̄).
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c) f (x̄)− τ f (x̄)> c(x̄)− τc(x̄). Again, (3.3.13) gives

0 ∈ NX(x̄)+∂ f1(x̄)−∂ f2(x̄)⊂ NX(x̄)+∂ f1(x̄)+∂c2(x̄)− [∂ f2(x̄)+∂c2(x̄)].

The proof is complete because in this case ∂1F(x̄; x̄) = ∂ f1(x̄)+∂c2(x̄) due to the
fact that f1(x̄)+ c2(x̄)− τ f (x̄)> f2(x̄)+ c1(x̄)− τc(x̄).

Remark 3.3.8. In the DoC setting, the three concepts of criticality (3.3.12), (3.3.13), and
(3.3.16) are equivalent when f2 and c2 are continuously differentiable at x̄. Indeed, in this
case f and c are regular at x̄ and (3.3.12) coincides with (3.3.13) (regardless of convexity of
f2 and c2). Theorem 2 in [129] ensures that, under these assumptions, (3.3.16) is equivalent
to (3.3.12). □

The following example shows that (3.3.16) does not necessarily imply (3.3.13) in the nondif-
ferentiable DoC case.

Example 3.3.9. Let X = [−1,1], f1 = 2x, f2 = |x|, c1 = 4x and c2 = 2|x|. At x̄ = 0, f (x̄) =
c(x̄) = 0 and thus, τ f (x̄) = τc(x̄) = 0 due to (3.3.10b). Furthermore, we have that

∂ f1(0) = {2}, ∂ f2(0) = [−1,1], ∂c1(0) = {4}, and ∂c2(0) = [−2,2].

As a result, ∂ f1(0)−∂ f2(0) = [1,3], ∂c1(0)−∂c2(0) = [2,6], ∂ f1(0)+∂c2(0) = [0,4], and
∂ f2(0)+∂c1(0) = [3,5]. As in NX(0) = {0}, we conclude that

0 ̸∈ [1,6] = conv{∂ f1(0)−∂ f2(0),∂c1(0)−∂c2(0)}+NX(0),

whereas
conv{∂ f1(0)+∂c2(0),∂c1(0)+∂ f2(0)}+NX(0) = [0,5]

and ∂ f2(0)+∂c2(0) = [−3,3], showing that (3.3.16) is satisfied but not (3.3.13). □

The paper [129] proposes a bundle method for DoC-constrained DoC programs em-
ploying the DoC decomposition H = F−G above. Once a critical point satisfying (3.3.16)
is computed, the link with criticality of the original problem is adequate if f2 and c2 are
continuously differentiable at x̄. In the next section we modify that method to compute a point
satisfying the stronger criticality condition (3.3.13). As a result, the link with criticality of the
original problem is nicely established by Theorem 3.3.5 without any additional assumption.
In fact, f2 and c2 need not even be convex, but weakly convex on some neighbourhood of
each x∈O . We, therefore, strengthen the analysis provided in [129] even though significantly
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fewer assumptions are required: [129] works in the DoC configuration, whereas here, we
deal with the more general CwC structure. These improvements, together with the optimality
conditions presented above, feature the main contributions of this chapter.

3.4 Proximal bundle method with improvement function

This section extends the proximal bundle method of [129] for computing a critical point
of problem (3.1.1). The main tool in our analysis is the improvement function H given
in (3.3.10). In the DoC setting, the algorithm of [129] works with the explicit DoC decom-
position (3.3.2) of H and computes a point x̄ ∈ X satisfying the classic criticality condition
in DoC programming (3.3.16). In this section we do not decompose H and consider the
milder assumption that f2 and c2 are weakly convex and target the stronger criticality condi-
tion (3.3.13).

3.4.1 The method’s main ingredients: model, subproblem, and descent
test

The algorithm requires four oracles (black-boxes) providing, for every given x∈ X , i∈ {1,2},
the function values fi(x), ci(x), arbitrary subgradients s f1 ∈ ∂ f1(x), sc1 ∈ ∂c1(x) (c.f., (3.2.1))
and arbitrary generalized subgradients s f2 ∈ ∂ C f2(x), sc2 ∈ ∂ Cc2(x) (c.f. (3.2.2)). We do
not impose any assumption on these (generalized) subgradients, as they are assumed to be
computed by (external) oracles that do not accept any intervention from the algorithm. (This
is particularly useful in industrial applications where companies do not want or cannot share
information on the underlying functions with optimizers.)

At iteration k ∈ N, given a trial point xk ∈ X , we construct a linearization of every
component (here sk

fi , sk
ci

, i ∈ {1,2}, denote the respective - generalized - subgradients at xk):

f̄ k
i (x) := fi(xk)+ ⟨sk

fi,x− xk⟩ (i = 1,2) (3.4.1a)

c̄k
i (x) := ci(xk)+ ⟨sk

ci
,x− xk⟩ (i = 1,2). (3.4.1b)

By convexity of f1 and c1, we have the following inequalities

f̄ k
1 (x)≤ f1(x) and c̄k

1(x)≤ c1(x) for all x ∈ Rn. (3.4.2)

Since X is compact and components f2 and c2 are assumed to be only weakly convex on
some neighbourhood of each x ∈ O , we have weaker inequalities for these functions. Let
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O ′ ⊂ O be an open convex set and µ f ,µc real numbers ensured by Proposition 3.2.4. As
xk ∈ X ⊂ O′, the following inequalities are due to Proposition 3.2.4, item ii)

f̄ k
2 (x)≤ f2(x)+

µ̄

2 ∥x− xk∥2 and c̄k
2(x)≤ c2(x)+

µ̄

2 ∥x− xk∥2 for all x ∈ X , (3.4.3)

where µ̄ := max{µ f , µc}> 0. Observe that the threshold µ̄ is in general unknown, and the
inequalities in (3.4.3) are only supposed to hold for x in X , in contrast with the (subgradient)
inequalities in (3.4.2).

Let Bk
f and Bk

c be two index sets gathering the bundle of information (function values
and subgradients) given by the oracles. In general, Bk

f ,B
k
c ⊂{0, . . . ,k} but other possibilities

exist making it possible to design a limited-memory method (see Remark 3.5.5 below). These
index sets are useful to define the following individual cutting-plane models for the convex
functions f1 and c1:

f̌ k
1 (x) := max

j∈Bk
f

f̄ j
1 (x) ≤ f1(x) for all x ∈ Rn

čk
1(x) := max

j∈Bk
c

c̄ j
1(x) ≤ c1(x) for all x ∈ Rn.

Furthermore, let ℓk ∈ {0, . . . ,k} be the iteration index of the best candidate solution (stability
center, in the parlance of bundle methods) among the trial points {x0, . . . ,xk}: whenever a
better candidate solution xk+1 is computed by the algorithm, at a so-called serious step, such
a point becomes the new stability center and the counter ℓ is increased by one: for κ ∈ (0, 1

2),
we declare a serious step and let ℓk+1 := k+1 if xk+1 ̸= xℓk and the inequality

H(xk+1;xℓk)≤ H(xℓk ;xℓk)− κ

2
∥xk+1− xℓk∥2 (3.4.5)

holds, and declare a null step and let ℓk+1 := ℓk otherwise. Since the descent test is indepen-
dent of the model, the following result from [129] also holds in our framework.

Lemma 3.4.1 (Lemma 1 in [129]). Let xℓk ∈ X be the stability center at iteration k. Then
H(xℓk ;xℓk)≥ 0 and if inequality (3.4.5) holds, we have that either

i) f (xk+1)≤ f (xℓk)− κ

2∥x
k+1− xℓk∥2 and c(xk+1)≤ 0 when c(xℓk)≤ 0; or

ii) c(xk+1)≤ c(xℓk)− κ

2∥x
k+1− xℓk∥2 when c(xℓk)> 0.

The rationale of serious iterates is to ensure sufficient decrease on one component function of
H(·;xℓk) while maintaining feasibility for (3.1.1) once reached. Having all these ingredients
at our disposal, we can now define our convex model for the improvement function (3.3.10)
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at iteration k :

Ȟk(x;xℓk) = max
{

f̌ k
1 (x)− f̄ ℓk

2 (x)− τ f (xℓk), čk
1(x)− c̄ℓk

2 (x)− τc(xℓk)
}
. (3.4.6)

(Even in the particular setting where f2 and c2 are convex functions, this model differs from
the one employed in [129] and is crucial to obtain convergence results stronger than the ones
in that paper.) Given a prox-parameter µk > 0 estimating the threshold µ̄ in (3.4.3), the next
iterate is the solution of the following strict convex subproblem

xk+1 = argmin
x∈X

Ȟk(x;xℓk)+
µk

2
∥x− xℓk∥2, (3.4.7)

which can be transformed into a QP (provided X is a polyhedron) by adding an extra variable
r ∈ R 

min
x,r

r+ µk

2 ∥x− xℓk∥2

s.t. f̄ j
1 (x)− f̄ ℓk

2 (x)− r ≤ τ f (xℓk) ∀ j ∈Bk
f

c̄ j
1(x)− c̄ℓk

2 (x)− r ≤ τc(xℓk) ∀ j ∈Bk
c

x ∈ X , r ∈ R.

(3.4.8)

The optimality condition for (3.4.7) gives

xk+1 = xℓk− 1
µk [p

k+1 + sk+1
X ], with

{
pk+1 ∈ ∂1Ȟ

k(xk+1;xℓk)

sk+1
X ∈ NX(xk+1).

(3.4.9)

As usual in bundle methods, we may remove from the model the inactive linearizations
to keep (3.4.8) small. To this end, we denote by B̄k

f ⊂Bk
f and B̄k

c ⊂Bk
c the index set of

active linearizations in the QP subproblem (3.4.8), i.e.,

B̄k
f :=

{
j ∈Bk

f : α
j
f > 0

}
and B̄k

c :=
{

j ∈Bk
c : α

j
c > 0

}
(3.4.10)

where α
j
f ≥ 0, j ∈ Bk

f , denote the Lagrange multipliers associated with the first set of

constraints and α
j

c ≥ 0, j ∈Bk
c , the ones associated with the second family of constraints.

We mention in passing that the index sets Bk
f and Bk

c can be kept bounded at the price of
including artificial (aggregate) linearizations. We postpone this discussion to Remark 3.5.5,
right after the analysis of null steps (the only place in the convergence analysis where bundle
management plays a role.)

We can now present the following proximal bundle method algorithm for CwC-constrained
CwC programs (3.1.1), which modifies [129, Alg. 1] in two ways. First, the convex model
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(3.4.6) for the improvement function is distinct. On the one hand, it is a key element to obtain
the stronger criticality condition (3.3.13), and on the other hand, it leads to a simpler/smaller
strongly convex QP (3.4.8) (more details can be found in Subsection 3.4.2 below). Second,
Algorithm 2 employs an ad-hoc rule to update the proximal parameter µk so that no pre-
estimation of the underlying weakly-convex moduli is needed. The proposed rule employs
the following value

ν
k := 2max

{
f̄ ℓk
2 (xk+1)− f2(xk+1)

∥xk+1− xℓk∥2 ,
c̄ℓk

2 (x
k+1)− c2(xk+1)

∥xk+1− xℓk∥2 , 0

}
. (3.4.11)

(For numerical performance it can be preferable to replace the last term (equal to zero) in
(3.4.11) by a small machine epsilon.)

Algorithm 2 Proximal Bundle Method for CwC-constrained CwC programs - CwC-PBM

Step 0 (Initialization) Let x0 ∈ X , κ ∈ (0, 1
2), κ ≤ µ0, ρ ≥ 0, σ ∈ [0,1), and Tol≥ 0 be given.

Call the oracles to compute fi(x0), ci(x0), and (generalized) subgradients s0
fi
, s0

ci
, i = 1,2.

Define k := ℓk = 0 and B0
f = B0

c := {0}.

Step 1 (Trial point) Compute xk+1 by solving the QP (3.4.8).

Step 2 (Stopping test) If ∥xk+1− xℓk∥ ≤ Tol, then stop and return xℓk .

Step 3 (Oracles call) Compute fi(xk+1), ci(xk+1), and subgradients sk+1
fi

, sk+1
ci

, i = 1,2.

Step 4 (Descent test)

(a) If (3.4.5) holds, then declare a serious step: define ℓk+1 := k + 1, choose
Bk+1

f ,Bk+1
c ⊂ {0, . . . ,k + 1} with {k + 1} ∈ Bk+1

f ∩Bk+1
c and arbitrarily select

µk+1 ∈ (0,µk].

(b) Else, declare a null step: define ℓk+1 := ℓk and choose Bk+1
f ,Bk+1

c ⊂ {0, . . . ,k+1}
with B̄k

f ∪ {k + 1, ℓk} ⊂ Bk+1
f and B̄k

c ∪ {k + 1, ℓk} ⊂ Bk+1
c (B̄k

f and B̄k
c as in

(3.4.10)).
Compute νk by (3.4.11). If νk ≥ µk−2κ , set µk+1 = νk +1; otherwise µk+1 = µk.

Step 5 (Loop) Set k := k+1 and go back to Step 1.

A drawback of the rule for updating the prox-parameter is that µk only increases after a
null step when the inequality νk≥ µk−2κ is verified. As a result, µk may never increase: this
is, for instance, the case when f2 and c2 are convex (thus νk = 0 for all k). The motivation
for this rule is to eventually keep the prox-parameter fixed if the algorithm performs an
infinite sequence of null steps after a last serious step (see Lemma 3.5.1). This is a condition
necessary to prove Proposition 3.5.4 below. We care to mention that increasing µk after a
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null step is a simple strategy that pays off in practice: it helps the algorithm to either stop or
produce a new serious step, and thus accelerate the numerical performance.

3.4.2 The DoC setting: a comparison with the earlier bundle method
for DoC programs

In the DoC setting, both functions f2 and c2 are convex and the improvement function
(3.3.10) is DoC. The DoC decomposition given in (3.3.2), with x̄ replaced with xℓk , was
exploited in the bundle method of [129] through the following model for the improvement
function H(·;xℓk) (see Eq. (18) therein):

max
{

f̌ k
1 (x)+ čk

2(x)− τ f (xℓk), f̌ k
2 (x)+ čk

1(x)− τc(xℓk)
}
− [ f̄ ℓk

2 (x)+ c̄ℓk
2 (x)]. (3.4.12)

Differently from our model (3.4.6), the above gathers also cutting-planes for f2 and c2

and, although gathering more information, only the weaker criticality condition (3.3.16) is
ensured by the method of [129]. Hence, the proposed model (3.4.6) is more advantageous
than (3.4.12) from both practical and theoretical point of view:

• the quadratic program (QP) issued by our model has only half of the linearizations,
and is thus simpler to solve;

• convexity of f2 and c2 are not required in (3.4.6) in contrast to (3.4.12);

• both models (3.4.6) and (3.4.12) are iteratively updated to ensure that every cluster
point x̄ ∈ X of the sequence of stability centers satisfies a criticality condition. To
show that such a point is also critical for (the DoC counterpart of) (3.1.1), [129, Thm.
2] requires both f2 and c2 to be continuously differentiable at x̄. As we will show in
Theorem 3.5.9 below, neither convexity nor differentiability of f2 and c2 are required
to establish that x̄ issued by Algorithm 2 is also critical for (3.1.1) in the sense of
(3.3.9). Thus, Algorithm 2 strengthens the results of [129] even though significantly
fewer assumptions are required.

Although the apparently small changes concerning [129, Alg. 1], the convergence analysis
in that paper cannot be reused here. The reason is that the analysis in [129] strongly depends
on the DoC decomposition of the employed model for the improvement function. That
reasoning is no longer valid for our new model, even if f2 and c2 were convex. Furthermore,
our more general setting requires extra steps to cope with the weakly convex functions.
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3.5 Convergence Analysis

The goal of this section is to show that every cluster point x̄ of the sequence {xℓk}k ⊂ X
generated by Algorithm 2 satisfies the necessary optimality condition (3.3.13). To this end,
we first observe that the sequence of prox-parameters issued by Algorithm 2 is bounded.

Lemma 3.5.1. The value µmax := supk∈N µk is finite. Furthermore, if the algorithm produces
an infinite sequence of null steps after a last serious step, then the prox-parameter becomes
eventually constant.

Proof. Let µ̄ := max{µ f2, µc2,µ
0} > 0 be given, where µ f2 and µc2 are as in Proposi-

tion 3.2.4 for the weakly convex functions f2 and c2, and µ0 is the parameter given to the
algorithm at initialization. Then, by taking y := xk+1 and x := xℓk in (3.2.4) it follows that

2
f̄ ℓk
2 (xk+1)− f2(xk+1)

∥xk+1− xℓk∥2 ≤ µ̄, and 2
c̄ℓk

2 (x
k+1)− c2(xk+1)

∥xk+1− xℓk∥2 ≤ µ̄ for all k with xk+1 ̸= xℓk .

As a result, νk ≤ µ̄ for all k. Note that the prox-parameter is only increased after a null
step such that νk ≥ µk−2κ . In this case, the rule employed in Step 4 of the algorithm sets
µk+1 = νk +1, which gives µk+1 = νk +1≤ µ̄ +1. Since the algorithm does not increase
the prox-parameter after a serious step or null step such that νk < µk− 2κ , we conclude
that µmax := supk∈N µk ≤ µ̄ + 1 is finite. Finally, note that the prox-parameter is sharply
increased after a null step such that νk ≥ µk−2κ: µk+1 = νk +1≥ µk−2κ +1 > µk +δ

because κ ∈ (0, 1
2), with δ = 1

2 −κ > 0. As a result, if the algorithm produces an infinite
sequence of null steps after a last serious step, then the inequality νk < µk− 2κ will be
satisfied for all k large enough and the prox-parameter will become constant (otherwise µk

would increase indefinitely, which contradicts that µmax is finite).

We now define the following function H̄ : O×O→ R, which is of key importance in our
analysis:

H̄(x;y) := max
{

f1(x)− [ f2(y)+ ⟨s f2,x− y⟩]− τ f (y), c1(x)− [c2(y)+ ⟨sc2,x− y⟩]− τc(y)
}
,

(3.5.1)
with s f2 ∈ ∂ C f2(y) and sc2 ∈ ∂ Cc2(y). As these subgradients are not specified, the above
definition is ambiguous. However, when y is a point previously computed by the algorithm,
say y = x j for j ≤ k, then s j

f2
∈ ∂ C f2(x j) and s j

c2 ∈ ∂ Cc2(x j) are the subgradients provided
by the oracles and ambiguity disappears:

H̄(x;x j) := max
{

f1(x)− f̄ j
2 (x)− τ f (x j), c1(x)− c̄ j

2(x)− τc(x j)
}
.
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It follows from convexity of f1 and c1 that, for every y ∈ O fixed, the function H̄(·;y) is
convex and satisfies H̄(·;xℓk)≥ Ȟk(·;xℓk) for all k. Furthermore, as ℓk ∈Bk

f ∩Bk
c for all k,

we have that f̌ k
i (x

ℓk) = fi(xℓk), čk
i (x

ℓk) = ci(xℓk), i = 1,2, and thus

H̄(xℓk ;xℓk) = Ȟk(xℓk ;xℓk) = H(xℓk ;xℓk). (3.5.2)

The following lemma is of particular interest in the remainder of this chapter.

Lemma 3.5.2. Suppose that x̄ minimizes H̄(·; x̄) over X. Then, x̄ satisfies the necessary
optimality condition (3.3.13).

Proof. Convexity of H̄(·; x̄) in the first argument and assumption on x̄ ∈ X imply that
0 ∈ ∂1H̄(x̄; x̄) +NX(x̄). The result follows by noting that, for some pair of generalized
subgradients s̄ f2 ∈ ∂ C f2(x̄) and s̄c2 ∈ ∂ Cc2(x̄), the following set

∂1H̄(x̄; x̄) =


∂c1(x̄)− s̄c2 if f (x̄)− τ f (x̄)< c(x̄)− τc(x̄)
conv

{
∂ f1(x̄)− s̄ f2, ∂c1(x̄)− s̄c2

}
if f (x̄)− τ f (x̄) = c(x̄)− τc(x̄)

∂ f1(x̄)− s̄ f2 if f (x̄)− τ f (x̄)> c(x̄)− τc(x̄)

is contained in the one defined by the curly brackets in (3.3.13).

We begin the convergence analysis for the case Tol= 0 with the remark that the sequence
of stability centers {xℓk}k has at least one cluster point, since it is contained in the compact
set X . We split the analysis into three cases: the algorithm performs only finitely many
steps; the algorithm performs infinitely many steps and the sequence {xℓk}k is either finite or
infinite.

Proposition 3.5.3 (Finitely many iterations). Assume that Algorithm 2 stops at iteration k
with Tol= 0. Then, the last stability center x̄ := xℓk = xk+1 satisfies condition (3.3.13).

Proof. It follows from the model’s definition (3.4.6) and (3.5.1) that H̄(x;xℓk) ≥ Ȟk(x;xℓk)

for all x ∈ O . Hence, as xℓk ∈ X we have that

H̄(xℓk ;xℓk)≥min
x∈X

H̄(x;xℓk)+
µk

2
∥x− xℓk∥2

≥min
x∈X

Ȟk(x;xℓk)+
µk

2
∥x− xℓk∥2

= Ȟk(xk+1;xℓk)+
µk

2
∥xk+1− xℓk∥2

= Ȟk(xℓk ;xℓk) = H̄(xℓk ;xℓk),
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where the first equality is due to (3.4.7), the second one follows by the fact that xk+1 = xℓk

since the algorithm stops at iteration k with Tol = 0, and the last one is due to (3.5.2).
Hence, xℓk minimizes H̄(·;xℓk)+ µk

2 ∥ ·−xℓk∥2 over X and the quadratic term vanishes in the
corresponding optimality condition: 0 ∈ ∂1H̄(x̄;xℓk)+NX(x̄) and the stated result follows
from Lemma 3.5.2.

If the algorithm performs finitely many serious steps and infinite number of null steps,
the following result shows that the last stability center satisfies (3.3.13).

Proposition 3.5.4 (Finitely many serious steps). Suppose that Algorithm 2 with Tol = 0
does not stop but produces only finitely many serious steps. Then the last stability center x̄
satisfies the condition (3.3.13), and limk→∞ xk = x̄.

Proof. Let ℓ∈N denote the last serious iteration, then x̄ = xℓ and note that, for all subsequent
(null) iterations k > ℓ, ℓk = ℓ and the linearizations f̄ ℓ2 and c̄ℓ2 are fixed in the model Ȟk(·; x̄),
which is in this case a cutting-plane model for the convex function H̄(·; x̄). Here we take
τℓf = τ f (xℓ), τℓc = τc(xℓ), and function H̄(·; x̄) defined with the fixed linearizations f̄ ℓ2 and c̄ℓ2,
i.e.,

H̄(·;xℓ) := max
{

f1(·)− f̄ ℓ2(·)− τ
ℓ
f , c1(·)− c̄ℓ2(·)− τ

ℓ
c

}
.

We highlight that the updating rule for µk in Algorithm 2 ensures that the sequence {µk}k>ℓ

is non-decreasing and becomes constant at a certain value µ ′ ∈ (0,µmax] after finitely many
steps k′ > ℓ, as a consequence of Lemma 3.5.1. More precisely, the updating rule at Step
4(b) of Algorithm 2 ensures that

µk = µ ′ and νk +2κ < µ ′ for all k > k′. (3.5.3)

Hence, from iteration k′ on, Algorithm 2 becomes a cutting-plane procedure to compute the
unique solution x̃ of

min
x∈X

H̄(x; x̄)+
µ ′

2
∥x− x̄∥2. (3.5.4)

As the algorithm keeps all the active linearizations in the bundles (Step 4(b)), standard
arguments from the convex bundle methods’ theory (see [24, Prop. 4.3]) ensure that

limk→∞ xk = x̃ and limk→∞[Ȟ
k(xk+1; x̄)− H̄(xk+1; x̄)] = 0.

(The last inequality implies that the convex model asymptotically coincides with the function
at the limit point.) We claim that x̃ = x̄. To show that, let us assume the opposite, i.e.,
x̃ ̸= x̄, and arrive to a contradiction. In this case, for some δ > 0, we may find and index
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k1 such that ∥xk+1− x̄∥2 > δ for all k ≥ k1. We may furthermore find an index k2 such that
Ȟk(xk+1; x̄)− H̄(xk+1; x̄)≥−κ

2 δ for all k ≥ k2 as the left-hand side vanishes. Therefore, for
k′′ ≥max{k1,k2,k′}, we have

Ȟk(xk+1; x̄)− H̄(xk+1; x̄)≥−κ

2
∥xk+1− x̄∥2 ̸= 0 for all k > k′′.

The following chain of inequalities holds at every iteration k > k′′:

Ȟk(x̄; x̄) ≥ Ȟk(xk+1; x̄)+ µ ′

2 ∥x
k+1− x̄∥2 (by (3.4.7) and (3.5.3))

= [Ȟk(xk+1; x̄)− H̄(xk+1; x̄)]+ H̄(xk+1; x̄)+ µ ′

2 ∥x
k+1− x̄∥2

≥−κ

2∥x
k+1− x̄∥2 + H̄(xk+1; x̄)+ µ ′

2 ∥x
k+1− x̄∥2

≥−κ

2∥x
k+1− x̄∥2 +max

{
f1(xk+1)− f̄ ℓ2(x

k+1)− τℓf +
µ ′

2 ∥x
k+1− x̄∥2

c1(xk+1)− c̄ℓ2(x
k+1)− τℓc +

µ ′

2 ∥x
k+1− x̄∥2

}
(by (3.5.1))

>−κ

2∥x
k+1− x̄∥2 +max

{
f1(xk+1)− f̄ ℓ2(x

k+1)− τℓf +
νk+2κ

2 ∥xk+1− x̄∥2

c1(xk+1)− c̄ℓ2(x
k+1)− τℓc +

νk+2κ

2 ∥xk+1− x̄∥2

}
(by (3.5.3))

≥−κ

2∥x
k+1− x̄∥2 +max

{
f1(xk+1)− f2(xk+1)− τℓf +

2κ

2 ∥x
k+1− x̄∥2

c1(xk+1)− c2(xk+1)− τℓc +
2κ

2 ∥x
k+1− x̄∥2

}
(by (3.4.11))

= H(xk+1; x̄)+ κ

2∥x
k+1− x̄∥2. (by (3.3.10))

As x̄= xℓ and Ȟk(xℓ;xℓ) =H(xℓ;xℓ) due to (3.5.2), we have shown that the descent test (3.4.5)
is satisfied at xk+1 ̸= xℓ:

H(xk+1;xℓ)≤ H(xℓ;xℓ)− κ

2
∥xk+1− xℓ∥2,

contradicting thus the assumption that only null steps are performed for k > ℓ. Hence, x̃ = x̄
and the last stability center solves (3.5.4). This allows us to conclude (thanks to convexity of
H̄(·; x̄)) that x̄ = xℓ solves minx∈X H̄(x;xℓ). Lemma 3.5.2 then concludes the proof.

Remark 3.5.5 (Bundle compression). It is worth mentioning that the index sets Bk
f and

Bk
c gathering the information bundle can be kept bounded; each one having at most Mmax

indices, for a chosen integer Mmax ≥ 3. Indeed, it suffices to keep in the bundles the
linearizations issued by the stability center xℓk , the new trial point xk+1 and the so-called
aggregate linearization as in [24, Eq. 4.5]. When transcribed to our setting, the aggregate
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linearizations for f1 and c1 read as

f̄
ak

f
1 (x) := f̌ k

1 (x
k+1)+ ⟨pk

f ,x− xk+1⟩ ≤ f1(x) ∀x ∈ Rn

c̄ak
c

1 (x) := čk
1(x

k+1)+ ⟨pk
c,x− xk+1⟩ ≤ c1(x) ∀x ∈ Rn,

with pk
f := ∑ j∈Bk

f
α

j
f s j

f1
, pk

c := ∑ j∈Bk
c
α

j
c s j

c1 and multipliers α f ,αc as in (3.4.10). We claim

that the following economical rule for managing Bk
f and Bk

c (in Step 4 of Algorithm 2) is
enough to ensure convergence:

Serious step: set Bk+1
f = {k+1} and Bk+1

c = {k+1};

Null step: set Bk+1
f = {k+1, ℓk,ak

f } and Bk+1
c = {k+1, ℓk,ak

c}.

Indeed, Proposition 3.5.4 is still valid if the algorithm employs the above economical rule for
updating the bundles: the key Proposition 4.3 from [24] still applies and thus the displayed
equations right after (3.5.4) hold. As it can be noted in the sequel, no bundle management
restriction (besides the requirement that k+ 1 ∈Bk+1

f ∩Bk+1
c ) is required after a serious

steps. □

We consider now the case of infinitely many serious steps. To this end, we need the following
auxiliary result.

Lemma 3.5.6. There exist constants L,M > 0 such that, for all k ∈ N, the three following
conditions hold for pk+1 ∈ ∂1Ȟ

k(xk+1;xℓk), sk+1
X ∈ NX(xk+1), and ek+1 = L||xk+1− xℓk ||:

||pk+1 + sk+1
X || ≤ µmax ||xk+1− xℓk || ≤M, (3.5.5a)

pk+1 + sk+1
X ∈ ∂ek+1

[
H̄(xℓk ;xℓk)+ iX(xℓk)

]
, (3.5.5b)

pk+1 ∈ ∂ek+1H̄(xℓk ;xℓk). (3.5.5c)

Proof. As µk ∈ (0,µmax] (c.f. Lemma 3.5.1), expression (3.4.9) yields the first inequality
in (3.5.5a). Recall that the iterates xk+1 and xℓk are contained in the bounded set X for all k.
The second inequality in (3.5.5a) then follows. Convexity of the function Ȟk + iX and (3.4.9)
gives that, for all x ∈ Rn,

Ȟk(x;xℓk)+ iX(x) ≥ Ȟk(xk+1;xℓk)+ ⟨pk+1 + sk+1
X ,x− xk+1⟩

≥ Ȟk(xk+1;xℓk)+ ⟨pk+1 + sk+1
X ,x− xℓk⟩+ ⟨pk+1 + sk+1

X ,xℓk− xk+1⟩

≥ Ȟk(xk+1;xℓk)+ ⟨pk+1 + sk+1
X ,x− xℓk⟩−M||xℓk− xk+1||,

(3.5.6)
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where the last inequality is due to (3.5.5a) and Cauchy-Schwarz inequality. Definition (3.4.6)
of Ȟk(·;xℓk) as well as the fact that ℓk ∈Bk

f ∩Bk
c give the following chain of inequalities:

Ȟk(xk+1;xℓk)≥max
{

f̄ ℓk
1 (xk+1)− f̄ ℓk

2 (xk+1)− τ f (xℓk), c̄ℓk
1 (x

k+1)− c̄ℓk
2 (x

k+1)− τc(xℓk)
}

= max
{

f1(xℓk)− f2(xℓk)+ ⟨sℓk
f1
− sℓk

f2
,xk+1− xℓk⟩− τ f (xℓk),

c1(xℓk)− c2(xℓk)+ ⟨sℓk
c1
− sℓk

c2
,xk+1− xℓk⟩− τc(xℓk)

}
≥max

{
f1(xℓk)− f2(xℓk)− τ f (xℓk), c1(xℓk)− c2(xℓk)− τc(xℓk)

}
+min

{
⟨sℓk

f1
− sℓk

f2
,xk+1− xℓk⟩, ⟨sℓk

c1
− sℓk

c2
,xk+1− xℓk⟩

}
.

Since X ⊂ O is compact, we have that ∂ f1(X), ∂c1(X), ∂ C f2(X), and ∂ Cc2(X) are bounded
sets (see Section 3.2). Hence, there exist K f > 0 and Kc > 0 such that, ∥sℓk

f1
− sℓk

f2
∥ ≤ K f and

∥sℓk
c1− sℓk

c2∥ ≤ Kc for all k. Applying the Cauchy-Schwarz inequality to the inequalities above
and recalling that

max
{

f1(xℓk)− f2(xℓk)− τ f (xℓk), c1(xℓk)− c2(xℓk)− τc(xℓk)
}
= H(xℓk ;xℓk) = H̄(xℓk ;xℓk)

by definition, we get

Ȟk(xk+1;xℓk)≥ H̄(xℓk ;xℓk)−L0 ||xk+1− xℓk ||, with L0 = max{K f ,Kc}. (3.5.7)

Recall that H̄(x;xℓk)≥ Ȟk(x;xℓk) for all x ∈ Rn and combine (3.5.6) with (3.5.7) to obtain

H̄(x;xℓk)+ iX(x)≥ Ȟk(x;xℓk)+ iX(x)

≥ Ȟk(xk+1;xℓk)+ ⟨pk+1 + sk+1
X ,x− xℓk⟩−M||xℓk− xk+1||

≥ H̄(xℓk ;xℓk)− (L0 +M)||xk+1− xℓk ||+ ⟨pk+1 + sk+1
X ,x− xℓk⟩.

We have thus shown (3.5.5b) with L = M+L0. To prove the last inclusion (3.5.5c), observe
that this chain of inequalities remains true if the term iX(x) is excluded together with
corresponding subdifferential sk+1

X : for all x ∈ Rn,

H̄(x;xℓk)≥ Ȟk(x;xℓk)≥ Ȟk(xk+1;xℓk)+ ⟨pk+1,x− xℓk⟩−M||xℓk− xk+1||
≥ H̄(xℓk ;xℓk)+ ⟨pk+1,x− xℓk⟩− (L0 +M)||xk+1− xℓk ||.



76 Convex-Weakly-Convex Algorithm

Lemma 3.5.6 can be applied to any iteration k+1 between the serious step ℓk and ℓk+1

(ℓk+1 included). Indeed, equation (3.4.9) used to show (3.5.5a) holds true. Other arguments
used in the proof remain valid for any iteration between ℓk and ℓk+1, as from the point of
view of the algorithm, the only change is the bundle information, which is not explicitly used
in the proof.

Observe that Ȟk(·;xℓk) given in (3.4.6) is the pointwise maximum of finitely many affine
functions. Hence, its subdifferential is the convex hull of the “active" linearization slopes,
i.e., Proposition 3.2.1 ii) asserts that

∂1Ȟ
k(xk+1;xℓk) := conv

{{
s j

f1
− sℓk

f2

}
j∈B̄k

f

,
{

s j
c1
− sℓk

c2

}
j∈B̄k

c

}
, (3.5.8)

with B̄k
f and B̄k

c given in (3.4.10). Since X ⊂ O is compact, we have that ∂ f1(X), ∂c1(X),
∂ C f2(X), and ∂ Cc2(X) are bounded sets (see Section 3.2). Thus, (3.4.9) and (3.5.8) certificate
that the sequence of model’s subgradients

{
pk} is bounded. To prove the next proposition

we will use the latter property, along with the following characteristic of subdifferentials for
a sequence of convex functions that converges pointwise.

Lemma 3.5.7. Let ϕ : Rn→ R be a convex function, and {ϕℓ}ℓ∈N a sequence of convex
functions ϕℓ : Rn→R converging pointwise to ϕ , i.e., lim

ℓ→∞
ϕℓ(x) = ϕ(x) for every given point

x. Furthermore, let {xℓ} ⊂ Rn be such that lim
ℓ→∞

xℓ = x̄ and {εℓ} ⊂ R+ satisfy lim
ℓ→∞

εℓ = 0. If

gℓ ∈ ∂εℓϕℓ(xℓ) for all ℓ and lim
ℓ→∞

gℓ = ḡ, then ḡ ∈ ∂ϕ(x̄).

Proof. First, let us prove that liminfℓϕℓ(xℓ) ≥ ϕ(x̄). Since dom(ϕℓ) = dom(ϕ) = Rn, it
follows from [111, Cor. 2C] that the pointwise convergence of {ϕℓ}ℓ∈N is equivalent to
epi-convergence, which in turn is equivalent (see [111, Eq. (4.2)]) to epi-convergence of
{ϕ∗ℓ }ℓ∈N, the sequence of conjugate functions to ϕℓ. Hence, it follows that limℓϕ∗ℓ (x)=ϕ∗(x)
for every given x ∈ Rn. Now consider the following development:

ϕℓ(xℓ) = (ϕ∗ℓ )
∗(xℓ) = sup

y∈Rn
[⟨y,xℓ⟩−ϕ

∗
ℓ (y)]≥ ⟨y,xℓ⟩−ϕ

∗
ℓ (y) ∀y ∈ Rn.

Accordingly, liminfℓϕℓ(xℓ)≥ liminfℓ[⟨y,xℓ⟩−ϕ∗ℓ (y)] = ⟨y, x̄⟩−ϕ∗(y) for all y∈Rn, showing
that

liminf
ℓ

ϕℓ(xℓ)≥ sup
y

[⟨y, x̄⟩−ϕ
∗(y)] = (ϕ∗)∗(x̄) = ϕ(x̄).
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Recall that gℓ ∈ ∂εℓϕℓ(xℓ). Then, ϕℓ(x)≥ ϕℓ(xℓ)+ ⟨gℓ,x− xℓ⟩− εℓ for all x ∈ Rn. By taking
the limit when ℓ goes to infinity we get

ϕ(x) = lim
ℓ

ϕℓ(x) = liminf
ℓ

ϕℓ(x)≥ liminf
ℓ

[ϕℓ(xℓ)+ ⟨gℓ,x− xℓ⟩− ε
ℓ]

≥ liminf
ℓ

ϕℓ(xℓ)+ liminf
ℓ
⟨gℓ,x− xℓ⟩− limsup

ℓ
ε
ℓ

≥ ϕ(x̄)+ ⟨ḡ,x− x̄⟩,

showing that ḡ ∈ ∂ϕ(x̄).

Proposition 3.5.8 (Infinitely many serious steps). Assume that the algorithm performs
infinitely many serious steps. Then, any cluster point x̄ ∈ X of the sequence {xℓk}k satisfies
the necessary optimality condition (3.3.13).

Proof. We first show that
lim
k→∞
∥xℓk+1− xℓk∥= 0 . (3.5.9)

To this end, we must analyze the two cases of Lemma 3.4.1. In case i), Algorithm 2 produces
a feasible point for (3.1.1) after finitely many serious steps and all subsequent points are
feasible. Let xℓk1 be the first feasible serious iterate. Then, Lemma 3.4.1 i) yields

f (xℓk+1)≤ f (xℓk)− κ

2∥x
ℓk+1− xℓk∥2 and c(xℓk+1)≤ 0 for all k ≥ ℓk1 .

The telescopic sum of the first inequality above yields

∞

∑
k=k1

∥xℓk+1− xℓk∥2 ≤ 2
κ

∞

∑
k=k1

(
f
(
xℓk
)
− f
(
xℓk+1

))
≤ 2

κ

(
f
(
xℓk1
)
− lim

k→∞
f
(
xℓk+1

))
.

Since f is finite-valued and continuous over the bounded set X , the right-hand side of the
above inequality is finite. Hence, (3.5.9) holds. Assume now that the sequence {xℓk} is
infeasible for (3.1.1). Lemma 3.4.1 ii) yields

0 < c(xℓk+1)≤ c(xℓk)− κ

2∥x
ℓk+1− xℓk∥2 for all ℓ.

Once again, by using the telescopic sum we get (3.5.9).
As X ⊂ O is compact, with O an open set contained in the domains of component

functions, and the generalized subdifferential is locally compact, we conclude that for
sℓk

f2
∈ ∂ C f2(xℓk) and sℓk

c2 ∈ ∂ Cc2(xℓk){
xℓk
}
,
{

sℓk
f2

}
and

{
sℓk

c2

}
are bounded sequences.
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By taking subsequences, we can define an index set K ⊂ {0,1,2, . . .} such that

lim
K ∋k→∞

xℓk = x̄ ∈ X , lim
K ∋k→∞

sℓk
f2
= s̄ f2 ∈ ∂

C f2(x̄) and lim
K ∋k→∞

sℓk
c2
= s̄c2 ∈ ∂

Cc2(x̄),

where the two last limits are due to the fact that the generalized subdifferential is outer-
semicontinuous [20, Prop. 2.1.5(b)]. Let us now define ϕk(·) = H̄(·;xℓk) and ϕ(·) = H̄(·; x̄),
with the latter defined in (3.5.1) with y = x̄ and the pair of generalized subgradients (s̄ f2, s̄c2)

above. For every x ∈ Rn fixed, the above limits imply

lim
K ∋k→∞

H̄(x;xℓk) = H̄(x; x̄),

i.e., {ϕk}k∈K converges pointwise to ϕ . Applying Lemma 3.5.6 for k+1 = ℓk+1, we obtain
pℓk+1 ∈ ∂eℓk+1 ϕℓ(xℓk) (Eq. (3.5.5c)). Furthermore, as the sequence {pℓk+1} is bounded (see
the paragraph right before this proposition), we may take another subsequence indexed by
K ′ ⊂K so that limK ′∋ℓ→∞ pℓk+1 = p̄ ∈Rn and limK ′∋ℓ→∞ eℓk+1 = 0 in view of (3.5.9) and
definition of ek+1 given in Lemma 3.5.6. With these conditions at hand, Lemma 3.5.7 ensures
that p̄ ∈ ∂ϕ(x̄), i.e., p̄ ∈ ∂1H̄(x̄; x̄). Next, observe that {sℓk+1

X } is a bounded sequence as the
inequality

||pℓk+1 + sℓk+1
X || ≤ µmax||xℓk+1− xℓk || (3.5.10)

holds due to Lemma 3.5.6 (with µmax finite due to Lemma 3.5.1). By definition of the
convex normal cone, it follows that there exists a suitable subsequence of {sℓk+1

X }k∈K ′′ , with
K ′′ ⊂K ′ converging to a cluster point s̄ ∈ NX(x̄) = ∂ iX(x̄). Hence, since X is polyhedral
and ri(Dom(H̄(·; x̄))) = O ̸= /0,

p̄+ s̄ ∈ ∂1H̄(x̄; x̄)+∂ iX(x̄) = ∂1
[
H̄(x̄; x̄)+ iX(x̄)

]
. (3.5.11)

Finally, inequality (3.5.10) combined with (3.5.9) yield p̄+ s̄ = 0. Hence, 0 ∈ ∂1
[
H̄(x̄; x̄)+

iX(x̄)
]
, showing that x̄ minimizes H̄(·; x̄) over X . Lemma 3.5.2 thus concludes the proof.

The following theorem sums up the algorithm’s convergence analysis.

Theorem 3.5.9 (Convergence analysis). Let X ̸= /0 be a bounded polyhedron contained in
the open set O , f1,c1 : O → R convex, and f2,c2 : O → R weakly convex functions on some
neighbourhood of each x ∈ O . If in Algorithm 2 the stopping test tolerance Tol is set to
zero, then any cluster point x̄ of the sequence of stability centers {xℓk} satisfies the necessary
optimality condition (3.3.13).

Furthermore, concerning the original problem (3.1.1), the following holds:
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i) If c(x̄)> 0 (which cannot happen if x0 is feasible), then x̄ is a critical point of

min
x∈X

c1(x)− c2(x).

ii) If c(x̄) = 0 and x̄ is not a critical point of minx∈X c1(x)− c2(x), then x̄ satisfies the
criticality condition (3.3.9) with λ̄ > 0.

iii) If c(x̄)< 0, then x̄ satisfies the criticality condition (3.3.9) with λ̄ = 0.

If Tol> 0, then the algorithm stops after finitely many steps k ∈ N with an approximate
critical point xℓk of (3.3.13).

Proof. For the case Tol = 0, condition (3.3.13) follows directly from Proposition 3.5.3 if
{xℓk} is finite, from Proposition 3.5.4 if the the algorithm produces only finitely many serious
steps followed by an infinite sequence of null steps, and from Proposition 3.5.8 if infinitely
many serious steps are produced.

Furthermore, the connection with the necessary optimality condition for the original
problem (3.1.1) is established by Theorem 3.3.5.

Proposition 3.5.4 ensures that lim
k→∞
||xk+1− xℓ||= 0 if xℓ is the last stability center. Other-

wise, lim
k→∞
||xℓk+1− xℓk ||= 0, as shown in the proof of Proposition 3.5.8. Thus, Algorithm 2

stops after finitely many steps provided Tol> 0.

3.6 Simplified algorithm for the case without nonlinear
constraints

This section describes how Algorithm 2 can be simplified to deal with the simpler convexly-
constrained problem

min
x∈X

f (x), with f (x) = f1(x)− f2(x). (3.6.1)

In this case, the problem’s model (3.4.6) reduces to Ȟk(x;xℓk) = f̌ k
1 (x)− f̄ ℓk

2 (x), and the
descent test (3.4.5) becomes f (xk+1)≤ f (xℓk)− κ

2∥x−xℓk∥2. Hence, Algorithm 2 boils down
to the following plainer scheme.

Convergence analysis for Algorithm 3 follows from that of Algorithm 2 upon several
simplifications. Instead of doing this exercise, we simply state the following result.

Theorem 3.6.1. Consider problem (3.6.1) with X ̸= /0 a bounded polyhedron contained in
the open set O , f1 : O → R convex, and f2 : O → R weakly convex on some neighbourhood
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Algorithm 3 Proximal Bundle Method for Convexly-Constrained CwC programs

Step 0 (Initialization) Let x0 ∈ X , κ ∈ (0, 1
2), κ ≤ µ0, and Tol≥ 0 be given.

Call the oracles to compute fi(x0) and (generalized) subgradients s0
fi
, i = 1,2.

Define k := ℓk = 0 and B0
f := {0}.

Step 1 (Trial point) Compute xk+1 the (x-part) solution of the QP
min
x,r

r+ µk

2 ∥x− xℓk∥2

s.t. f̄ j
1 (x)− f̄ ℓk

2 (x)− r ≤ 0 ∀ j ∈Bk
f

x ∈ X , r ∈ R.

Step 2 (Stopping test) If ∥xk+1− xℓk∥ ≤ Tol, then stop and return xℓk .

Step 3 (Oracles call) Compute fi(xk+1), and subgradients sk+1
fi

, i = 1,2.

Step 4 (Descent test)

(a) If f (xk+1)≤ f (xℓk)− κ

2 ∥x− xℓk∥2 holds, then declare a serious step: define ℓk+1 :=
k + 1, choose Bk+1

f ⊂ {0, . . . ,k + 1} with {k + 1} ∈ Bk+1
f and arbitrarily select

µk+1 ∈ (0,µk].

(b) Else, declare a null step: define ℓk+1 := ℓk and choose Bk+1
f ⊂ {0, . . . ,k+1} with

B̄k
f ∪{k+1, ℓk} ⊂Bk+1

f (B̄k
f as in (3.4.10)).

Compute νk := 2max
{

f̄
ℓk
2 (xk+1)− f2(xk+1)

∥xk+1− xℓk∥2 , 0
}

. If νk ≥ µk− 2κ , set µk+1 = νk + 1;

otherwise µk+1 = µk.

Step 5 (Loop) Set k := k+1 and go back to Step 1.

of each x ∈ O . If in Algorithm 3 the stopping test tolerance Tol is set to zero, then any
cluster point x̄ of the sequence of stability centers {xℓk} satisfies the necessary optimality
condition (3.3.3).

If Tol> 0, then the algorithm stops after finitely many steps k ∈ N with an approximate
critical point xℓk of (3.3.3).

To have an intuition of why the above theorem is valid, the reader may think of adding a
dummy convex nonlinear convex function c(x) = c1(x)−0 to (3.6.1) and rely on the results
from Sections 3.4 and 3.5. Indeed, by selecting a constant M > 0 large enough and function
c such that c(x)≤−M < 0 for all x ∈ X , we can see that Algorithm 2 applied to (3.6.1) with
the additional and superfluous constraint c(x)≤ 0 boils down to Algorithm 3. Furthermore,
in this artificial setting, the above convergence result follows directly from Theorem 3.5.9,
item iii).
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3.7 Illustrative numerical examples

This section aims to illustrate our approach to solving some challenging test problems. Here
we have two goals: show that it provides good-quality approximate critical points (examples
of Subsection 3.7.2 - Subsection 3.7.4, Section 3.8) and is able to solve problems that, to
the best of our knowledge, could not be resolved with other solvers (Subsection 3.7.1). We
consider four nonconvex stochastic optimization problems and one coming from signal
processing. Notice that the stochastic problems (example of Subsection 3.7.1 - Subsection
3.7.3) do not have explicit DoC decompositions, and thus DoC programming algorithms
are not directly applicable. Another numerical example of a chance-constrained energy
management problem can be found in [137].

Numerical experiments were performed using MATLAB R2020a and Gurobi 9.5.1 (for
solving the master QP subproblem (3.4.8) in Algorithm 2) on a personal computer with
the following characteristics: Windows 10 Professional, 32 Go, Intel i7-10850H (6 cores).
Our implementation enables applying Algorithm 3 for simpler problems without non-linear
constraints, specifically, to the problem considered in Subsection 3.7.2.

Unless otherwise specified, the choice of the parameters in Algorithm 2 is as follows:
ρ = σ = 1

2 , κ = 0.3, µ0 = 102 and Tol= 10−4.

3.7.1 Highly nonconvex chance-constrained problem

In this section we investigate the following optimization problem (having weakly-convex
constraint):

min
x∈Rn

c⊤x

s.t. P
[

1
2

ξ
⊤Q j(x)ξ +q j(x)⊤ξ +d j(x)≤ 0, j = 1, ...,k

]
≥ p (3.7.1)

x≤ x≤ x̄.

We first note that as a result of [136] and the upfollowing concrete data, that the probability
function is continuously differentiable. Furthermore the underlying feasible set is compact
and so we are in case ii) of the introduction: c1(x) = p and −c2 indicating the probability
function. The underlying data is not convex in the parameter replaced by the random vector.
As a result, the underlying feasible set is not expected to be convex. Concretely we will
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consider the following data, for k = 2:

Q1(x) =

[
3(x1−1) −x2

−x2 3(x1−1)

]
, Q2(x) =

[
−2x2 x1−1
x1−1 −2x2

]

as well as

q1(x) =

[
3
1

]
(x1−1), q2(x) =

[
1
4

]
x2

d1(x) = −2,d2(x) = −2. We have also picked p = 0.7 together with c = (−1,−1), x =

(−2,−2), x = (2,2). The random vector is taken to be multivariate Gaussian with mean
vector 0 and covariance matrix

Σ =

[
2 −1
−1 2

]
.

This optimization problem is quite challenging. First it can be observed that an alternative
sample average approximation along the lines of [85] would be a MILP. It is thus tempting
to first try to solve the resulting optimization problem with such a formulation. We have
done so for the following sample sizes {100,1000,5000,10000,50000}, using CPLEX
12.10. The resulting computation times are 0.5,4,22,100,> 8000 seconds respectively.
The last computation was aborted still showcasing a 25.9% gap after more than 2 hours of
computation. Unfortunately, none of the obtained solutions turn out to be feasible, quite to
the contrary: the typically obtained final probability value is roughly 0.04 being far from
the required 0.7. We have also performed a run of a sampled problem with 10000 random
realizations, but with a significantly higher probability level of 0.9. In this case, after roughly
one hour of computation, the resulting solution being at a MIPgap of 3.3 %, is still highly
infeasible having only a probability value of 0.02.

Furthermore, we have tested IPOPT solver for the problem resolution: tests have been
performed for the six initial points listed in Table 3.1 and default tolerance 10−4. After
at most 26 seconds of computation, IPOPT halted with highly infeasible points with a
probability constraint value equal to 0. The difficulty of generating feasible points might
come from the form of probability distribution as the probability level sharply raises from
zero (blue, Figure 3.2) to nearly 1 (yellow, Figure 3.2) when approaching the feasible area
from most directions, which causes the loss of gradient information in a large zone of zero
probability. But of course this gradient information is not exploited by the MILP formulation
at all.

In contrast, as Table 3.1 shows, the CwC-PBM algorithm manages to improve the prob-
ability level if the starting point is infeasible, and to improve the objective function value
while satisfying probability constraint for a feasible initial point. Moreover, for one of the
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Fig. 3.2 Probability distribution associated with the chance constraint in (3.7.1)

tested starting points we have managed to generate the near (globally) optimal solution
(1.2400;−0.1126). Since the problem is indeed very difficult, a precise internal sampling
scheme for the probability function is required. This amounts to the number of samples used
to compute a formula of the type (3.7.4), which subsequently leads to design of the oracle for
c2 component. We can prematurely end further sampling, very much like the implementation
of Genz’ code [50], by checking if sampling variance - in fact the confidence interval bounds
- are sufficiently small. Unlike Genz’ code a crude antithetic Monte-Carlo scheme has been
used for sampling, thus leaving much room for significant improvement in terms of speed
and precision, by using for instance QMC as in [58].
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Table 3.1 Results obtained with the CwC-PBM algorithm for problem (3.7.1) depending on
initialization.

Initial point Time (s) Iterations Initial
probability

level

Final
probability

level

Objective
value

(1.2,−0.1)⊤ 47.6 17 0.80 0.70 -1.1097

(1.5,−0.4)⊤ 78.4 28 0.43 0.70 -1.1346

(1.6,−0.3)⊤ 36.9 14 0.42 0.70 -1.0815

(1.7,−0.4)⊤ 59.8 20 0.36 0.70 -1.1443

(1.1,−0.4)⊤ 21.3 10 0.43 0.43 -0.7001

(1,−0.8)⊤ 10.8 9 0.18 0.18 -0.2001

3.7.2 Investment like problems

We will see how the structure of Example 3.1.1 can appear in practice. Here we will follow
the general discussion in [135]. We are interested in the situation wherein we dispose of a set
of different technologies i = 1, ...,m capable of generating electricity. Each technology comes
with a specific and detailed set of constraints Pi, cost function ci attributing to pi ∈ RT the
cost of generation. Altogether, the various technologies are meant to ensure the satisfaction
of a given customer load d ∈ RT . We are interested in finding the optimal mix. Thus for
i = 1, ...,m, we are given θi ∈ N, the number of “units" of a given type we would like to
invest in. The vector θ comes with an investment cost F(θ). In a deterministic setting this
would amount to solving

min
θ∈Θ,p j

i∈Pi

F(θ)+
m

∑
i=1

θi

∑
j=1

ci(p j
i )

s.t.
m

∑
i=1

θi

∑
j=1

p j
i ≥ d.
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Now should for each i, the mappings ci as well as the feasible sets Pi be convex, then it must
be so that the averaged solution: p∗i =

1
θi

∑
θi
j=1(p j

i )
∗, in which each power plant of technology

i produces exactly this amount is also optimal. This follows from using convexity of Pi

showing feasibility of p∗i and through using Jensen’s inequality for ci. This is also exactly
what would happen if we would solve the subproblems of the Lagrangian dual (w.r.t. the load
constraint) for a given fixed investment vector. The convexifying effect of the Lagrangian
is well known, e.g., [78, 133] and thus for this dual setting convexity of ci or Pi would not
be essential. Either way, as a result we may thus assume that each power plant of the same
technology produces the same amount. This would thus lead to the simpler problem (less
variables):

min
θ∈Θ,pi∈Pi

F(θ)+
m

∑
i=1

θici(pi)

s.t.
m

∑
i=1

θi pi ≥ d.

We will investigate a two-stage stochastic version of the last problem, wherein d is uncertain.
We thus define:

Q(θ ,ξ ) = min
pi∈Pi

m

∑
i=1

θici(pi) s.t.
m

∑
i=1

θi pi ≥ d. (3.7.2)

and consider the optimization problem

min
θ∈Θ

F(θ)+E[Q(θ ,ξ )], (3.7.3)

where for the sake of simplicity we will assume θ to be allowed to take continuous values
(Θ is a polytope). We will also assume that the feasible set Pi is convex, although one
could investigate problem (3.7.3) without this assumption - for instance by arguing through
Lagrangian duality.

Let us now look at a concrete instance. We will consider a time horizon of t = 1, ...,T
time steps where each time step is considered to be ∆t hours long. The problem disposes
of m types of technology, having the following characteristics. Each technology type has a
maximum power output level pmxi , proportional cost ci and gradient condition gi. Additionally,
each unit is assumed to dispose of a carbon emission rate ei, and the system subject to a
carbon cost f . Concretely this means that the proportional cost gets updated through the
formula ci← ci + f ei.

The system is moreover endowed with a given customer load that we will assume to be
multivariate Gaussian with a given mean and positive definite Covariance matrix. We refer to
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[125, § 5] for the description of Pi (polyhedral). Furthermore for the various technologies we
will assume that F(θ) = F⊤θ . The purpose of our experiment is to showcase how concretely
the new algorithm can process specifically structured problems such as these.

Following the description of Example 3.1.1, we need to compute Qε(θ ,ξ ) at each given θ .
The latter involves the solution of a convex optimization problem, wherein ψt is given by the
t-th component of d−∑

m
i=1 θi pi. As a result of the logarithm, the objective function defining

Qε is convex in y. We will therefore use a cutting-plane approach to internally compute Qε ,
as well as it’s gradient. The inner optimization is initialized from the optimal solution y0 of
the inner optimization problem of Q(x,ξ ). The latter can be computed by solving a linear
program. This will give us the oracle for f2 (in the notation of Subsection 3.4.1).

Table 3.2 provides the concrete data.

Table 3.2 Data for the stylized investment problem.

1 2 3 4 5 6 7 8 9 10
pmx (MW) 900 900 900 300 300 200 200 200 100 10000
g (MW/h) 100 100 100 30 30 20 20 70 70 5000

c (e/MWh) 30 35 37 45 47 60 100 110 150 10000
Finv (e) 49315149315149315141096 41096 32877 32877 32877 21918 0
e (t/MW) 0 0 0 1 1 0.5 0.5 0.5 1.1 0

We can observe that the last unit described in the previous table is an imbalance unit
- a computational trick to ensure that one can always meet the load, in this case even
despite a potentially completely unbalanced set of invested assets. In terms of constraints
on investment, we do not allow investment in this last unit, the capacity will remain at 1.
The cost of investment was set up using typical values of investment cost per kW, upon
rescaling to match T and while accounting for life span of the various technologies. The
data of the case is stylized and the general purpose of the study is more a demonstration
of the capabilities of the algorithm rather than an attempt to provide practical insights into
investment regarding the electrical system.

We have performed tests with the CwC-PBM algorithm and IPOPT solver, both applied
to approximation with Qε , ε = 10−2, for f = 0 (zero carbon cost) and f = 100. The latter
case enables to see the potential impact of such a penalized setting for emitting technologies.
The methods provide comparable results in terms of objective value with the average relative
difference of 0.98% (both for default tolerance 10−4), see Table 3.3. (Both algorithms
exploit the problem’s decomposable structure and employ the same oracles.) The average
execution time (among 6 considered cases) is 2579 seconds for the CwC-PBM algorithm,
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and constitutes to 2241 seconds for IPOPT (including function evaluation). For initial
states v2 = (1111101011)⊤, the resulting total amount of installed capacity is less for
the case with f = 100 (around 3500 MW for both methods) compared to the case with
zero carbon cost (more than 3900 MW for both methods). While the latter remains close
to the nominal investment vector, the methods update the set of installed capacities quite
significantly, by shifting essentially all generation from carbon emitting technologies to
technologies 1−3 not emitting CO2 at all for the case with f = 100. This can be explained
since the original setting was slightly overcapacitated - and as a result of the introduction of
the "fictive" imbalance unit - infeasibility is no longer an issue. The maximum load over the
considered scenarios being roughly 3500 as well. A similar situation occurs for the initial
state v3 = (1111111111)⊤ (roughly, 4000 MW for f = 100 against 3700 MW for zero
carbon cost). For v1 = (1111100001)⊤, the solution found by IPOPT corresponds to 3700
MW of installed capacity for f = 100, compared to approximately 3500 MW suggested by
the CwC-PBM algorithm. This numerical experiment thus clearly shows that the CwC-PBM
algorithm provides meaningful good quality solutions for this type of problems.

Table 3.3 Results obtained with CwC-PBM algorithm and IPOPT solver for (3.7.3) for carbon
cost f = 0 and 100. Average execution time is 2579 seconds for the CwC-PBM algorithm and
2241 seconds for IPOPT.

CwC-PBM algorithm IPOPT solver
Initial state CO2 cost Iterations Objective

value
Iterations Objective

value

v1 = (1111100001)⊤
0 49 5 781 983 16 5 864 083

100 33 5 886 797 10 6 001 847

v2 = (1111101011)⊤
0 29 5 965 697 9 5 865 690

100 31 5 938 787 15 5 920 723

v3 = (1111111111)⊤
0 16 5 985 021 6 5 970 187

100 32 5 945 049 11 5 930 397

Setting the prox-parameter µ0 equal to its value at the first serious step µ l1 predictably
speeds up the CwC-PBM algorithm’s performance. For initialization at v2 and v3, the prox-
parameter µ l1 is of the order of 106, while it is equal to its default value of 102 for initialization
at v1. The number of iterations decreases significantly for the former cases: down to 15
and 24 in the case of v2, and 9 and 28 in the case of v3, with an average improvement
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of 27% in execution time. When altering the stopping test tolerance Tol within the set
{10−4,10−6,10−8,10−12} (with fixed µ0 = µ l1), we observe that the objective value does
not change for all considered initial states and carbon costs. To progress to the next tolerance
level within the specified set, the algorithm undergoes between 1 and 4 iterations, resulting
in duration ranging from 44 to 456 seconds depending on the case. Moreover, the objective
value shows minimal variation with alterations in the parameter κ . Varying κ within the set
{0.001,0.01,0.03,0.1,0.3}, the objective value remains within the limits of ±0.01% (tests
have been performed with the initial state v2). The algorithm is thus robust with respect
to the choice of Tol and κ and can be accelerated with the selection of an appropriate
prox-parameter µ .

3.7.3 Decision dependent probability constraints in two stage problems

In this section we consider the following stochastic problem having different random vectors: min
x∈X

f1(x)+
S

∑
s=1

πsQ(x;ξ
s)

s.t. P[A1x+b1 ≥ ω1]≥ p1

with Q(x;ξ ) :=

 min
y∈Y

q(x,y;ξ )

s.t. Px[A2(ξ )y+b2(ξ )≥ ω2(x)]≥ p2.

In this problem, ξ ∈ Ξ := {ξ 1, . . . ,ξ S}, ω1 ∼N (µ1,Σ1), and ω2(x) ∼N (µ2(x),Σ2(x)).
The latter random vector depends on the first-stage decisions. We assume that the covariance
matrices Σ1 and Σ2(x) are positive definite for all x ∈ X . As a result, the probability functions
are twice-differentiable [60, 134]. Furthermore, as the multivariate Gaussian distribution is
log-concave, we get that c1(x) = log(p1)− log(P[A1x+b1 ≥ ω1]) is a convex function and
so is the objective of the penalized subproblem

Qε(x;ξ ) = min
y∈Y

q(x,y;ξ )− 1
ε

log
(
Px[A2(ξ )y+b2(ξ )≥ ω2(x)]− p2

)
.

We are thus in the setting of Example 3.1.1 with f2(x) = ∑
S
s=1 πs[−Qε(x;ξ s)]. We can

observe that the just given optimization problem is a version of two-stage stochastic program
having unhedgeable, or post-decision random realizations.

Now in order to compute the gradient of both of the involved probability functions,
we can rely on two different formulæ for the gradients. The mapping c1 is continuously
differentiable and its gradient can be evaluated by employing the results shown in [132]. The
second stage probability function is also differentiable under a mild regularity condition, its
gradient can be evaluated using the formulæ from [131, Thm. 5.1]. Indeed with L2(x) the
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matrix resulting from the Cholesky decomposition Σ2(x) = L2(x)L2(x)⊤, we may write

ci
2(x,y) = P[−A2(ξ

i)y−b2(ξ
i)+µ2(x)+L2(x)ω2 ≤ 0],

where ω2 ∈ Rm, ω2 ∼N (0, I). Hence we can observe that:

∇ci
2(x,y) =

∫
v∈Sm−1:J∗(v)̸= /0,|J∗∗(v)|=1

− χ(ρ̂(v))
(L2(x)) j(v)v

(
ρ̂(v)∇(L2(x)) j(v),.v)+∇µ2(x),−(A2)

⊤
j(v),:

)
dµζ (v)

(3.7.4)
with

J∗(v) =
{

j = 1, ...,r : (L2(x)) jv > 0
}

ρ̂(v) = min
j∈J∗(v)

A2y+b2−µ2(x)
(L2(x)) jv

J∗∗(v) =
{

j ∈ J∗(v) : ρ̂(v) =
A2y+b2−µ2(x)

(L2(x)) jv

}
.

and j(v) being the unique element of J∗∗(v). In this case since L2 has linearly independent
rows - which is the case since Σ2 is positive definite - the aforementioned regularity condition
(R2CQ) holds true. In fact (R2CQ) holds true locally and as a consequence it is indeed so
that both c1 and c2 are twice continuously differentiable. This was already clear for c1 upon
using well known classic arguments.

Let us now consider the following concrete example of a problem of this kind. We
are interested in a situation considering a manufacturer capable of producing two different
products. The first-stage decision variables of the problem consist of setting prices for
the products and an advertisement levels. The price will be assumed to be in relation to
the average second-stage demand for the given product. We will use the following rule
µ2(x) = (µ̄1/x1, µ̄2/x2), with x1,x2 being the price levels for product 1 and 2 respectively.
Advertisement is assumed to have a beneficial effect on the variance of the demand, but
simultaneous advertisement for both products will be counterproductive. In other words:

Σ2(x) :=

[
(0.1µ̄1/x1x3)

2 −0.4(0.01µ̄1/x1x3µ̄2/x2x4)

−0.4(0.01µ̄1/x1x3µ̄2/x2x4) (0.1µ̄2/x2x4)
2

]
.

The second stage decision y involves the production of the goods. The production process
of the goods is subject to some possible unreliability as the amount of actually produced
goods are concerned. The matrix A2 is thus a diagonal matrix, where the first entry is a
uniform random variable over the interval [0.9,1] - on average only 95% of the commissioned
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products actually get manufactured. The second diagonal entry is uniform over the interval
[0.8,1] - the process of production here is more unreliable. However producing with the
more unreliable process is slightly cheaper. Any products that are manufactured but not sold,
will incur a penalty. The second stage cost function is thus given by

q(x,y,ξ ) = (2−x1)y1+(1−x2)y2+12E[max{y1− (ω2)1,0}]+12E[max{y2− (ω2)2,0}].

The last two terms correspond to the penalization of produced, but not sold goods. It turns
out that the latter expectations can be computed “analytically" as they are related to the
computation of an expectation of a truncated Gaussian random variable. Therefore, we can
observe that the following identity holds true:

E[max{y1− (ω2)1,0}] = Φ((y1− (µ2(x))1)x1/(0.1µ̄1x3))(y1− (µ2(x))1)

− 1√
2π

e−
1
2 ((y1−(µ2(x))1)x1/(0.1µ̄1x3))

2
0.1µ̄1/x1x3.

The second formula is of course immediately deduced as it is analogous. Both products
require a different setup of the factory, so y1 + y2 ≤ 10. Furthermore, the first-stage cost
function is related to the cost of advertisement f1(x)= q1x2

3+q2x2
4. Furthermore all first-stage

variables are bounded.
The implementation of this example requires first the implementation of the formulae

for the gradient of the probability function. Here we can exploit the earlier given formula
immediately. It can be observed (see the more extensive discussion in [126]) that the proba-
bility value itself can be computed with exactly the same cost. Subsequently the algorithm
scheme is very similar to the one of the investment problem. In particular, combining the
computations for probability function value and subgradient (3.7.4) with the reasoning of the
previous example, we will obtain the oracle for f2 component (in the notation of Subsection
3.4.1), while the oracle for f1 is straightforward from the formula of the advertisement cost.

Therefore, we have also run this case with the CwC-PBM algorithm and found an approxi-
mate critical solution after a total of 12 iterations (1600 seconds on personal laptop). The
found solution is x = (3.37,3.21,0.096,0.784), showing that there is interest in balancing
the prices, i.e., not taking maximal prices, while also investing in advertisement. We have
done the same test with IPOPT solver. The computation was aborted after 50000 seconds
with the resulting infeasible point x = (9.997,9.983,0.0004,0.167) slowly approaching the
bound (10,10,0,0).



3.7 Illustrative numerical examples 91

This example thus shows that the new algorithm allows us to consider settings beyond
classic convexity, even when dealing with probability functions - in this case with decision
dependent random vectors.

3.7.4 Compressed sensing problem

In this section we focus on the problem of compressed sensing considered in [152]:

min
x∈Rn

∥x∥1−∥x∥ (3.7.6)

s.t. ∥Ax−b∥2
LL2,γ

≤ δ ,

where A ∈ Rq×n is a full row rank matrix and b ∈ Rq. For given γ > 0, Lorentzian norm
∥ · ∥LL2,γ of a vector y ∈ Rq is defined as

∥y∥2
LL2,γ

=
q

∑
i=1

log
(

1+
y2

i
γ2

)
.

As discussed in [152], the problem (3.7.6) is DoC with twice continuously differentiable
constraint, whose Lipschitz constant of the gradient is known. This allows us to construct an
oracle for the constraint component. For the objective function oracle, the sign function is
chosen as a subgradient of the component f1(x) = ∥x∥1.

As in [152], we have generated A ∈ Rq×n with normally distributed random entries
normalizing it so that each column has a unit norm. To set the original point, we have chosen
a subset of size s0 = [q

9 ] among basis vectors and generated a s0-sparse vector xorig with i.i.d.
normally distributed random entries. We have taken b = Axorig +0.01η , each ηi having a
standard Cauchy distribution, and δ = 1.1∥0.01η∥LL2,γ with γ = 0.02.

We have performed tests with the CwC-PBM algorithm and SCPls algorithm coded based
on Algorithm 2.1 of the paper [152] for q = 720 i, n = 2560 i, with i = 1 (Figure 3.3) and
i = 5 (Figure 3.4). Both algorithms were initialized at x0 = A+b with matrix A+ denoting
the Moore-Penrose pseudoinverse of A. The gap between solution provided by the SCPls

algorithm (with tolerance 10−4) and CwC-PBM algorithm is 4.45% and 2.71% for 2400 and
3000 iterations, respectively, for the case i = 1. It constitutes 2.2% and 1.16% for 2400
and 3000 iterations, respectively, for the case i = 5, Table 3.4. However, the execution
time of the CwC-PBM algorithm is higher compared to SCPls, which was designed for a
more specific framework (constraint functions have Lipschitz continuous gradient, and the
objective function is decomposed as a sum of a smooth function and DoC function), Table 3.4.
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We have also run the CwC-PBM algorithm with initialization at zero vector. It manages to
obtain a feasible solution after 50 iterations (for both i = 1 and 5), as well as to recover an
optimal solution within tolerance 3.2×10−4 for i = 1 (10000 iterations) and 1.2×10−3 for
i = 5 (3000 iterations) with execution time of 1347 seconds and 2717 seconds, respectively.
The SCPls algorithm cannot be applied in this case, as a feasible initial point is required.

CwC-PBM algorithm. SCPls algorithm.

Fig. 3.3 Computed solutions (marked by circle) of (3.7.6) and xorig (marked by asterisk) for
i = 1

Table 3.4 Results obtained with CwC-PBM and SCPls algorithms for (3.7.6) with the initial
point x0 = A+b.

CwC-PBM algorithm SCPls algorithm
Iterations Time (s) Objective

value
Time (s) Objective

value

i=1
2 400 324.27 54.16

16.02 51.85
3 000 592.92 53.26

i=5
2 400 2 396.65 289.52

133.37 283.27
3 000 3 180.52 286.56

3.8 Chance-Constrained Optimal Power Flow

This section is dedicated to the operational planning problem of distribution power grid
under uncertainties related to the probabilistic nature of nodal generation and consumption
considered in Chapter 2. It is formulated as a chance-constrained AC-OPF where the objective
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CwC-PBM algorithm. SCPls algorithm.

Fig. 3.4 Computed solutions (marked by circle) of (3.7.6) and xorig (marked by asterisk) for
i = 5

function represents the operational planning cost, the deterministic constraints are convex and
reflect contractual engagements related to the operation of the grid, and the joint probability
constraint incorporates the stochastic nature of the model. More precisely, it ensures that for
an operational decision, grid operating conditions remain within technical limits with a given
probability 1−α (security level). The content of this section has been published in [124].

First, the chance-constrained OPF is reformulated as a DoC-constrained DoC prob-
lem (2.3.6) (with convex objective function, i.e. f2 = 0). This reformulation is made with
the use of Oracle 1 and the sample average approximation, which provides oracles for the
DoC constraint as given by formula (2.3.5). The resulting model is then solved using two
algorithms: the DoC bundle method (PBMDC2) from [129] and the CwC-PBM algorithm.

In order to ensure that PBMDC2 provides a critical point of (2.3.6) with Tol = 0, the
function c2 needs to be differentiable as stated in [129, Thm. 2] and Theorem 2.3.1. This
requirement does not hold for our problem. According to Theorem 3.5.9, this requirement
is not necessary for the CwC-PBM algorithm. If Tol> 0, the PBMDC2 algorithm provides an
approximate critical point of (3.3.16), while the CwC-PBM algorithm provides an approximate
critical point of (3.3.13). Lemma 3.3.7 states that the latter condition (3.3.13) is stronger
than (3.3.16) in the case when c2 is not differentiable.

We consider the use case from Subsection 2.4.4. The parameters ρ , σ , κ and Tol for
both methods are set to: ρ = 107, σ = 0.5, κ = 0.3 and Tol= 10−5. The parameter µ0 is
chosen to be 80 for the CwC-PBM algorithm, while µ0 = 102, µmin = 10−6 and µmax = 106

for PBMDC2. We set 11 values of the security level 1−α ranging from 0.75 to 1 with a step
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size of 0.025. The initial vector (p0,q0) is equal to zero, which corresponds to the case with
no power modulation.

The CwC-PBM algorithm provides better solutions in terms of the objective value for
all values of security level 1−α , Figure 3.5 (a). The maximal improvement of 13.33%
is obtained for 1−α = 0.775 and constitutes 3.56% on average. As explained in Subsec-
tion 2.4.4, the obtained security level is less than 1−α (Figure 3.5 (b)) due to the DoC
approximation of the probability constraint. The relative maximal difference between the
targeted and obtained security level is 5.07% for the CwC-PBM algorithm compared to 4.93%
for the PBMDC2 algorithm (both at 1−α = 0.75). Nevertheless, solutions supplied by both
algorithms are feasible for the DoC model (2.3.6). This means that more cost-effective
solutions provided by the CwC-PBM algorithm are still feasible, and the difference in obtained
security levels is related to the DoC approximation of the chance-constrained problem.

The average execution time is less for the PBMDC2 algorithm: 1340 seconds compared
to 4232 for CwC-PBM. However, the objective value corresponding to PBMDC2’s solution is
attained after 2387 seconds on average. The latter difference can be explained by the fact
that we have not exploited the DoC structure in the CwC-PBM algorithm.

This use case thus shows that the new algorithm is applicable to real-life industrial
problems and capable of generating approximate critical points in the DoC-constrained
framework, without assumptions on the differentiability of DoC components. However,
achieving stronger criticality comes at the cost of an increase in execution time.

(a) Objective value (b) Security level

Fig. 3.5 Objective value and security level obtained with CwC-PBM and PBMDC2 algorithms.
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3.9 Conclusion

In this chapter, we have considered nonsmooth and nonconvex optimization problems where
the objective function and nonlinear constraint are represented as the difference of convex
and weakly convex functions (CwC). Our work studies various stationary conditions and a
bundle method approach enabling to compute critical (generalized KKT) points. The latter
broadens and enhances the algorithm developed in [129] for the case of DoC-constrained
DoC-problems, and likewise relies on problem reformulation via an improvement function.
To the best of our knowledge, the proposed method is the first one that directly exploits
the CwC-structure of the involved functions and does not require additional assumptions
or transformations as, for instance, explicit DoC decompositions or Moreau envelopes. We
have illustrated the method performance with a few stochastic problems, including two-
stage and chance-constrained problems, and a compressed sensing problem with nonlinear
constraint. Preliminary results are meaningful and show that the algorithm can tackle settings
beyond the classic DoC setting. For the chance-constrained optimal power flow modeling
power modulation and curtailment levers, the method provides a more cost-effective solution.
However, achieving stronger criticality leads to an increase in execution time.





Chapter 4

Integrating Priority and Fairness

The French Energy Code establishes the main principles and the guidelines for consumers
and producers access to the grid [46]. In particular, it introduces alternative grid connection
offers for energy producers [45]. Although the rules of power modulation are not described
explicitly, the spirit of this law is also reflected in informative documents provided by DSOs,
such as in [35].

Two concepts that emerge from the spirit of these documents are priority levels and
fairness in power modulation. The first concept, priority levels, generalizes the SCP and FiT
mechanisms: the higher the modulation priority, the lower the cost of power modulation
associated with that level, as it reflects power that is more readily accessible according to the
grid connection contract. The second concept, fairness, ensures that all producers assigned
the same priority level equally share the responsibility in resolving a grid constraint to which
they contribute. These principles are not standardized in industry practice yet, and as a result,
there is no universally accepted definition or model for them.

The model in Chapter 2, which does not employ binary variables, handles priority levels
through differences in power modulation costs. This formulation effectively prioritizes the
modulation of SCP power over the curtailment of FiT power for the same producer. However,
for different users, this approach is not universally applicable: if curtailing one user is more
effective in resolving the constraint than curtailing another, it may be more cost-efficient
to curtail that user’s FiT power, even when SCP power from another user is still available.
Furthermore, as mentioned in Subsection 2.4.5, power curtailment is not distributed equally
among users of the same type, despite the quadratic penalty (2.4.1c) intended to promote
fairness in power modulation.

In this chapter, we bring the model closer to real-life requirements with the use of binary
variables and additional logical and discrete constraints. We begin by defining the concepts
of priority levels, followed by the priority and fairness principles in power modulation. Next,
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we develop an optimization model that accurately integrates these considerations. Finally,
we study some symmetry properties of the resulting model.

The main content of this chapter was presented at the PGMO Days 2024 conference, held
in Palaiseau, France, in November 2024.

Le Code de l’énergie établit les principes fondamentaux et les lignes directrices régissant
l’accès des consommateurs et des producteurs au réseau public d’électricité [46]. Il prévoit
notamment des offres de raccordement alternatives pour les installations de production
d’énergies renouvelables [45]. Bien que les règles de modulation de puissance ne soient
pas explicitement définies par la loi, ses principes directeurs apparaissent également dans
les documents techniques des gestionnaires de réseau de distribution (GRD), en particulier
dans [35].

Deux concepts émergent de ces documents : les niveaux de priorité et l’équité dans
la modulation de puissance. Le premier concept, les niveaux de priorité, généralise les
mécanismes ORI et ORR : plus la priorité de modulation est élevée, plus le coût de modulation
associé à ce niveau est faible, car il correspond à une puissance plus accessible selon le
contrat de raccordement. Le second concept, l’équité, garantit que tous les producteurs
d’un même niveau de priorité partagent équitablement la responsabilité de résoudre toute
contrainte réseau à laquelle ils contribuent. Ces principes ne sont pas encore standardisés
dans la pratique industrielle et, par conséquent, il n’existe pas de définition ou de modèle
universellement accepté.

Le modèle présenté au Chapitre 2, qui n’utilise pas de variables binaires, gère les niveaux
de priorité par des différences de coûts de modulation de puissance. Cette formulation
privilégie effectivement la modulation de puissance ORI par rapport à la réduction de
puissance ORR pour le même producteur. Cependant, pour des utilisateurs différents,
cette approche n’est pas systématiquement applicable : si la réduction de puissance d’un
utilisateur résout plus efficacement la contrainte réseau que celle d’un autre, la solution
optimale peut conduire à réduire la puissance ORR de cet utilisateur, même en présence de
puissance ORI disponible chez d’autres. Comme souligné dans la Sous-section 2.4.5, les
réductions de puissance ne sont pas équitablement réparties entre utilisateurs de même type,
malgré la pénalité quadratique (2.4.1c) visant à garantir l’équité de modulation.

Ce chapitre rapproche le modèle des exigences réelles par l’intégration de variables
binaires et de contraintes logiques et discrètes. Le concept de niveaux de priorité est d’abord
présenté, suivi des principes de priorité et d’équité pour la modulation de puissance. Ces
considérations sont ensuite intégrées au modèle d’optimisation. Enfin, certaines propriétés
de symétrie du modèle sont étudiées.
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Le contenu principal de ce chapitre a été présenté aux PGMO Days 2024 (Palaiseau,
France, novembre 2024).

4.1 Main principles and rules

4.1.1 Priority levels

A set of priority levels is assigned to each producer, which determines the order in which
power modulation is applied. For the same priority level, all producers to whom it is assigned
and who are contributing to the same constraint of the grid, must be equitably involved in its
resolution. Let the priority levels be denoted by 1, . . . ,M, from the highest to the lowest, and
let Nm represent the set of producers for whom priority level m is available according to the
rules.

Different rules for assigning levels can be considered here. For instance, if a producer
has a priority level m, they also have all priority levels k where k ≥ m. This corresponds to
the case where Nm ⊂Nk if m≤ k. Another possibility is to assume that higher priorities are
assigned to larger producers. Curtailment limits for each level are defined as a fraction of
the producer’s installed or guaranteed power. Therefore, if a larger producer has a higher
priority than a smaller one, a greater amount of power can be curtailed at a lower cost. As a
result, assigning higher priority to larger producers (one or two levels to each) could present
a cost-effective strategy for a DSO. In this chapter and Chapter 5, we do not assume any
specific rule. For simplicity, the reader may consider the first case, where Nm ⊂Nk if m≤ k.

Consumer curtailment is only initiated when no additional power can be curtailed from
producers to resolve a grid constraint, meaning that consumers are assigned the lowest
priority.1 In our model, we assume that consumer curtailment can be started simultaneously,
i.e. they share a single priority level. As a result, we do not introduce any specific notation for
the consumer priority level. However, this assumption is not essential to the methodology we
apply in Chapter 5. The model can easily be generalized to the cases where consumers have
different priority levels or where different groups of consumers follow specific curtailment
rules.

4.1.2 Critical nodes and impacted elements

In what follows, we consider the same grid model as described in Chapter 2. In particular,
we assume that among the end buses, there is one slack bus and other buses with at most

1This rule for consumer curtailment is designed for the case where high-voltage constraint resolution is
prioritized, as curtailing producers and consumers has opposite effects on grid constraints.
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one connected grid user. Each grid user is either a producer or a consumer. Potential grid
constraints include voltage constraints and thermal constraints on current transit (congestion
constraints). We maintain the notation from Chapter 2, while introducing new notation to
describe the principles of priority and fairness.

Denote by C the set of grid constraints, including both voltage and congestion constraints,
which are active for at least one scenario. For each element J ∈C, we define a set C(J) of
critical nodes that includes producers and consumers influencing the constraint J. The set
C(J) can be described explicitly as follows:

• if J denotes a congestion constraint, the set C(J) includes all producers and consumers
downstream of the constraint: the distribution grid is operated in a radial topology, and
according to Kirchhoff’s current law, only the power modulation of downstream users
affects J;

• if J denotes a voltage constraint, the set C(J) includes all producers and consumers
downstream of the same feeder (primary line extending from a substation) to which J
belongs.

For a more sophisticated model, it would be useful to further distinguish between types
of constraints (e.g. high-voltage or low-voltage constraints) and types of users whose
curtailment contributes to resolving these constraints (producers or consumers, respectively)
to define the sets of critical nodes. However, these details are beyond the scope of our model,
as they do not change the type of the resulting optimization problem.

Next, we introduce the notion of impacted elements for each producer and consumer
i ∈N . Denote by C−1(i) the set of all voltage constraints associated with the same feeder as
the bus i, and congestion constraints upstream of bus i. The sets C(J) and C−1(i) are related
by the following property: the bus i belongs to the set C(J) if and only if J belongs to the set
C−1(i).

We assume for simplicity that there is only one feeder. Therefore, if J denotes a voltage
constraint, C(J) refers to all producers and consumers in the grid. Meanwhile, the set C−1(i)
includes all voltage constraints of the grid, as well as congestion constraints upstream of bus
i. The sets of critical nodes and impacted elements are fixed and depend only on the grid’s
topology, as we do not consider any changes in the latter.

As an example, consider a small grid shown in Figure 4.1, with grid users connected
at the buses 2− 6 (each bus hosting either a producer or a consumer). Suppose there is a
voltage constraint, J1, at bus 3, and a congestion constraint, J2, at the line connecting buses 2
and 4. In this case, the set C consists of two elements: J1 and J2. The set of critical nodes
for the voltage constraint, C(J1), includes 5 grid users at buses 2−6, while the set of critical
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nodes for the congestion constraint, C(J2), includes 3 grid users at buses 4− 6. For grid
users at buses 4−6, the sets of impacted elements include both the voltage and congestion
constraints. The sets of impacted elements for grid users at buses 2 and 3 include only the
voltage constraint.

Fig. 4.1 Example for a small grid.

In the use cases considered in Subsection 2.4.4, the only constraints are the voltage
constraints at nodes 9, 10, 11, 15, 16, and 17. The set of critical nodes for each of these
voltage constraints includes all 31 buses, which accommodate 3 producers and 28 consumers.
The set of impacted elements for each producer and consumer includes all the voltage
constraints, specifically those at nodes 9, 10, 11, 15, 16, and 17. In the use cases in
Subsection 2.4.5, there is an additional congestion constraint on the line connecting nodes 2
and 19. Consequently, the set of critical nodes for this congestion constraint includes buses
19, 20, 21, and 22 (see Figure 2.3), while the set of critical nodes for each voltage constraint
remains the same as in the previous case. The sets of impacted elements for buses 19, 20, 21,
and 22 include the congestion constraint and all voltage constraints. For other producers and
consumers, the sets of impacted elements remain as in the previous case, including only the
voltage constraints.

We say that grid constraints J1 and J2 are equivalent if sets of critical nodes C(J1) and
C(J2) coincide, i.e. contain the same set of buses, and J1 ≤ J2 if C(J2) contains all buses
from C(J1). The relation ≤ is a partial order relation on the set C of grid constraints. The
greatest element of the partially ordered set (C,≤) corresponds to any voltage constraint if
one exists. We will use this consideration in Subsection 4.2.1, while exploring the symmetry
properties of the model.

4.1.3 Modeling the priority levels

For a producer i ∈ G , we introduce decision variables pppm
i , qqqm

i for the active and reactive
power modulated at level m, respectively. Let p̄m

i ≥ 0 denote the upper bound on active
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power curtailment at level m for producer i. For simplicity, we assume the lower bound is 0,
meaning we consider power curtailment with non-negative pppm

i ≥ 0. For a consumer i ∈L ,
we introduce decision variables pppL

i and qqqL
i for the active and reactive power curtailment,

respectively, along with the lower bound on active power curtailment pL
i ≤ 0. Note that,

in contrast to Chapter 2, we separate consumers from the priority levels in the notation, in
particular Nm ⊂ G .

With this notation, the resulting active and reactive power for a scenario ξ at bus i, where
a user is connected, is given by

pi = pφ

i (ξ )−
( M

∑
m=1

pppm
i
)
, qi = qφ

i (ξ )−
( M

∑
m=1

qqqm
i
)
, if i ∈ G

pi = pφ

i (ξ )− pppL
i , qi = qφ

i (ξ )−qqqL
i , if i ∈L .

To simplify the notation, if there is no need to distinguish priority levels and user types, we
will denote decision variables on power modulation by

p =
(

pppm
i , pppL

j , i ∈Nm, m = 1, . . . ,M, j ∈L
)

(4.1.1a)

q =
(
qqqm

i , qqqL
j , i ∈Nm, m = 1, . . . ,M, j ∈L

)
. (4.1.1b)

For a grid constraint J ∈ C and level m, let TJ,m ∈ {0,1} be a binary variable that
indicates whether curtailment of producers up to the m-th priority level is authorized for
activation to resolve the grid constraint J (with TJ,m = 1 if authorized, and TJ,m = 0 otherwise).
Additionally, we introduce binary variables TJ,L ∈ {0,1} to indicate whether curtailment
of consumers is authorized to resolve the grid constraint J. For each consumer i ∈ L ,
we associate a binary variable T L

i ∈ {0,1}, which indicates whether curtailment for this
specific consumer is authorized for activation. To simplify the notation, if there is no need to
distinguish the types of the introduced binary variables, we will denote them by

T =
(
TJ,m, TJ,L , T L

i , J ∈C, m = 1, . . . ,M, i ∈L
)
∈ {0,1}|T |.

4.1.4 Priority and fairness principles

We base our model on the following priority principle for producer power modulation: for a
given constraint J, curtailment at critical nodes of priority level m+1 cannot be activated
unless the available active power at critical nodes from all previous levels k, with k ≤ m has
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already been curtailed to its maximum. We model this principle as follows:

TJ,m+1 ≤ TJ,m, J ∈C, m = 1, . . . ,M−1 (4.1.2a)

TJ,m+1 ≤
pppm

i
p̄m

i
, J ∈C, i ∈C(J)∩Nm, m = 1, . . . ,M−1. (4.1.2b)

The first constraint states that the activation of level m+1 is permitted only if all previous
levels have been authorized for activation. The second constraint explicitly models the
requirement that active power at the previous level must be curtailed to its maximum. By
induction, this requirement extends to all previous levels.

The same principle applies to consumers: for a given constraint J, consumer curtailment
at critical nodes cannot be activated unless the available active power from all producers at
critical nodes has been curtailed to its maximum. We model this principle in a similar way:

TJ,L ≤ TJ,M, J ∈C (4.1.3a)

TJ,L ≤
pppM

i
p̄M

i
, J ∈C, i ∈C(J)∩NM. (4.1.3b)

For a consumer i, individual curtailment is permitted only if there is a constraint J ∈C−1(i)
where curtailment at the consumer level is authorized (i.e. TJ,L = 1). We introduce the
following constraints:

T L
i ≤ ∑

J∈C−1(i)

TJ,L , i ∈L . (4.1.4)

There is no unique strategy for modeling the fairness principle [4]. Although a profound
research and comparison of fairness models are beyond the scope of this work, we explored
several approaches, including penalizing the maximum gap between the ratios of achieved
and available curtailment for participating generation unit as proposed in [122]. Finally, we
decided to integrate fairness using hard constraints, introducing a proportion of active power
that should be uniformly curtailed to resolve each grid constraint.

For a grid constraint J ∈C and level m, let ρJ,m ∈ [0,1] denote the proportion of active
power curtailed at level m for all producers connected to critical nodes C(J). We introduce
the notation:

ρ =
(
ρJ,m, J ∈C, m = 1, . . . ,M

)
∈ [0,1]|ρ|.
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This proportion ρJ,m is equal to zero, if curtailment at the m-th priority level is not authorized
for grid constraint J. This requirement is modeled as follows:

ρJ,m ≤ TJ,m, J ∈C, m = 1, . . . ,M. (4.1.5)

For a producer i ∈C(J), the resulting curtailed power consists of the active power curtailed
to resolve each constraint J ∈C−1(i):

pppm
i = ∑

J∈C−1(i)

ρJ,m · p̄m
i , i ∈Nm, m = 1, . . . ,M. (4.1.6)

In this equation ∑J∈C−1(i) ρJ,m ≤ 1, which is implicitly incorporated into the model by
imposing an upper bound on pppm

i .
An additional factor based on the sensitivity matrix can be introduced to each term in the

sum to adjust the influence of the curtailed power on the constraint J. This adjustment term
does not change the type of the resulting optimization problem, we will thus assume that it is
equal to 1.

The variables ρJ,m explicitly capture the fairness of modulation for each constraint J
and level m, which is the primary motivation behind our modeling choice. However, the
combination of constraints (4.1.2b) and (4.1.6) imposes very restrictive conditions on the
activation of the next level of producer curtailment TJ,m+1. Similarly, constraints (4.1.3b)
and (4.1.6) impose strict limitations on the activation of consumer curtailment TJ,L . As a
result, the model yields feasible but potentially more expensive solutions compared to a
version where these constraints (or some of them) are relaxed.

4.2 New model with priority and fairness rules

In this section, we adjust and complement model (2.2.4) with additional constraints to
incorporate priority and fairness principles discussed above.

Constraints (2.2.4b) - (2.2.4f) of model (2.2.4) are modified in the new framework as
follows:

0≤ pppm
i ≤ p̄m

i , i ∈Nm, m = 1, . . . ,M (4.2.1a)

qqqm
i = tanφi pppm

i , i ∈Nm, m = 1, . . . ,M (4.2.1b)

pL
i ≤ pppL

i ≤ 0, i ∈L (4.2.1c)

qqqL
i = tanφi pppL

i , i ∈L . (4.2.1d)
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We add additional constraints that state that the curtailed power of consumers is zero if their
curtailment is not individually authorized:

|pppL
i | ≤ T L

i · |pL
i |, i ∈L . (4.2.2)

Clearly, constraints (4.2.2) and (4.2.1c) can be expressed more succinctly as follows

T L
i · pL

i ≤ pppL
i ≤ 0, i ∈L .

We maintain the stochastic aspect as in model (2.2.4). To formulate it accurately, we
specify the power flow equations for our framework (here the sum is taken over all buses k
connected to the bus i, including bus i):

LR
i (p,δ , |V |,ξ ) := (4.2.3)pφ

i (ξ )−
(
∑

M
m=1 pppm

i
)
+∑k∼iY R

i,k|Vi||Vk|cos(δi−δk)+∑k∼iY I
i,k|Vi||Vk|sin(δi−δk), if i ∈ G

pφ

i (ξ )− pppL
i +∑k∼iY R

i,k|Vi||Vk|cos(δi−δk)+∑k∼iY I
i,k|Vi||Vk|sin(δi−δk), if i ∈L ,

LI
i (q,δ , |V |,ξ ) :=qφ

i (ξ )−
(
∑

M
m=1 qqqm

i
)
+∑k∼iY R

i,k|Vi||Vk|sin(δi−δk)−∑k∼iY I
i,k|Vi||Vk|cos(δi−δk), if i ∈ G

qφ

i (ξ )−qqqL
i +∑k∼iY R

i,k|Vi||Vk|sin(δi−δk)−∑k∼iY I
i,k|Vi||Vk|cos(δi−δk), if i ∈L .

The set of constraints on the grid state and the definition of X(ξ ) remain the same as in
Chapter 2, with the power flow equations specified by (4.2.3):

δi ≤ δi ≤ δi, i ∈N \{sb} (4.2.4a)

|Vi| ≤ |Vi| ≤ |Vi|, i ∈N \{sb} (4.2.4b)

li, j(|Vi|, |Vj|,δi,δ j)≤ (Imax
i, j )2, (i, j) ∈A (4.2.4c)

(psb,qsb) ∈Fsb, (4.2.4d)

X(ξ ) :=

(p,q)

∣∣∣∣∣
there exist |V |,δ , psb,qsb satisfying (4.2.4),

LR
i (p,δ , |V |,ξ ) = 0 for all i ∈N ,

LI
i (q,δ , |V |,ξ ) = 0 for all i ∈N

 , (4.2.5)

as well as the chance constraint:

P
[
(p,q) ∈ X(ξ )]≥ 1−α.
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The objective function represents the term (2.4.1b) using the new notation. Given
coefficients ci

m ≥ 0, m = 1, . . . ,M, i ∈ G , and cL ≤ 0 (since pppL is negative), we minimize

f (p) :=
M

∑
m=1

∑
i∈Nm

ci
m pppm

i + ∑
i∈L

cL pppL
i .

We then incorporate constraints (4.1.2) - (4.1.6), resulting in the following optimization
problem:

min
p,q,T,ρ

M

∑
m=1

∑
i∈Nm

ci
m pppm

i + ∑
i∈L

cL pppL
i (4.2.6a)

s.t. T ∈ {0,1}|T |, ρ ∈ [0,1]|ρ| (4.2.6b)

0≤ pppm
i ≤ p̄m

i , i ∈Nm, m = 1, . . . ,M (4.2.6c)

qqqm
i = tanφi pppm

i , i ∈Nm, m = 1, . . . ,M (4.2.6d)

pL
i ≤ pppL

i ≤ 0, i ∈L (4.2.6e)

qqqL
i = tanφi pppL

i , i ∈L (4.2.6f)

|pppL
i | ≤ T L

i · |pL
i |, i ∈L (4.2.6g)

TJ,m+1 ≤ TJ,m, J ∈C, m = 1, . . . ,M−1 (4.2.6h)

TJ,m+1 ≤
pppm

i
p̄m

i
, J ∈C, i ∈C(J)∩Nm, m = 1, . . . ,M−1 (4.2.6i)

TJ,L ≤ TJ,M, J ∈C (4.2.6j)

TJ,L ≤
pppM

i
p̄M

i
, J ∈C, i ∈C(J)∩NM (4.2.6k)

T L
i ≤ ∑

J∈C−1(i)

TJ,L , i ∈L (4.2.6l)

ρJ,m ≤ TJ,m, J ∈C, m = 1, . . . ,M (4.2.6m)

pppm
i = ∑

J∈C−1(i)

ρJ,m · p̄m
i , i ∈Nm, m = 1, . . . ,M (4.2.6n)

P
[
(p,q) ∈ X(ξ )]≥ 1−α. (4.2.6o)

4.2.1 Symmetry properties

In this subsection, we explore symmetries in this model and identify valid inequalities to
help reduce the solution space, by forbidding some redundant binary combinations.
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Proposition 4.2.1. The symmetry-breaking constraints below are valid and non-redundant
inequalities for model (4.2.6):

TJ̃,m +TJ,m+1−1≤ TJ̃,m+1 J̃ ≤ J, J, J̃ ∈C m = 1, . . . ,M−1 (4.2.7a)

TJ̃,M +TJ,L −1≤ TJ̃,L J̃ ≤ J, J, J̃ ∈C. (4.2.7b)

Proof. Consider a feasible solution (p,q,T ′,ρ) of (4.2.6) with T ′J̃,m = T ′J,m+1 = 1 and
T ′J̃,m+1 = 0 for some J, J̃ ∈ C with J̃ ≤ J and m ∈ {1, . . . ,M− 1}. These conditions do
not violate any constraint in (4.2.6). Moreover, C(J̃)⊆C(J) and T ′J,m+1 = 1 with (4.2.6i) im-

ply pppm
i

p̄m
i
= 1 for all i ∈C(J̃)∩Nm, and T ′J̃,m+1 = 0 with (4.2.6m) imply ρJ̃,m+1 = 0. Let define

vector T identical to T ′ except for one term TJ̃,m+1 = 1, then the solution (p,q,T,ρ) satisfies

1 = TJ̃,m+1 ≤ TJ̃,m = 1 in (4.2.6h) and 1 = TJ̃,m+1 ≤
pppm

i
p̄m

i
= 1 for all i ∈C(J̃)∩Nm in (4.2.6i).

Therefore, this solution is feasible for (4.2.6), it has the same cost as (p,q,T ′,ρ), and it
satisfies (4.2.7a) while the solution (p,q,T ′,ρ) does not. The proof is similar for (4.2.7b):
we can enforce TJ̃,L = 1 whenever TJ̃,M = TJ,L = 1 in any solution of (4.2.6).

We will enforce constraints (4.2.7) to model (4.2.6) in Chapter 5, while studying different
approaches to resolve it. As an alternative, such conditions could be enforced as dominance
rules to remove redundant branches in a Branch-and-bound method, instead as explicit
constraints in the model: when setting a binary variable TJ,m+1 (or TJ,L ) to 1, we can fix
TJ̃,m+1 = 1 (or TJ̃,L ) for all dominated constraint J̃ such that J̃ ≤ J, thus branching decisions
may focus on the maximal elements in each chain of the partially ordered set of critical nodes.
We will discuss this approach further in Chapter 6.

Now, we consider the case where all grid constraints belong to the same equivalent class,
in particular when there are only voltage constraints. The next proposition shows that, in
this case, the voltage constraints can be aggregated into one, reducing the size of the model
accordingly.

Proposition 4.2.2. In case C(J) = N for all J ∈ C and C−1(i) = C for all i ∈N , then
constraints (4.2.6h-4.2.6j), and (4.2.6m-4.2.6n) can be replaced in model (4.2.6) by:

Tm+1 ≤ Tm, m = 1, . . . ,M−1

Tm+1 ≤ ρm, m = 1, . . . ,M−1

TJ,L ≤ TM, J ∈C

ρm ≤ Tm, m = 1, . . . ,M

pppm
i = ρm · p̄m

i , i ∈Nm, m = 1, . . . ,M.
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on variables Tm ∈ {0,1} and ρm ≥ 0 for m = 1, . . . ,M in place of (TJ,m,ρJ,m)J∈C.

Proof. We show that to any feasible solution (p,q,T ′,ρ) of (4.2.6) corresponds a feasible
solution (p,q,T,ρ) of same cost such that TJ̃,m = TJ,m for all J, J̃ ∈C and m∈ {1, . . . ,M−1}.
This is obvious if T ′ ≡ 0, so let m̃ ≥ 1 be the highest level such that T ′J̃,m̃ = 1 for some

J̃ ∈C. Define for all m, ρm := ∑J∈C ρJ,m, then ρm =
pppm

i
p̄m

i
≤ 1 for i ∈Nm according to (4.2.6n)

and (4.2.6c). By definition, and given (4.2.6m), T ′J,m = ρm = 0 for all J ∈ C and m > m̃.
According to (4.2.6h), (4.2.6i), and (4.2.6n), T ′J̃,m = ρm−1 = 1 for all m ≤ m̃. Thus, the
desired feasible solution (p,q,T,ρ) is obtained by defining vector T identical to T ′ except
possibly for terms TJ,m = 1 for all J ∈C and m ≤ m̃ and it satisfies (4.2.8) for Tm := TJ̃,m .
Hence, we can enforce constraints ρm ≤ Tm for m ∈ {1, . . . ,M} together with TJ,m = Tm, for
all J, J̃ ∈C and m∈ {1, . . . ,M−1} in model (4.2.6), or, alternatively, identify all components
TJ,m to only one Tm leading to reformulation (4.2.8).

4.3 Conclusion

Inspired by the core principles and guidelines of the French Energy Code, we define the
concept of priority levels and formulate the corresponding priority and fairness principles
in power modulation. We extend the model from Chapter 2 by incorporating deterministic
logical and discrete constraints that reflect these principles. Finally, we explore several
properties of the resulting model to reduce the number of constraints and restrict the solution
space. In the next chapter, we will focus on optimization approaches for solving the resulting
model.



Chapter 5

Optimization approaches to the model
with priority and fairness rules

In this chapter, we explore several approaches to solving model (4.2.6) with discrete con-
straints. In Section 5.1 we consider different integrations of binary variables into bundle
methods and related theoretical challenges. Then, we test the proposed approaches with the
DoC bundle method.

In Section 5.2, we consider an alternative approach that consists of adding an additional
binary variable for each scenario. The resulting optimization problem features two types of
nonconvexity: one related to binary variables and the other arising from alternating current
power flow equations. By employing a scenario decomposition method, we can separate these
issues and break down the stochastic component into a deterministic AC-OPF problem per
scenario. This approach results in a mixed-integer linear problem (MILP) or mixed-integer
quadratic problem (MIQP) that captures priority rules, and parallelizable AC-OPFs that
ensure technical feasibility.

The main content of this chapter was presented at the PGMO Days 2024 conference, held
in Palaiseau, France, in November 2024.

Ce chapitre explore différentes méthodes de résolution du modèle (4.2.6) avec des
variables binaires et contraintes discrètes. La Section 5.1 présente différentes stratégies
d’intégration de variables binaires au sein des méthodes de faisceaux, tout en abordant
les défis théoriques associés. Les approches d’intégration proposées sont testées avec la
méthode de faisceaux DoC.

La Section 5.2 propose une approche alternative consistant à ajouter une variable binaire
supplémentaire par scénario. Le problème d’optimisation résultant présente deux types de
non-convexité : l’une liée aux variables binaires et l’autre provenant des équations de flux de
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puissance en courant alternatif. Grâce à une méthode de décomposition par scénarios, ces
complexités peuvent être séparées, permettant de décomposer la composante stochastique
en un problème AC-OPF déterministe par scénario. Cette approche conduit à un problème
d’optimisation linéaire (MILP) ou quadratique (MIQP) en nombres entiers reflétant les
règles de priorité, ainsi qu’à des problèmes AC-OPF parallélisables assurant la faisabilité
technique.

Le contenu principal de ce chapitre a été présenté aux PGMO Days 2024 (Palaiseau,
France, novembre 2024).

5.1 Integrating binary variables into a bundle method

We begin this section by noting that the binary variables T ∈ {0,1}|T | in model (4.2.6)
appear only in the deterministic constraints, specifically in constraints (4.2.6g) - (4.2.6m),
while the chance constraint (4.2.6o) does not involve binary variables. Therefore, the DoC
reformulation described in Subsections 2.3.1 and 2.3.2 remains applicable. Meanwhile, the
continuous constraints (4.2.6c) - (4.2.6f) are inherited from model (2.2.4), and the continuous
constraint (4.2.6n) models fairness in power curtailment. In what follows, we will refer to
the version of model (4.2.6) that includes only the continuous constraints (4.2.6c) - (4.2.6f),
(4.2.6n), and the chance constraint (4.2.6o) as the continuous version of the model. The
DoC bundle method can handle the continuous version of model (4.2.6), while all the
challenges arise from the deterministic discrete constraints. We consider three different ways
to incorporate them.

5.1.1 Defining three approaches

The first approach consists of integrating the discrete constraints directly into the master
program of a bundle method applied to the continuous version of model (4.2.6). In this
case, there is no theoretical guarantee of convergence or solution quality. The challenges
related to the binary variables T ∈ {0,1}|T | are handled by a solver (with an integrated
Branch-and-bound method) in the numerical experiments.

If there is no need to distinguish between types of binary variables T ∈ {0,1}|T |, we will
enumerate them as Tt . Relaxing the binary requirements, i.e. considering variables Tt as
continuous ones, we introduce the additional constraints enforcing them to be equal to zero
or one:

Tt(1−Tt)≤ 0, 0≤ Tt ≤ 1, t ∈ {1, . . . , |T |}.
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Since variables Tt are non-negative, these constraints are equivalent to

h1(T )−h2(T )≤ 0, 0≤ Tt ≤ 1, t ∈ {1, . . . , |T |} (5.1.1)

with

h1(T ) =
|T |

∑
t=1

Tt and h2(T ) =
|T |

∑
t=1

T 2
t .

The two remaining approaches are based on replacing the requirement T ∈ {0,1}|T | by
the nonconvex constraints (5.1.1) in model (4.2.6). There are two options: integrating the
DoC constraint h1(T )−h2(T )≤ 0 either as a soft constraint, by adding a penalization term
to the objective function, or as a hard constraint. In the latter case, the resulting model will
include two DoC constraints, which can be combined into a single DoC constraint by taking
their maximum. We will discuss the convergence results applicable in this case for the DoC
and CwC bundle methods.

According to Theorem 3.5.9, any solution provided by the CwC bundle method (with
Tol = 0) satisfies the criticality condition (3.3.13) related to the problem of minimizing
the improvement function (3.3.11). If the binary requirement T ∈ {0,1}|T | is satisfied (that
we want to obtain), then T is a critical point for minT∈[0,1]|T | h1(T )− h2(T ). In this case,
according to the second case (ii) of Theorem 3.5.9, the stronger criticality condition (3.3.9)
does not necessarily hold.

For the DoC bundle method, a similar situation occurs. According to [129, Thm. 1] and
Theorem 2.3.1, any solution provided by the DoC bundle method (with Tol= 0) satisfies
the criticality condition (3.3.16) related to the problem of minimizing the corresponding
improvement function. To obtain a critical point to the original DoC model, c2 must be
continuously differentiable ([129, Thm. 2] and Theorem 2.3.1). Since we take the maximum
between the DoC constraint approximating the chance constraint and the DoC constraint
h1(T )−h2(T )≤ 0, this requirement may be satisfied at the solution point if only the latter
constraint is active. In this case, T ∈ {0,1}|T | holds, which corresponds to the case (iii)
of Theorem 2 in [129]. The point (iii) provides a certain necessary qualification condition,
the extended Mangasarian–Fromovitz constraint qualification (EMFCQ), for the stronger
criticality.

The EMFCQ condition holds at x̄ ∈ X with c(x̄) = 0 if there exists a direction d ∈
TX(x̄) such that the corresponding generalized directional derivative is negative: c◦(x̄;d) =
maxs∈∂ Cc(x̄)⟨s,d⟩ < 0. In our case, c(x) := h1(T )− h2(T ) is smooth, and thus regular:
(h1− h2)

◦ (T ;d) = h′1(T ;d)− h′2(T ;d). For Tt ∈ [0,1], the tangent cone is R+ ∪ {0} at
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Tt = 0, and R−∪{0} at Tt = 1. Therefore, h′1(T̄ ;d)−h′2(T̄ ;d)≥ 0 at T̄ ∈ {0,1}|T | for all d
from the tangent cone. Consequently, the EMFCQ condition does not hold.

As the qualification conditions are not satisfied for either bundle method at binary values
of T ∈ {0,1}|T |, and convergence to a critical point of the DoC model is not guaranteed, we
apply the DoC bundle method. It is worth noting that in the case of soft constraint integration,
there is only one DoC constraint approximating the chance constraint, and therefore the
convergence analysis from Section 3.8 applies.

First approach: integrating binary variables into the master program. Integrating the
discrete constraints into the master program in Step 4 of Algorithm 1 leads to the following
program at iteration k:
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min
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Second and third approaches: integrating an additional DoC constraint. To simplify
the notation, let us denote the continuous variables as follows:

x :=

(
p
q

)
, xρ :=

(
x
ρ

)
.

A feasible set defined by the deterministic constraints (4.2.6c) - (4.2.6n) and T ∈ [0,1]|T |, is
convex. We denote this set as Xρ ×B.

In the case of soft integration of the DoC constraint, we add a penalization term
ω
(
h1(T )− h2(T )

)
with ω ≥ 0 to the objective function, while retaining the lower and

upper bounds on Tt , t ∈ {1, . . . , |T |}, as hard constraints.
Note that the proportion variables ρ are present only in the convex deterministic con-

straints, and thus they have no impact on oracles. The new oracles are defined by the
following formulas:

f1

(
xρ

T

)
:= f (x)+ω h1(T ), f2

(
xρ

T

)
:= ω h2(T ),

c1

(
xρ

T

)
:= c1(x), c2

(
xρ

T

)
:= c2(x),

while the oracles for subgradients sc1 and sc2 remain unchanged (as in Section 2.3). Since
the component f2 is nonzero, the master program solved at Step 4 of Algorithm 1 must be
modified. According to the theory presented in [129], it becomes:
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In the case of hard integration of constraints (5.1.1), we deal with two DoC constraints:
c1(x)− c2(x) ≤ 0, approximating the chance constraint, and h1(T )− h2(T ) ≤ 0. Since
these constraints are not scaled, we introduce a parameter ω̃ ≥ 0 to equalize their values.
Representing them as a single DoC constraint max{c1(x)− c2(x), ω̃

(
h1(T )−h2(T )

)
} ≤ 0,

we equivalently obtain:

max{c1(x)+ ω̃ h2(T ), c2(x)+ ω̃ h1(T )}−
(
(c2(x)+ ω̃ h2(T )

)
≤ 0.

Similar to the previous case, the variables ρ appear only in convex deterministic constraints
and have no impact on oracles. We define the new oracles by the following formulas:

c1

(
xρ

T

)
:= max{c1(x)+ ω̃ h2(T ), c2(x)+ ω̃ h1(T )},

c2

(
xρ

T

)
:= c2(x)+ ω̃ h2(T ),

f

(
xρ

T

)
:= f (x),
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which also lead to the oracles for subgradients s f , sc1 and sc2 . As the objective function is
convex, the master program solved at Step 4 of Algorithm 1 remains unchanged:
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5.1.2 Numerical results for integration into the DoC bundle method

We have constructed use cases based on the use case considered in Subsection 2.4.4 with the
same network configuration, load and generation profiles, and voltage constraints. Due to
the fact that only voltage constraints are present, the number of constraints in model (4.2.6)
can be reduced, as discussed in Subsection 4.2.1. In this section, we have extended the set
of priority levels for producers and adapted the coefficients in the objective function, which
results in three different cases.

The first use case corresponds to a single priority level for producers, i.e. M = 1 and
N1 includes all three producers connected in buses 12, 29 and 32. In this case, the priority
constraints (4.2.6h) and (4.2.6i) are not involved.

For the second use case, we consider two priority levels (M = 2) with N1 including the
producer connected in bus 12, and N2 including all three producers at buses 12, 29 and 32.
This assignment of priority levels corresponds to that in Subsection 2.4.4.

For the third use case, we consider three priority levels (M = 3) with N1 including
the producer connected in bus 12, N2 including the producers at buses 12 and 32, and N3

including all three producers at buses 12, 29 and 32.
The coefficients in the objective function (4.2.6a) are provided in Table 5.1 with a

distinction between different types of generation.

First approach: integrating binary variables into the master program. Recall that the
first approach consists of modifying solely the master programs (5.1.2) at each iteration k
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Table 5.1 Coefficients in the objective function (4.2.6a) for each grid user (GU).

GU Priority level Type Coefficient in (14a)

12
m=1

Biomass generation
4.2 ·10−5

m=2 4.2 ·10−4

m=3 4.2 ·10−3

29 m=1 Biomass generation 4.2 ·10−3

32
m=1

Wind generation
2 ·10−3

m=2 2 ·10−2

Others - Consumption 1

of Algorithm 1, with a solver handling the binary variables. The remaining task is to set an
initial starting point (p0,q0,T 0,ρ0), which is a crucial step, as the approach is sensitive to
this choice. However, we currently do not have reliable heuristics for selecting good starting
points.

We initially ran the algorithm with the starting point corresponding to zero power cur-
tailment, and set T 0 = 1 to allow the activation of all priority levels and curtailment of
consumers. After 1500 iterations, the algorithm did not perform any serious step in all
three use cases. Then, we decided to begin with a solution of the continuous version of
model (4.2.6), allowing the solver to search for a nearby actual solution. Specifically, we
solve the continuous version in the 1st phase and denote its solution, provided by Algorithm 1,
as (p̄, q̄, ρ̄). In the 2nd phase, we set p0 = p̄, q0 = q̄ and ρ0 = ρ̄ . This choice was based
on the assumption that the solution of the continuous version is sufficiently close to a good
solution for the actual (discrete) problem.

We have performed tests for the first and the second use cases, with N = 1000 scenarios
and the safety parameter ranging from 1−α = 0.75 to 1 with a step size of 0.025. In the
1st phase, for the continuous version of model (4.2.6), the execution time varies from 376
to 1618 seconds, with an average of 1048 seconds in the first use case, and from 1536 to
2241 seconds, with an average of 1838 seconds in the second use case. Initialized at zero
power curtailment values, the DoC bundle method manages to find feasible solutions of
the continuous version with safety parameter values up to 0.9 except for 1−α = 0.875.
Figure 5.1 illustrates a drastic decrease in the ratio of scenarios satisfying the power flow
equations (the obtained safety parameter) for the targeted ratios 1−α = 0.925, 0.95 and
0.975, when infeasible solutions have been provided by the approach. Meanwhile, the
curtailment of producers is activated at maximum for all values of the parameter 1−α .
Consequently, constraints (4.2.6j) and (4.2.6k) allow curtailment of consumers.

In the 2nd phase, the starting point is set to (p0,q0,ρ0) = (p̄, q̄, ρ̄), and T 0 is set to 1. It
provides feasible solutions for all safety parameter values, with the execution time ranging
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from 156 to 1396 seconds, and an average of 1046 seconds. As Figure 5.1 shows, the ratio
of scenarios satisfying the power flow equations always remains higher for the 2nd phase (the
mixed-integer version) than for the 1st phase (continuous version). The power curtailment
cost is also higher: 1.8002 pu on average, against 0.2391 pu in the 1st phase, Figure 5.2.
It is worth mentioning that for 1−α = 1, the ratio of scenarios satisfying the power flow
equations is 0.997. The corresponding power curtailment cost drastically increases up to
3.0942 pu, Figure 5.2.

The power curtailment is activated at maximum for all producers, while only several
consumers are affected: three consumers if 1−α = 0.775, 0.8 and 0.825, 13 consumers if
1−α = 1, and four consumers for other security levels. In the 1st phase, the number of
activated consumers varies from 6 to 25, with an average of 12.4. Therefore, the 2nd phase
of the algorithm significantly decreases the number of consumers participating in power
curtailment. However, the average volume of power curtailed per user increases by 15 times
(an average value among all security levels). This explains the gap in power curtailment costs
for the 1st phase and 2nd phase, Figure 5.2.

Fig. 5.1 Comparison of targeted safety parameter 1−α with the obtained one for the first
approach, Continuous (1st phase) and Mixed-integer (2nd phase) versions.

For the second use case, we obtain less promising results. For all values of the safety
parameter except for 1−α = 0.95 and 1, the algorithm provides a feasible solution in
the 1st phase. However, in the 2nd phase (T 0 set to 1), it does not succeed in finding
a feasible point to model (4.2.6). The algorithm fails to meet the targeted security level,
consistently stabilizing at 0.545, which corresponds to the initial security level (without
power curtailment).
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Fig. 5.2 Cost of power curtailment obtained with the first approach, Continuous (1st phase)
and Mixed-integer (2nd phase) versions.

This outcome can be explained as follows. In contrast to the first use case, the power
curtailment of producers is not activated at maximum in the 1st phase. This volume of power
curtailment is insufficient to satisfy the required security level. However, during the 2nd
phase, the algorithm does not deviate significantly from (p̄, q̄, ρ̄) and thus fails to find another
critical point capable of enabling consumer curtailment. The issue cannot be resolved by
setting T 0 differently; in fact, doing so only makes it more restrictive for the algorithm. We
have conducted tests with several initializations of T 0, and the resulting values remained
unchanged.

The tests conducted with N = 100 scenarios yield similar results, that is the 2nd phase
provides feasible solutions for all security levels in the first use case, and guarantees security
level of only 0.52 for the second use case. The execution time is lower for the 1st phase: it
varies from 412 to 1118 seconds, with an average of 748 seconds in the first use case, and
from 536 to 1641 seconds, with an average of 1107 seconds in the second use case. For the
2nd phase, it is comparable with the execution time of N = 1000 scenarios. At the same
time, the average difference in objective function values is 4.9% for the 1st phase and 3.5%
for the 2nd phase among all values of security level in the first use case. For the second use
case, the 1st phase shows an average difference of 5.2% in values of the objective function.

The results described above demonstrate the limited capacity of the methodology in
handling binary variables. In fact, the key success factor in the first use case is the solution
in the 1st phase (continuous version) which enabled the activation of consumers’ power
curtailment with respect to the corresponding binary and discrete constraints. However, as it
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does not hold for the 1st phase in the second use case, the results in the 2nd phase are not
satisfactory. Therefore, we conclude that the described approach is not universally applicable
and demonstrates good performance only for specific use cases.

Second and third approaches: integrating an additional DoC constraint. To test the
second approach with soft constraint integration, we have conducted numerical experiments
for three use cases, the safety parameter 1−α equal to 0.9, and N = 1000 scenarios. First,
we set the penalization term ω to 0, which corresponds to the continuous relaxation of binary
variables. The algorithm identifies feasible approximate critical points for all three use cases
with the corresponding execution time of 1615, 1416 and 1478 seconds. In each case, the
power curtailment of producers is activated to its maximum at the priority level m = 1. In
the second and third use cases, the power curtailment of producers is uniformly activated
at 12.4% from the upper bound at the remaining priority levels. The consumers’ power
curtailment is uniformly activated at 15.2% in the first use case, while it is activated only for
12 consumers in the second use case, and for 10 consumers in the third use case, each at a
non-maximum level. We have also tried the first approach (with the integration of binary
variables into the master program (5.1.2) at each iteration k of Algorithm 1) starting from the
obtained solutions, but the algorithm fails to perform serious steps after 1500 iterations.

For the second run, we set the penalization parameter ω to 100 and initialize the algorithm
at the resulting point of the first run with ω = 0. The idea behind this approach resembles
the one of the first approach: by initializing the algorithm at a feasible solution of the
continuous problem, we search for nearby binary values of variables Tt , t ∈ {0, . . . , |T |}.
Instead of requesting a solver to provide binary values of Tt , we guide the algorithm through
a penalization term.

In the three use cases, the algorithm delivers feasible solutions after 284, 1639 and 4916
seconds, respectively. However, not all resulting values of variables Tt , t ∈ {0, . . . , |T |},
are binary. In contrast to the first run with ω = 0, the power curtailment of producers at
priority level m = 1 is no longer activated to its maximum in the first use case (activated
at approximately 15.8%) and second use case (activated at approximately 18.8%), and the
values of corresponding variables TJ,1 are not binary. Furthermore, the number of consumers
who participate in power curtailment for all three use cases, reduces up to 9, 4 and 6
consumers, respectively.

The algorithm thus decreases the resulting value of the penalization term by switching off
the power curtailment of consumers. This effect is beneficial and aligns with our expectations.
However, we are still seeking to satisfy the priority for producer curtailment. Setting ω to
1000 does not help improve the situation — the algorithm fails to perform serious steps (only
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null-steps up to 1500 iterations) for the first use case, and thus the resulting point remains
unchanged. This behavior may be explained by the fact that the penalization term becomes
too dominant.

We attempted another strategy involving a progressive increase of the penalization
parameter ω by 1%. Starting with initial values of ω = 10−3, 10−6 and 10−9, we have
performed simulations for the first use case with N = 10000. The latter choice was motivated
by the intention to better approximate the probability constraint. The goal of this approach
was to delicately guide the algorithm to preserve the binary values of variables Tt , t ∈
{0, . . . , |T |}, obtained after the first run (with ω = 0), and gradually push other values
towards binaries. However, the algorithm immediately switched to a solution close to that
obtained with ω = 100 (while maintaining a comparable execution time): power curtailment
of producers is activated at 13.4% from the upper bound, while consumers’ power curtailment
is activated for 9 consumers. With a gradual increase of the penalization parameter ω , the
values of power curtailment remain within 0.05%. We conclude that solutions provided by
the second approach with soft constraint integration do not satisfy the priority rules.

The third approach with hard constraint integration, is much less intuitive, as the scaling
parameter ω̃ does not have a direct interpretation. We have conducted tests for the first use
case, with N = 1000 scenarios and the parameter ω̃ varying within the set {0.1,1,10}. After
an average of 1477 seconds, the algorithm produces unfeasible solutions. The resulting
producers’ power curtailment ranges between 14.6% and 16.2% from the upper bound, while
the number of activated consumers is 24, 26 and 22, respectively. As in the previous case,
solutions provided by the third approach with hard constraint integration do not satisfy the
priority rules.

5.1.3 Discussion

In this section, we proposed three approaches for integrating binary variables into a bundle
method. The first approach involves directly incorporating discrete constraints into the master
programs solved at each iteration of the algorithm, and does not provide any convergence
guarantee. The other two approaches add an additional DoC constraint to enforce binary
outcomes for the relaxed binary variables, either as a penalization term or as a hard constraint.
In this case, the convergence theory applies. However, for the hard constraint integration,
convergence to a critical point of the original problem is not guaranteed by either the DoC or
CwC bundle methods, due to non-satisfaction of constraint qualification conditions.

We have tested these integrations with the DoC bundle method. None of the three
approaches succeeded in finding a feasible solution that fully satisfies the fairness and priority
rules. For the first one, the potential issue is a lack of information about binary variables,
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as there are no subgradients to indicate a direction for the bundle method. The solution
remains around the initial point. For the second approach with soft constraint integration, the
penalization term is not sufficient to enforce binary outcomes for the relaxed binary variables,
although the algorithm tends to decrease the number of non-binary values. Indeed, as the
bundle method provides only a critical point rather than a global solution, soft constraint
penalization does not ensure binary satisfaction. The CwC bundle method can potentially
provide a better solution with stronger criticality guarantees for this approach. However, we
anticipate the same challenge. For the third approach with hard constraint integration, the
algorithm finds an unfeasible critical point.

This opens a direction for future research: finding nonconvex constraints enforcing binary
outcomes for the relaxed binary variables with an appropriate CwC decomposition, such that
the qualification condition for the CwC bundle method is satisfied. In this case, a stronger
convergence is ensured for hard constraint integration, which could lead to better numerical
results.

5.2 Scenario decomposition approach

In the case of finite discrete probability distributions, one of the approaches used in the
literature to deal with stochastic models is a scenario decomposition approach. For two-stage
stochastic problems, it was applied in [1] for the case of binary first-stage decisions. In [17]
authors consider multi-stage stochastic problems with integrality requirements. The methods
rely on introducing copies of the first-stage (here-and-now) variables along with additional
non-anticipativity constraints ensuring these copies take the same value. This results in an
extended mathematical program with a block structure. Any block-decomposition method
allows separating the model into scenario-dependent subproblems.

A column generation approach in [30] and a generalized Benders decomposition approach
in [130] have been employed for chance-constrained models. Both methods rely on dualizing
the condition under the probability sign and thus require the convexity, even linearity, of
the underlying formulations. This requirement is omitted in [2], where the linear non-
anticipativity constraints are dualized. In the absence of a linear dual for AC-OPF and to
avoid relaxing the nonconvex power flow equations, we adhere to the latter methodology.

We begin in Subsection 5.2.1, by introducing the extended model, with a binary variable
per scenario, indicating whether the decision (p,q) belongs to the set X(ξ ) for a given
scenario ξ . In Subsection 5.2.2, we transition to a model that maximizes the number of
satisfied scenarios following the first step of the heuristic scheme given in [2][Section 6]. In
Subsections 5.2.3 and 5.2.4, we evaluate different Lagrangian methods: with or without a
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regularization term. In Subsection 5.2.5, we numerically test the Lagrangian methods em-
ploying different dual updates within the maximization of Lagrangian functions. Depending
on the algorithm, we solve one MILP or MIQP, and a deterministic AC-OPF problem per
each scenario, at each iteration.

5.2.1 Binary variable per scenario

For a scenario ξ j, let z j ∈ {0,1} be a binary variable associated with this scenario. Consider
the following set of upper and lower bounds on state variables for given Mδ , Mδ , MV , MV ,
Msb, Msb, M′sb, and Mcurr:

Mδ (1− z j)+δi ≤ δ
j

i ≤ δi +Mδ (1− z j), i ∈N \{sb} (5.2.1a)

MV (1− z j)+ |Vi| ≤ |Vi| j ≤ |Vi|+MV (1− z j), i ∈N \{sb} (5.2.1b)

Msb(1− z j)+ pmin
sb ≤ p j

sb ≤ pmax
sb +Msb(1− z j), (5.2.1c)

Msb(1− z j)+qmin
sb ≤ q j

sb ≤ qmax
sb +Msb(1− z j), (5.2.1d)

−0.48pmax
sb

−pmin
sb +0.25pmax

sb
p j

sb +
0.48pmax

sb pmin
sb

−pmin
sb +0.25pmax

sb
−q j

sb ≤M′sb(1− z j), (5.2.1e)

li,k(|Vi|, |Vk|,δi,δk)≤ (Imax
i,k )2 +Mcurr(1− z j), (i,k) ∈A (5.2.1f)

and the upper and lower bounds on power curtailment (p,q):

0≤
M

∑
m=1

pppm
i ≤ p̄G

i , i ∈ G (5.2.2a)

pL
i ≤ pppL

i ≤ 0, i ∈L (5.2.2b)

0≤
M

∑
m=1

qqqm
i ≤ q̄G

i , i ∈ G (5.2.2c)

qL
i ≤ qqqL

i ≤ 0. i ∈L (5.2.2d)

Using these bounds on power curtailment and corresponding state variables, we define the
following set:

LF(ξ j,z j) :=

(p,q)

∣∣∣∣∣
satisfy (5.2.2)

there exist |V |,δ , psb,qsb satisfying (5.2.1),
LR

i (p,δ , |V |,ξ j) = 0 for all i ∈N ,

LI
i (q,δ , |V |,ξ j) = 0 for all i ∈N

 ,
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where (according to (4.2.3))

LR
i (p,δ , |V |,ξ ) :=pφ

i (ξ )−
(
∑

M
m=1 pppm

i
)
+∑k∼iY R

i,k|Vi||Vk|cos(δi−δk)+∑k∼iY I
i,k|Vi||Vk|sin(δi−δk), if i ∈ G

pφ

i (ξ )− pppL
i +∑k∼iY R

i,k|Vi||Vk|cos(δi−δk)+∑k∼iY I
i,k|Vi||Vk|sin(δi−δk), if i ∈L ,

LI
i (q,δ , |V |,ξ ) :=qφ

i (ξ )−
(
∑

M
m=1 qqqm

i
)
+∑k∼iY R

i,k|Vi||Vk|sin(δi−δk)−∑k∼iY I
i,k|Vi||Vk|cos(δi−δk), if i ∈ G

qφ

i (ξ )−qqqL
i +∑k∼iY R

i,k|Vi||Vk|sin(δi−δk)−∑k∼iY I
i,k|Vi||Vk|cos(δi−δk), if i ∈L .

The set LF(ξ j,1) coincides with X(ξ j) given by (4.2.5).
Even though the solution set to the system of power flow equations is not a singleton, there

is only one physically meaningful solution within the region where the system is operated.
The assumption on solution uniqueness is common in the literature for modeling purposes
(see, for instance, [149, 41, 67]). Moreover, as discussed in [41, Section 2.1], [67, Sec-
tion 7.5.5], when the system is not ill-conditioned (it is obviously the case for our framework,
as otherwise, stabilization mechanisms would need to be activated and included in the model),
numerical methods typically provide an operational solution (physically meaningful within
the region where the system is operated) to a power flow system. In what follows, we will
thus focus on the operational solution. The Big-M bounds Mδ ,Mδ ,MV ,MV ,Msb,Msb,M′sb,
and Mcurr are sufficiently large, set in such a way that for any decision on power curtailment
(within the lower and upper bounds) when z j = 0, the operational solution satisfies (5.2.1).
An estimation for MV can be found in [34], which specifies technical and engineering
regulations on grid parameters.

We replace the chance constraint by the condition 1
N

(
∑

N
j=1 z j) ≥ 1−α . Since z j = 1

implies (p,q) ∈ X(ξ j), the latter condition implies

1
N

( N

∑
j=1

1(p,q)∈X(ξ j)

)
≥ 1−α.

For a finite number N of scenarios, this sum is equivalent to E[1(p,q)∈X(ξ )], which corresponds
to P[(p,q) ∈ X(ξ )]. Therefore, the described substitution of the probability constraint
corresponds to an inner approximation of the latter.
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To simplify the notation, we denote a discrete feasible set defined by the constraints (4.2.6c)
- (4.2.6n) as Xρ × B̄. The problem (4.2.6) transforms into

min
p,q,T,ρ, |V |,δ , psb,qsb,z

f (p) (5.2.3a)

s.t. (p,q,T,ρ) ∈ Xρ × B̄, (5.2.3b)

(p,q) ∈ LF(ξ j,z j), j = 1, . . . ,N (5.2.3c)

1
N

( N

∑
j=1

z j)≥ 1−α. (5.2.3d)

5.2.2 Maximizing probability

The resulting problem (5.2.3) is a nonconvex MINLP (mixed-integer nonlinear program) due
to the binary variables in (5.2.3b) and (5.2.3d), as well as the nonconvex constraints (5.2.3c)
representing an AC-OPF problem for each scenario. Our goal is to separate these issues by
employing a scenario decomposition approach and to handle each component individually.
We start by reformulating this problem as a probability maximization problem and show their
link using a bisection procedure.

For each scenario ξ j, we duplicate variables (p,q) in (5.2.3c) denoting them by (p̃ j, q̃ j).
In what follows, we again denote x = (p,q), and x̃ j = (p̃ j, q̃ j). Additional linear non-
anticipativity constraints A(x− x̃ j) = 0 for j = 1, . . . ,N ensure that

M

∑
m=1

pppm
i =

M

∑
m=1

p̃m, j
i , if i ∈ G ,

pL
i = p̃L , j

i , if i ∈L .

Finally, for a given value y≥ 0, we add a budget constraint f (x)≤ y. The problem (5.2.3)
becomes

min
x, x̃,ρ,T, |V |,δ , psb,qsb,z

N

∑
j=1

(1− z j) (5.2.4a)

s.t. (x,ρ,T ) ∈ Xρ × B̄, (5.2.4b)

x̃ j ∈ LF(ξ j,z j), j = 1, . . . ,N (5.2.4c)

A(x− x̃ j) = 0, j = 1, . . . ,N (5.2.4d)

f (x)≤ y. (5.2.4e)



126 Optimization approaches to the model with priority and fairness rules

Let v̄ = (x, x̃, ρ, T, |V |, δ , psb, qsb, z) be a global solution of problem (5.2.4) for a given
y. If the corresponding value of the objective function is lower than αN, then the con-
straint (5.2.3d) is satisfied at v̄. In this case, the given value of y is an upper bound for
the optimal objective value of problem (5.2.3). Conversely, if the objective function value
exceeds αN, then the constraint (5.2.3d) is not satisfied at v̄. Since v̄ is a global minimum
for (5.2.4), this constraint is not satisfied at any other point. Therefore, the given y is a lower
bound on the optimal objective value of problem (5.2.3).

If v̄ is a feasible point of problem (5.2.4) and the corresponding objective function value
is lower than αN, the observation about the value of y being an upper bound remains valid.
However, in the case of a lower bound, the assumption that v̄ is a global solution is crucial.
Solving problem (5.2.4) up to global optimality is challenging, as it still involves binary
variables along with AC-OPF constraints for all scenarios.

Assume that there exists a relaxation, which is easier to solve. In this case, the observation
for lower bound remains valid: if v̄ = (x, x̃, ρ, T, |V |, δ , psb, qsb, z) is a global solution of a
relaxed problem and the corresponding value of ∑

N
j=1(1− z j) is greater than αN, then the

given value of y is a lower bound on the optimal objective value of problem (5.2.3). This does
not hold for an upper bound: if the value of ∑

N
j=1(1− z j) is lower than αN in the relaxed

problem, it may still exceed αN in problem (5.2.4).
To find an upper bound on the optimal objective value of problem (5.2.3), it is sufficient to

obtain a feasible point for either (5.2.4) or (5.2.3). One approach is to fix the binary variable
values (for example, using the values from the solution obtained for the lower bound). Then,
apply the DoC bundle method to solve the chance-constrained problem (4.2.6) with fixed
binary variables. As we observed in numerical experiments in Section 2.4, the obtained
security level, which is exactly 1

N

(
∑

N
j=1 z j), is lower than targeted level. Consequently, we

need to set a higher value for the safety parameter (which can be approximately estimated
based on numerical results from the same section). Since any feasible point provides an
upper bound, we can terminate the DoC bundle method earlier.

The discussion above can be summarized in the following scheme of bisection procedure
for determining values of y:

1. Initialization. Let ŷ = y0. (By default, set an upper bound on maximal cost of power
curtailment)

2. Solve a relaxation. For the given ŷ, solve a relaxation of problem (5.2.4), and denote
its solution by v̄.

3. Lower bound. If ∑
N
j=1(1− z j)≥ αN, then set LB← ŷ.
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4. Upper bound. Fix values of binary variables as in v̄. Find a feasible point of the
resulting continuous problem and denote the corresponding cost value by f̂ . Set
UB← f̂ .

5. Update ŷ. (Default update: ŷ← 1
2

(
LB+UB

)
.) Return to Step 2.

In the next sections, we will closely consider Step 2, which consists of solving a relaxation
of problem (5.2.4). Specifically, we explore the dualization of non-anticipativity constraints
in (5.2.4) leading to a scenario decomposition. Remaining consistent with the logic of
keeping the AC-OPF formulation, we do not use any relaxation of the latter. However,
the method can be easily adapted to subsequently incorporate convex relaxations of AC-
OPFs, such as Quadratic Convex relaxation [21], Second-Order Cone relaxation [64], and
Semidefinite Programming relaxation [71]. Conversely, directly relaxing AC-OPFs without
dualizing the non-anticipativity constraints does not allow the decomposition per scenario
and thus remains an intractable problem in the case of a large number of scenarios.

5.2.3 Scenario decomposition with the Lagrangian relaxation

By weak duality, for any values of λ j, j = 1, . . . ,N, the solution of the Lagrangian relaxation

min
x, x̃,ρ,T, |V |,δ , psb,qsb,z

N

∑
j=1

(1− z j)+λ
T
j A(x− x̃ j) (5.2.5)

s.t. (5.2.4b),

(5.2.4c),

(5.2.4e),

provides a lower bound on (5.2.4). Moreover, it is decomposable into a MILP problem

min
x,ρ,T

(
N

∑
j=1

λ j)
T Ax (5.2.6)

s.t. (5.2.4b),

(5.2.4e),

and j = 1, . . . ,N problems

min
x̃ j, |V | j,δ j, p j

sb,q
j
sb,z

j
(1− z j)−λ

T
j (Ax̃ j) (5.2.7)

s.t. x̃ j ∈ LF(ξ j,z j).
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For each scenario ξ j, the problem (5.2.7) splits into two cases: one with z j = 1 and another
with z j = 0. The resulting optimization problems are deterministic AC-OPFs, which differ
only in the bounds specified in (5.2.1) (the latter are tight for z j = 1 and defined by Big-M
method for z j = 0):

Case z j = 1 :

min
x̃ j, |V | j,δ j, p j

sb,q
j
sb

−λ
T
j (Ax̃ j)

s.t. x̃ j ∈ LF(ξ j,1).

Case z j = 0 :

min
x̃ j, |V | j,δ j, p j

sb,q
j
sb

1−λ
T
j (Ax̃ j)

s.t. x̃ j ∈ LF(ξ j,0).

We will show that it is sufficient to solve only one deterministic AC-OPF per scenario
and the sign of λ j is known. Assume that there exists ĩ ∈ G such that component of λ j

corresponding to the total active power curtailment of user ĩ is strictly positive, i.e. λ ĩ
j > 0

(or, if ĩ ∈L , then λ ĩ
j < 0). For this component, −λ ĩ

j
(
∑

M
m=1 pm, j

ĩ

)
≤ 0 (or, −λ ĩ

j pL , j
ĩ ≤ 0).

Recall that the condition x̃ j ∈ LF(ξ j,0) is always satisfied for z j = 0 (for x̃ j within the
bounds (5.2.2)). The minimum of problem (5.2.7) with z j = 0 is thus attained at the upper
bound specified by (5.2.2): ∑

M
m=1 pm, j

ĩ = p̄G
ĩ (or, lower bound if ĩ ∈L : pL , j

ĩ = pL
ĩ ).

Let x be a feasible point of problem (5.2.6). We will reduce the modulus of its ĩ-th
component while preserving feasibility. Consider a point x̂ with components p̂i = pi, i ̸= ĩ
and

p̂ĩ =


0, if ĩ ∈L

(p1
ĩ , . . . ,p

m−1
ĩ ,0), if ĩ ∈ G and

maximal activated curtailment level at xĩ is m.

The point x̂ is indeed feasible, as decreasing power curtailment at the highest activated
level (including consumers) respects deterministic constraints. Meanwhile, the value of
the objective function is lower at x̂ compared to x. Thus, any solution x̂ of problem (5.2.6)
satisfies ∑

M
m=1 p̂m

ĩ < p̄G
ĩ if ĩ ∈ G . Moreover, there exists a positive constant C > 0 such that

p̄G
ĩ −

(
∑

M
m=1 p̂m

ĩ

)
≥C by construction. An analogous bound holds for consumers.

The update rule for λ
k+1
j (dual ascent method) is λ

k+1
j = λ k

j +βk A(xk+1− x̃ j,k+1). The
coefficients βk > 0 should not be too small, ensuring that ∑k βk = +∞. Consequently,
|λ ĩ,k+1

j −λ
ĩ,k
j | ≥ C̃βk, and after finite number of steps λ ĩ

j will change its sign. Therefore, we
set initially λ ĩ

j ≤ 0 for ĩ ∈ G , and λ ĩ
j ≥ 0 for ĩ ∈L .

Consequently, the solution to problem (5.2.7) with z j = 0 is zero. This aligns with the
intuition that power curtailment is unnecessary in unfavorable scenarios, as it increases
power curtailment cost if activated. Therefore, z j = 1 if −λ T

j (Ax̃ j)≤ 1. More precisely, it is
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sufficient to solve (5.2.7) with z j = 1 and verify whether the objective value is lower than
1. If so, we conclude that solution of (5.2.7) is z j = 1. Otherwise, the solution is z j = 0 and
x̃ j = 0. Algorithm 4 summarizes the described scenario decomposition approach. It can be
accelerated by terminating the resolution of problem (5.2.8) as soon as −λ T

j (Ax̃ j)≤ 1.

5.2.4 Defining the here-and-now decision

Augmented Lagrangian. The main challenge for us in scenario decomposition approach
is gluing together x̃ j for j = 1, . . . ,N, and x, as there is no theoretical guarantee that the
Stopping Criterion ∥A(xk+1− x̃ j,k+1)∥ ≤ ε will be met. To enforce the satisfaction of the
non-anticipativity constraints, we strengthen the penalization of their violation with quadratic
penalization terms. This results in considering an augmented Lagrangian function:

min
x, x̃,ρ,T, |V |,δ , psb,qsb,z

N

∑
j=1

(1− z j)+λ
T
j A(x− x̃ j)+ r j ∥A(x− x̃ j)∥2 (5.2.10)

s.t. (5.2.4b),

(5.2.4c),

(5.2.4e),

where r j > 0 for j = 1, . . . ,N. Due to the quadratic term, which is equal to

N

∑
j=1

r j ∥A(x− x̃ j)∥2 =
N

∑
j=1

r j
(
∥Ax∥2−2⟨Ax,Ax̃ j⟩+∥Ax̃ j∥2),

problem (5.2.10) is no longer separable.
One of the approaches widely used when individual subproblems are simpler to solve

than the original problem is the block coordinate method. It relies on optimizing one
block of variables while keeping other blocks fixed, and iterating between blocks. For the
biconvex framework, convergence of this method is shown in [51]. Another approach, the
alternating direction method of multipliers (ADMM) was proposed in [42] and further studied
in detail in [16]. This method combines the ideas from dual decomposition and augmented
Lagrangian methods and relies on updating primal and dual variables alternately, promoting
both decomposition and coordination. While there are no convergence guarantees due to the
presence of binary variables and nonconvexity in applying these methods for our case, we
adopt the scheme of the latter algorithm to address problem (5.2.10).
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At iteration k, we obtain the following problems (following block coordinate scheme):

min
x̃ j, |V | j,δ j, p j

sb,q
j
sb,z

j
r j∥Ax̃ j∥2−⟨2r jAxk +λ j,Ax̃ j⟩+(1− z j) (5.2.11)

s.t. x̃ j ∈ LF(ξ j,z j)

for j = 1, . . . ,N, and

min
x,ρ,T

(
N

∑
j=1

λ j)
T Ax+

( N

∑
j=1

r j
)
∥Ax∥2−

〈
Ax,

N

∑
j=1

2r jAx̃ j,k+1
〉

(5.2.12)

s.t. (5.2.4b),

(5.2.4e).

For the case z j = 0, problem (5.2.11) becomes:

min
x̃ j, |V | j,δ j, p j

sb,q
j
sb,z

j
r j∥Ax̃ j∥2−⟨2r jAxk +λ j,Ax̃ j⟩+1 (5.2.13a)

s.t. x̃ j ∈ LF(ξ j,0). (5.2.13b)

Since the Big-M bounds are set so that the constraint x̃ j ∈ LF(ξ j,0) is always satisfied
(for x̃ j within the bounds (5.2.2)), the latter problem can be solved independently for each
component i of (Ax̃ j)i. The minimum for component can be reached either at bounds (5.2.2),
which are defined specifically for Ax̃ j, or at (Ax̃ j)i = (Axk−1 +

λ j
2r j

)i. Therefore, the values
of Ax̃ j are determined component-wise based on the comparison of the corresponding
objective values at identified points. As the constraints defining priority rules are not present
in (5.2.13), any allocation of the curtailed power among priority levels m for producers is
feasible. Consequently, only the AC-OPF with tight bounds

min
x̃ j, |V | j,δ j, p j

sb,q
j
sb,z

j
r j∥Ax̃ j∥2−⟨2r jAxk +λ j,Ax̃ j⟩ (5.2.14a)

s.t. x̃ j ∈ LF(ξ j,1) (5.2.14b)

needs to be solved at each iteration and per each scenario. The value of z j,k+1 is identified
based on the comparison of the objective values for AC-OPF (5.2.14) and (5.2.13).

The scheme of Algorithm 4 remains almost unchanged: problem (5.2.8) is replaced
by (5.2.14), and problem (5.2.9) is replaced by (5.2.12). The update for λ j at Step 16 is given
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by

λ
k+1
j = λ

k
j +2r j A(xk+1− x̃ j,k+1).

The complete procedure is summarized in Algorithm 5.

Proximal Lagrangian. For problem (5.2.4), the Proximal Lagrangian is defined as

Lprox(x, x̃, z, λ , r) =
N

∑
j=1

(1− z j)+λ
T
j A(x− x̃ j)+ r∥A(x− x̃ j)∥2,

where r ≥ 0 also becomes a dual variable. A notable property of the Proximal Lagrangian is
closing the duality gap, even for nonconvex mixed-integer problems under mild assumptions
([23, Corollary 1]). Similar to the problem (5.2.10), the presence of the quadratic term means
that the Lagrangian subproblems are no longer separable. The primal-dual bundle method
(Algorithm 2 in [23]) allows the latter to be solved inexactly, with known uniformly bounded
errors. This method yields an approximate solution, with an error estimate based on these
bounds.

In our case, we apply the block coordinate scheme to find approximate solutions to the
Lagrangian subproblems. With the dual variables λ and r fixed, the problems at iteration k
correspond exactly to (5.2.11) and (5.2.12) (r j are the same for all scenarios j = 1, . . . ,N).
However, we are unable to estimate the errors for the obtained solutions. Therefore, we cannot
expect any guarantees on the quality of the resulting solution provided by the primal-dual
bundle method.

5.2.5 Numerical results for scenario decomposition methods

We have conducted numerical experiments with the scenario decomposition approach for
three Lagrangian methods: Lagrangian relaxation, augmented Lagrangian, and Proximal
Lagrangian. So far, we have focused on the first use case from Subsection 5.1.2, where only
voltage grid constraints are present, and all three producers connected at buses 12, 29, and
32, have a single priority level (M = 1).

In this case, the priority and fairness rules reduce to two requirements: first, a simul-
taneous and proportional curtailment of producers due to the constraint (4.2.6n); second,
consumer curtailment begins only after all producers are curtailed to their maximum due to
the constraints (4.2.6j) and (4.2.6k).

The tests have been performed for N = 1000 scenarios. The Stopping Criterion, which
measures the distance between the solutions of MILP or MIQP and the stochastic part of
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the model at iteration k, denoted by ∥A(xk+1− x̃ j,k+1)∥ ≤ ε in Algorithm 4, is calculated as
follows:

max
j=1,...,N

∥A(xk+1− x̃ j,k+1)∥1.

We will refer to this value as the solution distance at iteration k.
The ratio of satisfied scenarios at iteration k can be calculated in two different ways:

based on the solution xk+1 of MILP or MIQP by counting the number of satisfied scenarios
with power flow equations, or directly from the values of binary variables z j,k+1 related to
the solutions of deterministic AC-OPFs. If the solution distance is large, these two ratios
are different, and we therefore distinguish between them. We define the ratio of satisfied
scenarios for the solution xk+1 as the obtained safety level and refer to ∑

N
j=1 (1− z j,k+1) as

the number of unsatisfied scenarios.
Based on the results provided by the first approach with the integration of binary variables

into the master problem of the DoC bundle method, we estimate the power curtailment cost ŷ
in the budget constraint f (x)≤ ŷ. More precisely, we refer to the results of the 2nd phase
and N = 1000 scenarios analyzed in Subsection 5.1.2 for three values of the targeted safety
parameter 1−α = 0.75, 0.975, and 1. The corresponding ratios of scenarios satisfying the
power flow equations (the obtained safety parameter) are 0.709, 0.97, and 0.997 with the
corresponding power curtailment costs (value of the objective function) 1.6079 pu, 1.7076 pu,
and 3.0942 pu. We thus consider three use cases with the latter values of ŷ rounded.

Lagrangian relaxation. We apply the scenario decomposition approach with the La-
grangian relaxation, as described in Subsection 5.2.3, with ŷ = 1.71 pu and the dual ascent
subgradient method for updating λ given by Step 16 of Algorithm 4. Several initial values
of λ 0 are tested, setting them equal for all scenario j = 1, . . . ,N, and for all producers and
consumers: λ

i,0
j ∈ {−1,−10,−100} for i ∈ G and λ

i,0
j ∈ {1,10,100} for i ∈L . The primal

starting points are not explicitly involved in Algorithm 4. However, as deterministic AC-
OPFs (5.2.8) are addressed in practice with a local solver (as in Chapter 2), the choice of
starting points at each iteration k influences the provided solutions x̃ j,k+1. We will discuss
this limitation later in the section. For all initial dual values, the solution distance stabilizes
after first iterations and the ratio of satisfied scenarios (safety level) remains zero after 200
iterations.

Since the Lagrangian relaxation (5.2.5) is convex with respect to the dual variable, it can
be addressed with a convex bundle method. The oracles, which rely on the resolution of
MILP (5.2.9) and AC-OPFs (5.2.8), are inexact due to the local solutions obtained for the
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latter problems. After 62 iterations for ŷ = 1.61 pu, 33 iterations for ŷ = 1.71 pu, and 48
iterations for ŷ = 3.095 pu, the bundle method provides a dual value for (5.2.5), terminating
based on the stopping criterion with a tolerance of 10−6. However, the corresponding
(primal) solution distances remain significant for all three use cases, 6.621, 11.191, and
1.109, respectively, and the safety levels are zero. At the same time, the number of unsatisfied
scenarios is zero for ŷ = 1.71 pu and ŷ = 3.095 pu, and 152 scenarios for ŷ = 1.61 pu.

Significant solution distances observed for these two approaches can be explained by the
lack of interdependence between MILP (5.2.9) and AC-OPF problems (5.2.8) (decomposition
is too strong): they are linked only by the dual variables, but it turns out to be insufficient to
enforce convergence between x and x̃ j. For the first approach with the subgradient update,
we tried to increase the communication between these problems by setting the solution of
MILP at iteration k as a starting point for the local solver (with an interior-point method)
addressing AC-OPFs at iteration k+1. In this case, we observe the dual variable iterating
between two values, which implies the same behavior for solutions of MILP and AC-OPFs,
but does not ensure convergence in the solution distances.

Augmented Lagrangian. For the augmented Lagrangian dual method described in Sub-
section 5.2.4, we test its capability to recover a point satisfying the priority and fairness rules.
The algorithm fails to improve the safety level starting from zero; we also initialize it at
x0 = (p̄, q̄) corresponding to the solution provided by the 1st phase (continuous version) of
the first approach integrating binary variables into the DoC bundle method for a correspond-
ing safety level. In the latter case, the algorithm serves as an alternative to the 2nd phase of
the first approach.

The method is sensitive to the choice of the penalization parameter. For r j = 1 and
r j = 10, j = 1, . . . ,N, the algorithm behaves similarly to the Lagrangian relaxation. We
observe that the solutions of MIQP and AC-OPFs iterate between several values, and the
solution distance does not decrease. Setting a higher value of the penalization parameter
r j = 10000 for j = 1, . . . ,N enforces a decrease in the solution distance.

However, another challenge occurs: after several iterations (depending on the use case
and a starting point for the local solver addressing AC-OPFs), the number of unsatisfied
scenarios reaches N, and the solution distance stops decreasing. It means that solutions
provided by the local solver for AC-OPFs with tight bounds (5.2.14) are more expensive
in terms of the objective function compared to the solutions of AC-OPFs with Big-M
bounds (5.2.13) for all scenarios. Recall that the initial safety level (corresponding to zero
power curtailment) is 0.545. This implies that for at least 545 scenarios the objective value
of the AC-OPF with tight bounds (5.2.14a) should be lower compared to the AC-OPF with
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Big-M bounds (5.2.13a). Consequently, this issue is related to the limitations of the local
solver.

The issue persists when other algorithms for the local solver, such as Sequential Quadratic
Programming (SQP), are used. Running the solver from multiple initial points (the tests
have been performed with 100 random initial points) helps to improve the convergence
of the solution distance and provides a higher safety level than the initial one (0.545).
However, the latter option is highly time-consuming. Therefore, we apply an intermediate
time-efficient strategy: when solving an AC-OPF (5.2.14), we first check additional points
corresponding to zero power curtailment (as in Step 4 in Algorithm 4) and the extreme point
of the parabola (5.2.13a). If one of the corresponding grid states satisfies the tight bounds
(i.e. one of these points belongs to LF(ξ j,1)) and the corresponding value of the objective
function (5.2.14a) is lower compared to the objective value for the AC-OPF with Big-M
bounds (5.2.13a), then this scenario is satisfied (z j,k+1 = 1, without solving (5.2.14)).

This brute-force approach significantly reduces the number of unsatisfied scenarios, at
least for a sufficient number of iterations: the Stopping Criterion in terms of the solution
distances is not satisfied (except for ŷ = 3.095 pu), but we terminate when the safety level is
sufficiently high. This termination is based on the practical observation that the highest safety
level is typically achieved at the iteration just before the number of unsatisfied scenarios
reaches N. Once this happens, the algorithm is unable to return to significantly lower numbers
of unsatisfied scenarios. Informally speaking, it loses the information that it could have
obtained from AC-OPFs with tight bounds, and thus cannot transfer it to the solutions of
MIQP.

The corresponding solution distances at the final iteration are as follows: 0.152 for
ŷ = 1.61 pu, 1.2134 for ŷ = 1.71 pu, and 10−14 for ŷ = 3.095 pu. The obtained safety levels
are relatively high: 0.662, 0.911, and 0.998, respectively. In the latter case, the safety level
is higher than the ratio of scenarios satisfying the power flow equations (the obtained safety
parameter) provided with the 2nd run of the first approach (integrating binary variables into
the DoC bundle method). Meanwhile, the execution time is lower for all three use cases: 172
against 664 seconds (ŷ = 1.61 pu), 630 against 1396 seconds (ŷ = 1.71 pu), and 348 against
977 seconds (ŷ = 3.095 pu).

Proximal Lagrangian. We apply the Proximal Lagrangian method discussed in Sec-
tion 5.2.4 to the same use cases as the augmented Lagrangian. We also set x0 = (p̄, q̄)
corresponding to the solution provided by the 1st phase of the first approach integrat-
ing binary variables into the DoC bundle method. The dual variables are initialized at
(λ 0,r0) = (−1,10000).
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Table 5.2 Numerical results for three considered scenario decomposition methods.

Method
Budget

constraint,
pu

Average time
per iteration,
AC-OPFs, s

Average time
per iteration,
MILP/MIQP,

s

Safety level
Final

solution
distance

LagRel

1.61 0.48 0.25 0 6.621

1.71 0.52 0.24 0 11.19

3.1 0.51 0.31 0 1.109

AugLag

1.61 61.2 0.47 0.662 0.152

1.71 81.8 0.66 0.911 1.213

3.1 56.57 0.51 0.998 10−14

ProxLag

1.61 25.75 0.61 0.654 0.704

1.71 3.13 0.55 0.875 0.007

3.1 24.48 0.57 0.982 0.302

Recall that solving MIQP (5.2.12) and AC-OPFs (5.2.14) corresponds now to the oracle
phase. We apply the same modification to address AC-OPFs (solving power flow equations
for additional points) with the local solver. Moreover, we implement the termination condition
based on the practical observation (i.e. terminating just before the number of unsatisfied
scenarios reaches N). These modifications enable significantly improve the numerical results:
without them, the algorithm fails to provide a non-zero safety level.

The primal-dual bundle method terminates based on the stopping criterion with a tolerance
of 10−6. The safety levels corresponding to the primal solutions are 0.654 for ŷ = 1.61 pu,
0.875 for ŷ = 1.71 pu, and 0.982 for ŷ = 3.095 pu. Compared to the augmented Lagrangian
method, these values are lower, as well as the average time per an oracle call compared to
the average time per iteration in the previous method. However, the primal-dual algorithm
requires a higher number of iterations.

The numerical results for the discussed methods are summarized in Table 5.2.

5.2.6 Discussion

In this section, we considered three methods for scenario decomposition relying on the
Lagrangian relaxation, and an augmented and proximal Lagrangian functions. Directly
decomposing the problem in the first case, and applying a block coordination in the latter
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two cases, we obtain one MILP or MIQP, and one AC-OPF per scenario, at each iteration.
Assuming that each subproblem can be effectively handled by known methods, the main
challenge lies in gluing together the solutions of the decomposed components.

Numerical experiments demonstrate that the methods based on augmented and proximal
Lagrangian functions provide relatively good lower-bound estimations for the considered use
cases, with moderate execution times. However, these methods lack convergence guarantees,
and are sensitive to parameter choices and initializations. Therefore, they can be considered
as heuristics, and are efficient when combined with a bundle method (continuous version)
providing a convenient initial point (warm start). Future testing should focus on applying
these methods to other use cases with different priority levels and additional congestion grid
constraints.

Furthermore, the quality of local solutions to deterministic AC-OPFs significantly in-
fluences performance of the method. The next step in this direction is to employ convex
approximations of AC-OPFs (possibly, with recovery procedure) and testing global solvers
to address original AC-OPFs with higher computational resources.

5.3 Conclusion

In this chapter, we considered several approaches to address the chance-constrained AC-OPF
model with discrete constraints representing the priority and fairness rules. The first group of
approaches relies on incorporating binary variables into the bundle methods, directly into
the master program, or using additional DoC constraints with simultaneous relaxation of
binary variables. While the convergence results are applicable in the latter case, the binary
outcomes are not provided in practice by the DoC bundle method due to the infeasibility of the
obtained solutions. Finding another nonconvex constraint compatible with the qualification
conditions of the CwC bundle methods and enforcing binary outcomes for binary variables
could improve the numerical performance.

An alternative approach addresses the model maximizing the number of satisfied scenarios
under a budget constraint, representing a discrete counterpart of the probability maximization
model. Applying different Lagrangian methods, with or without block coordination, it can
be decomposed into subproblems that are solved independently. Numerical results validate
numerical performance of the method on three use cases provided warm start initialization.
Further numerical experiments should address broader range of use cases with integration of
more accurate AC-OPF solvers.
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Algorithm 4 Scenario decomposition (Lower bound loop): Lagrangian relaxation

1: Set ŷ≥ 0, and λ 0
j for j = 1, . . . ,N. Choose ε > 0, Kmax > 0 and a sequence (βk)k.

2: for k = 0,1,2, . . . do
3: for j = 1, . . . ,N do
4: if 0 ∈ LF(ξ j,1) then
5: x̃ j,k+1← 0 and z j,k+1← 1
6: else
7: Solve

min
x̃ j, |V | j,δ j, p j

sb,q
j
sb

− (λ k
j )

T (Ax̃ j) (5.2.8a)

s.t. x̃ j ∈ LF(ξ j,1), (5.2.8b)

8: if −(λ k
j )

T (Ax̃ j)≤ 1 then
9: x̃ j,k+1← x̃ j and z j,k+1← 1

10: else
11: x̃ j,k+1← 0 and z j,k+1← 0
12: end if
13: end if
14: end for
15: Solve

min
x,ρ,T

(
N

∑
j=1

λ
k
j )

T Ax (5.2.9a)

s.t. (x,ρ,T ) ∈ Xρ × B̄, (5.2.9b)
f (x)≤ ŷ, (5.2.9c)

16: Set xk+1← x and λ
k+1
j ← λ k

j +βk A(xk+1− x̃ j,k+1)
17: if one of the Stopping Criteria holds then
18: return (xk+1, x̃ j,k+1,z j,k+1)
19: end if
20: end for

▷ Stopping Criteria
*Stopping Criteria: ∥A(xk+1− x̃ j,k+1)∥ ≤ ε for j = 1, . . . ,N, or k = Kmax.
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Algorithm 5 Scenario decomposition (Lower bound loop): Augmented Lagrangian

1: Set ŷ≥ 0, r j > 0 and λ 0
j for j = 1, . . . ,N. Choose ε > 0, Kmax > 0 and x0.

2: for k = 0,1,2, . . . do
3: for j = 1, . . . ,N do
4: Solve

min
x̃ j

M , |V | j,δ j, p j
sb,q

j
sb,z

j
r j∥Ax̃ j

M∥
2−⟨2r jAxk +λ

k
j ,Ax̃ j

M⟩+1

s.t. x̃ j
M ∈ LF(ξ j,0),

▷ Check the extreme points
5: Solve

min
x̃ j, |V | j,δ j, p j

sb,q
j
sb,z

j
r j∥Ax̃ j∥2−⟨2r jAxk +λ

k
j ,Ax̃ j⟩

s.t. x̃ j ∈ LF(ξ j,1),

6: if r j∥Ax̃ j∥2−⟨2r jAxk +λ k
j ,Ax̃ j⟩ ≤ r j∥Ax̃ j

M∥2−⟨2r jAxk +λ k
j ,Ax̃ j

M⟩+1 then
7: x̃ j,k+1← x̃ j and z j,k+1← 1
8: else
9: x̃ j,k+1← x̃ j

M and z j,k+1← 0
10: end if
11: end for
12: Solve

min
x,ρ,T

(
N

∑
j=1

λ
k
j )

T Ax+
( N

∑
j=1

r j
)
∥Ax∥2−

〈
Ax,

N

∑
j=1

2r jAx̃ j,k+1
〉

s.t. (x,ρ,T ) ∈ Xρ × B̄,
f (x)≤ ŷ,

13: Set xk+1← x and λ
k+1
j ← λ k

j +2r j A(xk+1− x̃ j,k+1)
14: if one of the Stopping Criteria holds then
15: return (xk+1, x̃ j,k+1,z j,k+1)
16: end if
17: end for

▷ Stopping Criteria
*Stopping Criteria: ∥A(xk+1− x̃ j,k+1)∥ ≤ ε for j = 1, . . . ,N, or k = Kmax.



Chapter 6

Perspective and future works

In this chapter, we discuss alternative approaches for solving model (4.2.6), as well as the
potential for applying the methods considered in previous chapters to other operational
planning models.

We begin by investigating the potential applicability of the Branch-and-bound method,
with the primary challenge being the determination of an accurate relaxation of the chance
constraint. As an initial step in this direction, we consider an SDP relaxation of the determin-
istic AC-OPFs introduced in Chapter 2 and Chapter 4.

Next, we discuss the interest in applying an Alternating Direction Method of Multipliers
(ADMM) to a spatial decomposition of the chance-constrained AC-OPF, highlighting the
main challenge of handling the joint chance constraint. Another promising direction for
future research is reducing the sample size of considered scenarios to enhance computational
efficiency.

Finally, we review the limitations of model generalizations within the operational planning
framework, while preserving the applicability of DoC and CwC approaches to the chance-
constrained formulation. We also discuss the potential for transitioning to the probability
maximization model and applying the scenario decomposition approach.

Ce chapitre explore des approches alternatives pour résoudre le modèle (4.2.6), ainsi que
la possibilité d’appliquer les méthodes présentées dans les chapitres précédents à d’autres
modèles de gestion prévisionnelle.

Nous analysons d’abord l’applicabilité potentielle de la méthode Branch-and-Bound,
dont le défi principal consiste à relaxer la contrainte probabiliste. Comme première étape
dans cette direction, nous considérons une relaxation SDP (semi-définie positive) des prob-
lèmes AC-OPF déterministes introduits dans le Chapitre 2 et le Chapitre 4.
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Nous abordons ensuite l’intérêt d’appliquer une méthode ADMM (Alternating Direction
Method of Multipliers) à une décomposition spatiale du problème AC-OPF sous contrainte
probabiliste, en soulignant la difficulté principale que représente le traitement de la contrainte
probabiliste jointe. Une autre piste prometteuse pour de futures recherches concerne la
réduction de la taille de l’échantillon de scénarios afin d’améliorer l’efficacité numérique.

Enfin, nous évaluons les limites des extensions possibles du modèle dans le contexte de
la gestion prévisionnelle, tout en maintenant l’applicabilité des approches DoC et CwC. Le
potentiel de transition vers un modèle de maximisation de probabilité et d’implémentation de
la décomposition par scénarios est également discuté.

6.1 Branch-and-bound method

The symmetry properties described in Proposition 4.2.1 and Proposition 4.2.2 for the con-
straints representing the priority and fairness principles enable removing redundant branches
from the search tree when applying a Branch-and-bound method to model (4.2.6).

To eliminate branches that do not contain an optimal solution, it is essential to effectively
compute a lower bound on the optimal value of (4.2.6) for a given candidate solution (with
fixed binary values). Therefore, a convex relaxation of the chance constraint in (4.2.6) is
required. Conservative approximations of the chance constraint, such as the conditional
value-at-risk (CVaR) approximation [62], widely used in risk-averse framework (see, for
instance, [29]), are not suitable for this goal, as they provide an upper bound. For a discrete
probability distribution, a convex relaxation of the chance-constrained is derived from the
DoC reformulation given in Subsection 2.3.2 (which is a relaxation in this case) by linearizing
the second convex component. However, while the DoC reformulation is defined by a closed
formula at a given point, an explicit global definition of the feasible set is still required.

Providing a global convex relaxation for a joint chance-constrained AC-OPF is a chal-
lenging problem that, to the best of our knowledge, has not yet been solved in a general
framework. Although a probability constraint does not necessarily preserve the convexity of
the underlying function, convex relaxations of AC-OPFs and linearizations of power flow
equations are commonly used approaches in the literature. In [103, 83], individual chance
constraints are analytically reformulated along with linearizations of underlying power flow
equations, while SOCP reformulations are used in [55]. A scenario-based method is applied
to a joint chance-constrained optimization problem in [87] and joint chance-constrained
AC-OPF in [146]. In these works, the chance constraint is replaced by a certain number of
deterministic constraints which ensure satisfaction of the original constraint in probabilistic
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sense. The underlying deterministic problem must be convex, and an SDP relaxation of
AC-OPF is thus used in the latter paper.

This motivates us to take the first step by selecting a suitable relaxation for a deterministic
AC-OPF. For radial distribution networks, AC-OPF relaxations are extensively studied and
well-understood. In particular, SDP relaxations, obtained by transforming the nonconvex
power flow constraints into convex constraints on a rank-one positive semidefinite matrix
and then relaxing the rank-one constraint. These relaxations have been analyzed from both
algebraic [71] and geometric [72] perspectives. The exactness of SDP relaxations for radial
networks was shown in [71, 72, 47, 153] under additional assumptions.

However, the deterministic AC-OPF (2.3.2) does not fit within the considered framework
of AC-OPFs, where the exactness of SDP relaxations is established. Specifically, the upper
and lower bounds on voltage angles, constraints (2.2.2a), cannot be expressed in terms
of the positive semidefinite matrix, as we will discuss in the next subsection. We modify
AC-OPF (2.3.2) by incorporating the constraints on the differences between voltage angles
at adjacent buses. We then apply methodology proposed in [71] to the resulting problem,
which differs from the framework considered in the paper, to explore the applicability of the
method to our case and identify the main challenges.

6.1.1 SDP Relaxation

In this subsection, we consider a modified version of AC-OPF (2.3.2) at a given point (pk,qk)

and scenario ξ . First, we denote by (pi,qi) the resulting power modulated at the node
i ∈N \{sb} to harmonize the notation in Chapter 2 and Chapter 4.

An SDP relaxation is based on the representation of problem variables in terms of the
product of two voltage variables, which is used to construct the positive semidefinite matrix.
This step is not possible for initial constraints on voltage angles (2.2.2a). Hence, we replace
the upper and lower bounds on δi, i ∈ N \ {sb} with the constraints on the differences
between voltage angles at adjacent buses δi−δ j for (i, j) ∈A :

δi j ≤ δi−δ j ≤ δi j, (i, j) ∈A . (6.1.1)

If the bounds on the voltage angles are sufficiently close for the adjacent buses in (2.2.2a),
constraints (6.1.1) represent a relaxation of the former constraints.

Following [71], we use the complex notation for voltage, current, and the admittance
matrix. We denote the conjugate transpose of the operator A as A∗.

For simplicity, we assume that the bounds in (6.1.1) lie within the range (−π

2 ,
π

2 ). Under
this assumption, the constraints on the differences between voltage angles can equivalently
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be expressed as:

tan(δi j)Re(ViV ∗j )≤ Im(ViV ∗j )≤ tan(δi j)Re(ViV ∗j ), (i, j) ∈A .

Therefore, we consider the following problem:

min
α,β ,V

∑
i∈N \{sb}

αi +βi (6.1.2a)

|Vi|2 ≤ |Vi|2 ≤ |Vi|
2
, i ∈N (6.1.2b)

pmin
sb ≤ Re(VsbI∗sb)≤ pmax

sb , (6.1.2c)

qmin
sb ≤ Im(VsbI∗sb)≤ qmax

sb , (6.1.2d)

Im(VsbI∗sb)≥
−0.48pmax

sb

−pmin
sb +0.25pmax

sb
Re(VsbI∗sb)+

0.48pmax
sb pmin

sb

−pmin
sb +0.25pmax

sb
, (6.1.2e)

|Vi−Vj|2 ≤ (V max
i, j )2, (i, j) ∈A (6.1.2f)

tan(δi j)Re(ViV ∗j )≤ Im(ViV ∗j )≤ tan(δi j)Re(ViV ∗j ), (i, j) ∈A (6.1.2g)(pk
i )

2−2pk
i (pφ

i (ξ )−Re(ViI∗i ))−αi pφ

i (ξ )−Re(ViI∗i )

pφ

i (ξ )−Re(ViI∗i ) −1

⪯ 0, i ∈N \{sb} (6.1.2h)

(qk
i )

2−2qk
i (q

φ

i (ξ )− Im(ViI∗i ))−βi qφ

i (ξ )− Im(ViI∗i )

qφ

i (ξ )− Im(ViI∗i ) −1

⪯ 0, i ∈N \{sb}. (6.1.2i)

Constraints (6.1.2b) represent constraints on voltage magnitude in model (2.3.2), and an
additional constraint on voltage magnitude at the slack bus with |Vsb|2 = |Vsb|

2
= 1. Con-

straints (6.1.2f) represent congestion constraints in model (2.3.2) with V max
i, j = Imax

i, j /|Yi, j| for
all (i, j) ∈A . Observe that minimizing ∑i∈(N \{sb}) (pi− pk

i )
2 +(qi−qk

i )
2 is equivalent to

minimizing ∑i∈(N \{sb}) αi +βi under the constraints

(pi− pk
i )

2 ≤ αi, i ∈N \{sb}
(qi−qk

i )
2 ≤ βi, i ∈N \{sb}.

Constraints (6.1.2h) and (6.1.2i) are obtained using Schur complement [71]. Using the
equation I = YV , the current variables can be eliminated from problem (6.1.2).

Compared to the problem studied in [71], our case includes additional constraints (6.1.2c)-
(6.1.2g). As a result, the proof must be adapted, specifically regarding the formulation of the
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Lagrangian, the structure of the matrix A(x,r) and the demonstration of the existence of an
interior point for the dual problem.

Dual problem. Denote the corresponding Lagrange multipliers for (6.1.2b) - (6.1.2g) as
µmin,µmax ∈ R|N |+ , λ min

sb ,λ max
sb ∈ R+, λ

min
sb ,λ

max
sb ∈ R+, λ̂sb ∈ R+, ρ ∈ R|A |+ , µ

min,µmax ∈
R|A |+ . In accordance with the generalized Lagrangian theory, the multiplier associated with
the inequalities (6.1.2h) and (6.1.2i) are symmetric positive semidefinite matrices:ri0 ri1

ri1 ri2

⪰ 0,

r̃i0 r̃i1

r̃i1 r̃i2

⪰ 0, i ∈N \{sb},

and the inner product is defined as the trace of the operators.
Let n = |N |, and let e1, . . . ,en be the standard vector basis in Rn. For i ∈ N , let

Yi = eie∗i Y and

Yi =
1
2

Re{Yi +Y T
i } Im{Y T

i −Yi}

Im{Yi−Y T
i } Re{Yi +Y T

i }

 ,

Yi =−
1
2

Im{Yi +Y T
i } Re{Yi−Y T

i }

Re{Y T
i −Yi} Im{Yi +Y T

i }

 ,
and define Mi ∈ R2n×2n a matrix with zero entries, except for the elements (i, i) and
(n+ i,n+ i) that are equal to 1. For (i, j) ∈A , let Pi j ∈ R2n×2n be

Pi j =

eie∗i − eie∗j − e je∗i + e je∗j 0

0 eie∗i − eie∗j − e je∗i + e je∗j

 .
For (i, j) ∈A , we introduce as well Mi j,M i j ∈ R2n×2n given by

Mi j =

eie∗j+e je∗i
2 0

0 −eie∗j+e je∗i
2

 , M i j =

 0
eie∗j+e je∗i

2

eie∗j+e je∗i
2 0

 .
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Denoting U =
[
Re{V}T Im{V}T ]T , we get the following chains of equations

Re{ViI∗i }= Re{V ∗YiV}=UT YiU = trace{YiUUT}, i ∈N , (6.1.3a)

Im{ViI∗i }= Im{V ∗YiV}=UT YiU = trace{YiUUT} i ∈N . (6.1.3b)

Furthermore,

|Vi|2 =UT MiU = trace{MiUUT}, i ∈N , (6.1.4a)

|Vi−Vj|2 =UT Pi jU = trace{Pi jUUT}, (i, j) ∈A , (6.1.4b)

Re{ViV ∗j }=UT Mi jU = trace{Mi jUUT}, (i, j) ∈A , (6.1.4c)

Im{ViV ∗j }=UT M i jU = trace{M i jUUT}, (i, j) ∈A . (6.1.4d)
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The Lagrangian corresponding to problem (6.1.2) is given by

∑
i∈N \{sb}

αi + ∑
i∈N \{sb}

βi + ∑
i∈N

µ
min
i
(
|Vi|2−|Vi|2

)
−µ

max
i
(
|Vi|

2−|Vi|2
)

+λ
min
sb
(

pmin
sb −Re(VsbI∗sb)

)
−λ

max
sb
(

pmax
sb −Re(VsbI∗sb)

)
+λ

min
sb
(
qmin

sb − Im(VsbI∗sb)
)
−λ

max
sb
(
qmax

sb − Im(VsbI∗sb)
)

+ λ̂sb

( −0.48pmax
sb

−pmin
sb +0.25pmax

sb
Re(VsbI∗sb)+

0.48pmax
sb pmin

sb

−pmin
sb +0.25pmax

sb
− Im(VsbI∗sb)

)
+ ∑

(i, j)∈A
ρi j
(
|Vi−Vj|2− (V max

i, j )2)
+ ∑

(i, j)∈A
µ

min
i j
(
tan(δi j)Re(ViV ∗j )− Im(ViV ∗j )

)
− ∑

(i, j)∈A
µ

max
i j
(
tan(δi j)Re(ViV ∗j )− Im(ViV ∗j )

)
+ ∑

i∈N \{sb}
ri0
(
(pk

i )
2−2pk

i (pφ

i (ξ )−Re(ViI∗i ))−αi
)
+2ri1 (pφ

i (ξ )−Re(ViI∗i ))− ri2

+ ∑
i∈N \{sb}

r̃i0
(
(qk

i )
2−2qk

i (q
φ

i (ξ )− Im(ViI∗i )−βi
)
+2r̃i1 (q

φ

i (ξ )− Im(ViI∗i ))− r̃i2

= ∑
i∈N \{sb}

(1− ri0)αi + ∑
i∈N \{sb}

(1− r̃i0)βi +h(x,r)+ ∑
i∈N

(µmax
i −µ

min
i )|Vi|2

+(λ max
sb −λ

min
sb )Re(VsbI∗sb)+(λ

max
sb −λ

min
sb )Im(VsbI∗sb)

+ λ̂sb
( −0.48pmax

sb

−pmin
sb +0.25pmax

sb
Re(VsbI∗sb)− Im(VsbI∗sb)

)
+ ∑

(i, j)∈A
ρi j|Vi−Vj|2

+ ∑
(i, j)∈A

(
µ

min
i j tan(δi j)−µ

max
i j tan(δi j)

)
Re(ViV ∗j )− ∑

(i, j)∈A

(
µ

min
i j −µ

max
i j
)

Im(ViV ∗j )

+ ∑
i∈N \{sb}

2
(

pk
i · ri0− ri1

)
Re(ViI∗i )+ ∑

i∈N \{sb}
2
(
qk

i · r̃i0− r̃i1
)

Im(ViI∗i )

= ∑
i∈N \{sb}

(1− ri0)αi + ∑
i∈N \{sb}

(1− r̃i0)βi +h(x,r)+ trace
(
A(x,r)UUT), (6.1.5)

where

x = (µmin, µ
max, λ

min
sb , λ

max
sb , λ

min
sb , λ

max
sb , λ̂sb, ρ, µ

min, µ
max),

r = (ri0, ri1, ri2, r̃i0, r̃i1, r̃i2)i∈N \{sb},
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and

h(x,r) = ∑
i∈N

(
µ

min
i |Vi|2−µ

max
i |Vi|

2)
+λ

min
sb pmin

sb −λ
max
sb pmax

sb +λ
min
sb qmin

sb −λ
max
sb qmax

sb

+λ̂sb
0.48pmax

sb pmin
sb

−pmin
sb +0.25pmax

sb
− ∑

(i, j)∈A
ρi j(V max

i, j )2

+ ∑
i∈N \{sb}

(
ri0 · (pk

i )
2 + r̃i0 · (qk

i )
2 +2(ri1− pk

i · ri0)pφ

i (ξ )+2(r̃i1−qk
i · r̃i0)q

φ

i (ξ )− ri2− r̃i2
)
,

A(x,r) = ∑
i∈N

(µmax
i −µ

min
i )Mi + ∑

i∈N \{sb}
2(pk

i · ri0− ri1)Yi +2(qk
i · r̃i0− r̃i1)Yi

+ ∑
(i, j)∈A

ρi jPi j +
(
µ

min
i j tan(δi j)−µ

max
i j tan(δi j)

)
Mi j +

(
µ

min
i j −µ

max
i j
)
M i j

+
(
λ

max
sb −λ

min
sb + λ̂sb

−0.48pmax
sb

−pmin
sb +0.25pmax

sb

)
Ysb +

(
λ

min
sb −λ

max
sb − λ̂sb

)
Ysb.

The dual problem for (6.1.2) is obtained by minimizing the Lagrangian over U,α and β ,
and then maximizing it over the Lagrange multipliers x and r.

• The minimum of the term (1− ri0)αi over αi is −∞, unless ri0 = 1, in which case the
minimum is zero. The same argument holds for the term (1− r̃i0)βi. Therefore, we set
ri0 = 1 and r̃i0 = 1 for i ∈N \{sb} and denote r̂ = (ri1, ri2, r̃i1, r̃i2)i∈N \{sb}.

• The minimum of the term trace
(
A(x,r)UUT) over U is −∞, unless A(x,r) ⪰ 0, in

which case the minimum is zero.

The dual problem to (6.1.2) is thus defined as follows:

max
x≥0, r̂

h(x, r̂) (6.1.6a) 1 ri1

ri1 ri2

⪰ 0,

 1 r̃i1

r̃i1 r̃i2

⪰ 0, i ∈N \{sb} (6.1.6b)

A(x, r̂)⪰ 0. (6.1.6c)
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SDP Relaxation. Substituting W =UUT in (6.1.2) and using the equations (6.1.3-6.1.4),
we obtain an SDP relaxation of problem (6.1.2):

min
α,β ,W

∑
i∈N \{sb}

αi +βi (6.1.7a)

|Vi|2 ≤ trace{MiW} ≤ |Vi|
2
, i ∈N

(6.1.7b)

pmin
sb ≤ trace{YsbW} ≤ pmax

sb (6.1.7c)

qmin
sb ≤ trace{YsbW} ≤ qmax

sb , (6.1.7d)

trace{YsbW} ≥
−0.48pmax

sb

−pmin
sb +0.25pmax

sb
trace{YsbW}+

0.48pmax
sb pmin

sb

−pmin
sb +0.25pmax

sb
, (6.1.7e)

trace{Pi jW} ≤ (V max
i, j )2, (i, j) ∈A

(6.1.7f)

tan(δi j) trace{Mi jW} ≤ trace{M i jW} ≤ tan(δi j) trace{Mi jW}, (i, j) ∈A

(6.1.7g)(pk
i )

2−2pk
i (pφ

i (ξ )− trace{YiW})−αi pφ

i (ξ )− trace{YiW}

pφ

i (ξ )− trace{YiW} −1

⪯ 0, i ∈N \{sb}

(6.1.7h)(qk
i )

2−2qk
i (q

φ

i (ξ )− trace{YiW})−βi qφ

i (ξ )− trace{YiW}

qφ

i (ξ )− trace{YiW} −1

⪯ 0, i ∈N \{sb}

(6.1.7i)

W ⪰ 0. (6.1.7j)

By adding an additional rank constraint, we obtain the fourth optimization problem
required for the proof:

min
α,β ,W

∑
i∈N \{sb}

αi +βi (6.1.8)

(6.1.7b)− (6.1.7j),

rank(W ) = 1.

Problem equivalence. The exactness of the SDP relaxation is established under additional
assumptions by proving the following statements:
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(i) The original problem (6.1.2) and the rank-one SDP model (6.1.8) are equivalent,

(ii) Strong duality holds between the SDP relaxation (6.1.7) and the dual problem (6.1.6),

(iii) The SDP relaxation (6.1.7) and the rank-one SDP model (6.1.8) are equivalent .

Furthermore, if these statements hold, a zero duality gap between the original problem (6.1.2)
and the dual problem (6.1.6) is guaranteed, although proving this directly is challenging.

The equivalence (i) is shown based on the assumption of feasibility of (6.1.2) and its
non-triviality, more precisely that V = 0 is not a feasible point of problem (6.1.2). In our case,
V = 0 is not a feasible point of the deterministic AC-OPF due to the lower bound constraint
on the voltage magnitude. Let V be a non-zero feasible vector of (6.1.2), then the matrix
W = UUT with U =

[
Re{V}T Im{V}T ]T has rank at most 1. On the other hand, any

semidefinite matrix W with rank at most 1 can be decomposed as W =UUT . This change of
variables is a bijection (up to the sign of U). Moreover, constraints of (6.1.2) and (6.1.8) are
mapped to each other by construction, and hence the optimization problems coincide.

The stong duality in (ii) follows from two observations. First, problem (6.1.7) is a dual
problem for (6.1.6), where the Lagrangian is given by (6.1.5) with W = UUT and W is a
Lagrangian multiplier for the constraint (6.1.6c). Second, strong duality holds by Slater
condition provided the existence of an interior point of (6.1.6). While the proofs of the
equivalence (i) and weak duality in (ii) remain the same as in [71], the existence of an interior
point for (6.1.6) has to be shown anew due to a more complex structure of A(x, r̂).

Proposition 6.1.1. Optimization problem (6.1.6) has an interior point.

Proof. Let ri1 = pk
i , r̃i1 = qk

i , and ri2 = (pk
i )

2+1, r̃i2 = (qk
i )

2+1, which implies the existence

of an interior point in (6.1.6b). We set µ
min
i j = µ

max
i j = 1, and λ̂sb = 1, λ

max
sb = 1, λ

min
sb = 2.

Moreover, let λ min
sb =

∣∣ −0.48pmax
sb

−pmin
sb +0.25pmax

sb

∣∣+1, and

λ
max
sb =

1, if −0.48pmax
sb

−pmin
sb +0.25pmax

sb
≥ 0

−2 −0.48pmax
sb

−pmin
sb +0.25pmax

sb
+1, if −0.48pmax

sb
−pmin

sb +0.25pmax
sb

< 0.

For this choice of values, we obtain

A(x, r̂) = ∑
i∈N

(µmax
i −µ

min
i )Mi+

∑
(i, j)∈A

ρi jPi j +
(
µ

min
i j tan(δi j)−µ

max
i j tan(δi j)

)
Mi j.
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For each (i, j) ∈A , the term ρi jPi j +
(
tan(δi j)− tan(δi j)

)
Mi j is a symmetric matrix

[
ρi j(eie∗i +e je∗j)−

(
ρi j+

ai j
2

)
(eie∗j+e je∗i ) 0

0 ρi j(eie∗i +e je∗j)−
(

ρi j−
ai j
2

)
(eie∗j+e je∗i )

]
, (6.1.9)

with ai j = tan(δi j)− tan(δi j) > 0. Choose the same positive ρ := ρi j for all (i, j) ∈ A ,
and denote by di the degree of a bus i ∈N . Taking the sum over (i, j) ∈A , we obtain a
symmetric matrix S̃ with diagonal elements (i, i) and (n+ i,n+ i) equal to di ·ρ , i = 1, . . . ,n.

Let a = maxai j, m = a
2 maxdi+1, and µmax

i = m+1, µmin
i = 1. For this choice of values,

the first sum in the formula of A(x, r̂) is equal to m · Id by definition of Mi, and A(x, r̂) is
equal to S = m · Id+ S̃. It follows from (6.1.9) that ∑ j ̸=i |Si j| ≤ (ρ + a

2)di < m+ρ ·di = Sii.
Hence, S is a strictly diagonally dominant matrix. We claim that every eigenvalue of S is
positive, and thus S≻ 0.

Let λ be an eigenvalue of S with a corresponding eigenvector x = (xi)1≤i≤2n. Find î such
that xî ≥ x j for all j. We obtain the following chain of inequalities

∑
j

Sî jx j = λxî ⇔ |λ −Sîî|=
∣∣∣∑

j ̸=î

Sî jx j

xî

∣∣∣≤∑
j ̸=î

|Sî j|< Sîî ⇒ λ > 0.

The equivalence (iii) holds if the optimal solution of (6.1.7) has rank 1. As shown in [71],
a sufficient condition for this equivalence to hold is the existence of an optimal solution
(x∗, r̂∗) of (6.1.6) such that the matrix A(x∗, r̂∗) has a zero eigenvalue of multiplicity 2. The
proof does not rely on a specific form of A(x, r̂) and can, therefore, be directly applied to our
case.

Verifying exactness of the relaxation. To check the exactness of the SDP relaxation
of (6.1.2) in practice, we have three options. The first option is to solve the dual prob-
lem (6.1.6) and check whether its solution is feasible for problem (6.1.2) using the recovery
procedure described in [71]. If this is the case, the SDP relaxation is exact due to strong
duality in (ii).

The second option is to solve problem (6.1.7). If its solution has rank 1, the equivalence (i)
implies the exactness of the SDP relaxation. Finally, the last option is to check the existence
of a zero eigenvalue of multiplicity 2 for the matrix A(x∗, r̂∗) at the optimal solution (x∗, r̂∗)
of (6.1.6).

All these options require solving convex semidefinite programs. However, in the second
and third cases, determining the solution rank or the existence of a zero eigenvalue with
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multiplicity 2 is challenging numerically. Since this involves verifying the satisfaction of
equality constraints, the results are highly sensitive to computational errors. A numerical
method to assess these conditions, based on the calculation of the minimum eigenvalue ratio,
has been implemented in [89, 143].

6.2 Spatial decomposition of the chance-constrained OPF

The scenario decomposition approach applied in Section 5.2 to the chance-constrained AC-
OPF enables isolating the binary variables describing priority and fairness principles from
nonconvex power flow equations. To apply this approach, we introduced additional binary
variables associated with each scenario and reformulated the chance constraint as a scenario-
coupling linear constraint that we dualized. We also envisaged another decomposition for the
chance-constrained model.

Motivated by a partitioning of the network which naturally arises from the definition of
critical nodes and thus is determined by the topology of congestion constraints, we look in
the direction of a spatial decomposition. In a deterministic framework, ADMM is a widely
used decentralized algorithm for solving optimization problems with coupling constraints. In
particular, it has been applied to convex relaxations [26] and approximations of AC-OPF, for
instance, to the DC approximation [147], where theoretical convergence has been established.
In [119, 86, 38], ADMM and its modifications have been applied to AC-OPF based on the
separation of power flow equations along the nodes.

For nonconvex problems, there are no theoretical convergence guarantees for ADMM
in the general case. However, the convergence of some ADMM schemes has been shown
under additional assumptions. These assumptions often include the ability to solve non-
convex subproblems to global optimality [148], or the availability of a high-quality starting
point [119], ensuring that a stationary subproblem solution provides a reduced objective
value compared to the previous iteration. The first assumption does not hold in our case,
and the second assumption also may not hold in practice. For the scenario decomposition
approach, the availability of good-quality starting points for several scenarios did allow us to
increase the overall probability, while resolving deterministic AC-OPFs. Nevertheless, for
a large number of scenarios, we observed that the value of the objective function in (5.2.8)
and (5.2.14) fails to decrease or decreases insufficiently, and Algorithm 4 classifies this
solution as too expensive at Step 8, which implies a decrease in overall probability. With the
inclusion of binary variables describing the priority and fairness principles, we do not expect
any theoretical convergence for ADMM.
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Leaving aside binary variables, we decide to explore the potential of applying ADMM
to a spatial decomposition of the chance-constrained AC-OPF. In the framework of indi-
vidual chance constraints, the method has been applied, for example, to the energy man-
agement problem in [80] using preliminary analytical reformulations. However, to the
best of our knowledge, spatial decomposition has not been explored yet within the joint
chance-constrained framework.

This raises the following question: How can the joint nature of the chance constraint be
reconciled with the distributed nature of ADMM? If we retain a chance constraint for each
subproblem, that is, consider independent chance-constrained AC-OPF on each component
of the network, the information from the initial joint probability constraint will be lost. Is it
possible to find a reasonable relaxation of the joint chance constraint for the given partition
of the network, enabling the application of ADMM on a spatial decomposition of AC-OPF?

To address this issue, we may consider the conditional probability of solution existence
within each component, given that the corresponding power flows are correctly glued together
at the intersection nodes. This introduces a new challenge: state variables are implicit, derived
from active and reactive power, making it impossible to directly impose consensus constraints
on them at the intersections. Consequently, the development of this approach would require
a reformulation of deterministic AC-OPF for our specific case.

6.3 Scenario reduction method

The computational efficiency of the methods considered in this work, for both continuous
and mixed-integer models, depends on the sample size N. For the DoC and CwC methods,
Oracle 1 must be called N times per iteration to estimate the probability function, whereas
the scenario decomposition approach results in N deterministic AC-OPFs. However, not all
scenarios are computationally equivalent; some require solving only the system of power flow
equations and verifying that the bounds on state variables are satisfied, instead of resolving
an AC-OPF (as described in Step 2 of Oracle 1 and Step 4 of Algorithm 4). We propose
several directions for future research on the sample properties.

The first idea is to integrate sample preprocessing to reduce the number of scenarios
considered at each iteration. This can be approached in two ways: excluding scenarios that
are expensive to satisfy a priori or representing scenarios with a smaller sample. For the
probability maximization model, the first approach relies on an initial cost estimation of the
power curtailment required to satisfy each scenario independently. If, for a given scenario,
the estimated power curtailment calculated without considering the priority and fairness
rules exceeds the budget constraint, this scenario can be excluded from the subsequent
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iterations. For the chance-constrained model with a given security level 1−α , the first
approach involves identifying scenarios that are guaranteed to fall within the αN unsatisfied
scenarios. However, identifying such scenarios during a preliminary step can be challenging.
This procedure can be implemented as a stepwise elimination of scenarios that do not satisfy
the chance constraint after several serious iterations of the DoC or CwC algorithms. The
theoretical properties of this procedure remain to be studied.

The second idea, representing scenarios with a smaller sample, relies on clustering
techniques. This unavoidably results in a less accurate representation of uncertainty, and
therefore the choice of a particular method should be analyzed on a case-by-case basis. For
the chance-constrained problem, the authors of [2, 108] propose dynamic scenario grouping
models that provide lower and upper bounds for the initial problem. By iteratively improving
these bounds using scenario refinement and merging procedures, the solution of the initial
problem can be recovered [108]. At each iteration, a chance-constrained model needs to be
solved, and thus this method can potentially be integrated into the DoC and CwC bundle
methods.

6.4 Model generalizations

In this section, we discuss the potential of applying the DoC and CwC approaches from
Chapter 2 and Section 3.8, as well as the scenario decomposition approach to other operational
planning models, considering the example of the reactive power control.

In the chance-constrained model (2.2.4), the decision bears only on the active power
modulation, as reactive power variables are defined as functions from the active ones. Making
reactive power a free variable enables modeling reactive power regulation as a control lever.
In this case, the DoC and CwC approaches remain applicable, as long as the deterministic
constraints are convex and the probability constraint is unchanged in (2.2.4).

The integration of a regulation system capable of dynamically adjusting reactive power
consumption and production based on measured voltage is proposed in [32]. Specifically,
the ratio of reactive to active power in a production facility is modeled as a piecewise linear
function of the deviation in magnitude of the voltage from the nominal voltage. Modeling
this system as a chance-constrained AC-OPF requires considering the reactive power as
a state variable, as the decision no longer directly bears on its regulation. Consequently,
the power flow equations and the definition of the random set X(ξ ) need to be adapted to
integrate the dependence of the reactive power from the voltage magnitude deviation. As
discussed in Chapter 2, the methodology for representing the probability constraint as a DoC
function is applicable once the set X(ξ ) is mathematically defined and a solver capable of
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handling the associated optimization problem is available. Therefore, after modifying the
equations that define the set X(ξ ), the DoC and CwC approaches can be directly applied.

Combining the direct reactive power regulation and the reactive power adjustment de-
pending on the voltage magnitude deviation for different groups of producers is also possible.
If these groups are fixed (e.g., producers have signed contracts specifying the type of reactive
power regulation), then it is sufficient to modify the power flow equations and the definition of
the set X(ξ ), incorporating the dependence of reactive power on voltage magnitude deviation
for one of the groups.

At the same time, the dynamic choice of these groups requires the integration of binary
variables in the chance-constrained AC-OPF model. Since this choice determines whether
the reactive power is a state variable for a given producer and thus influences the form
of the power flow equations, the associate binary variables must be integrated into the
probability constraint. Consequently, the methods for integrating binary variables into the
DoC model considered in Section 5.1, cannot be applied, as they address only binary variables
within the deterministic part of the model. Transitioning to a probability maximization
model (following Subsection 5.2.2) and applying the scenario decomposition approach is
justified in this case. However, separating binary variables associated with the choice of the
group from the nonconvexity related to the power flow equations is not possible, and the
complexity of the problem is thus embedded in the technical constraints. More precisely,
in this case, technical constraints include the binary variables defining the form of the
power flow equations (dependent on the choice of the group) and the scenario satisfaction
along with the nonconvexity related to the power flow equations. This results in solving
multiple deterministic AC-OPFs per scenario, one for each combination of binary values.
Consequently, the practical interest of this method depends on its numerical performance for
a specific use case.

Generalizing this discussion on reactive power regulation, we highlight the following prin-
ciples. First, as long as the deterministic constraints in the chance-constrained model (2.2.4)
remain convex, the DoC and CwC approaches are applicable. Moreover, the system of
equations defining the set X(ξ ) can be quite general, with the only requirement being the
availability of a solver capable of handling the associated optimization problem. This im-
plies that the DoC and CwC approaches are not specific to distribution grid topology and
can also be applied to operational planning models for power transmission grids. Further,
integrating deterministic mixed-integer convex constraints places the problem within the
framework discussed in Chapter 5. In this case, the modified methods are applicable, but
their performance depends on the specific use case. Another option is transitioning to the
probability maximization problem and applying the scenario decomposition approach. For
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the case involving binary variables integrated into probability constraints, only the latter
approach is applicable. This case requires further investigation.

6.5 Conclusion

In this chapter, we discussed potential directions for future research, including investigating
alternative methods for solving the chance-constrained AC-OPF model with discrete formu-
lations and enhancing computational efficiency by reducing sample size. As a preliminary
step toward the first direction, we studied the SDP relaxation of deterministic AC-OPF
and the conditions implying the exactness of this relaxation. Furthermore, we discussed
generalization limits for operational planning models, emphasizing the applicability of the
approaches studied in this work.



Conclusion

In this thesis, we investigated short-term operational planning problems modeled as joint
chance-constrained AC-OPFs. In these formulations, the decisions bear on the activation
of power modulation and curtailment levers for FiT and SCP producers and consumers, or
their generalized counterparts represented by priority levels. First, a continuous joint chance-
constrained AC-OPF model with simplified operational planning rules was considered. To
enhance the realism of the model, logical and discrete formulations were then introduced
to represent priority and fairness principles in power curtailment. The resulting models
were addressed by decomposing the underlying complexities without relying on preliminary
simplifications, such as decomposing the joint probability constraint or approximating the
AC-OPF.

We began by considering the continuous version of the model and applied the DoC
approach to resolve it. This approach consists of decomposing the joint probability constraint
as a difference of two convex functions and employing a known DoC bundle method. To
accomplish the first step, we proposed a parallelizable numerical procedure (oracle) enabling
the decomposition of the underlying formulation in probability constraint into a deterministic
AC-OPF per scenario. Combined with Monte-Carlo simulations, this procedure leads to a
required decomposition. However, the resulting model does not satisfy several assumptions,
and the DoC bundle method is not guaranteed to provide a critical point to the original model.

To address this challenge, we proposed a new bundle method with stronger convergence
guarantees under weaker assumptions. For the joint chance-constrained AC-OPF, this
algorithm provides a critical (generalized KKT) point. Numerical experiments in a 33-bus
distribution network showed that it provides a more cost-effective solution compared to the
DoC bundle method. However, achieving stronger criticality leads to an increase in execution
time. Furthermore, the new method is capable of handling a broad class of nonsmooth and
nonconvex optimization problems beyond this framework, provided that the objective and
constraint functions can be represented as differences of convex and weakly convex functions.
We studied various stationary conditions and provided a detailed convergence analysis for
the new algorithm. Its practical performance was illustrated on several nonconvex stochastic
problems and a compressed-sensing problem with nonlinear constraints.
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For the joint chance-constrained AC-OPF with logical and discrete formulations, we first
tested the capability of the bundle methods to address this model. Numerical experiments
with the DoC bundle method revealed limitations in handling binary variables. We also
considered an alternative approach, which involves introducing a binary variable for each
scenario and reformulating the problem as a maximization of the number of satisfied scenarios.
We evaluated different Lagrangian methods, with or without a regularization term, enabling
the separation of the discrete and stochastic parts of the probability maximization model
and decomposing the latter into scenario-dependent deterministic AC-OPF subproblems.
Although it lacks theoretical convergence guarantees, the relevance of this approach was
demonstrated in practice for several use cases in a 33-bus distribution network. Both
approaches, based on the bundle methods and scenario decomposition, have the potential to
address the identified limitations, either by improving theoretical foundations or practical
performance.

We also discussed the potential for applying the proposed methods to other operational
planning models and outlined directions for future research to develop alternative approaches
for joint chance-constrained problems with discrete variables. In this context, we considered
applying ADMM for a spatial decomposition of the model, and scenario reduction techniques.
Additionally, we studied the SDP relaxation of the underlying deterministic AC-OPF as a
preliminary step toward implementing a Branch-and-Bound method.

Two articles derived from this Thesis have been published in international journals: the
main contents of Chapter 2 and Chapter 3 have appeared in [123] and [124], respectively.
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ABSTRACT 
 

The expansion of renewable energy sources (RES) leads to the growth of uncertainty in the power distribution network operation. The 

inherent variability and intermittency of RES present significant challenges to the efficient and reliable operation of power systems. To 

address these challenges, operational planning performed by distribution system operators should evolve, in particular, to allow the 

efficient utilization of different flexibility levers, such as active power modulation and reactive power management. Decisions on lever 

activation are based on the resolution of an alternating current optimal power flow problem (AC-OPF). This thesis develops algorithms 

for handling two stochastic AC-OPF models. These optimization problems are simultaneously nonconvex, nonsmooth, and discrete. 

The thesis aims to grasp these complexities accurately, by addressing the AC power flow equations without relying on convexification 

and by handling interdependent uncertainties either through a joint probability constraint or via scenario decomposition to cope with the 

discrete levers. 

More specifically, the first proposed methodology addresses a continuous version of the joint chance-constrained AC-OPF. A first 

contribution of this work is the design of a numerical procedure (oracle) that enables the representation of the probability constraint as 

a difference of two convex functions. This step is followed by applying a known Difference-of-Convex (DoC) bundle method to the 

resulting continuous optimization problem. A second contribution concerns a new bundle algorithm with stronger convergence 

guarantees under weaker assumptions. For the chance-constrained AC-OPF, this algorithm provides a critical (generalized KKT) point. 

The work builds upon the employed DoC bundle and proposes a different master program and an original rule to update proximal 

parameter. The algorithm is capable of handling a broad class of nonsmooth and nonconvex optimization problems beyond the 

stochastic AC-OPF framework, provided the objective and constraint functions can be represented as differences of convex and weakly 

convex (CwC) functions. The practical performance of the algorithm is illustrated through numerical experiments on some nonconvex 

stochastic problems and is compared to the DoC bundle method for the chance-constrained AC-OPF in a 33-bus distribution network. 

The second proposed methodology addresses operational planning rules for power modulation and curtailment, like priority and fairness, 

which result in logical and discrete formulations. The numerical results demonstrate the limitations of the bundle method for integrating 

integer variables. As an alternative, an optimization model is proposed that assigns a binary variable to each scenario and maximizes 

the number of satisfied scenarios within a limited budget. Applying penalization and block coordination allows separating those discrete 

considerations from the stochastic AC-OPF component, which is then decomposed into an individual deterministic AC-OPF for each 

scenario. Although it lacks theoretical convergence guarantees, the relevance of this approach is validated in practice. 
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RÉSUMÉ 
 

L’expansion des sources d’énergie renouvelable accroît le degré d'incertitude dans l'exploitation des réseaux de distribution d'électricité. 

La variabilité et l’intermittence inhérentes à ces énergies posent aussi d'importants défis aux gestionnaires de réseaux au niveau 

opérationnel. La gestion prévisionnelle doit ainsi évoluer pour intégrer des leviers de flexibilité, telles la modulation de puissance active 

et la gestion de puissance réactive. La décision relative à l’activation de ces leviers se traduit par un problème d’Optimal Power Flow. 

Cette thèse développe des algorithmes de résolution pour deux modèles stochastiques en courant alternatif (AC-OPF). Ces problèmes 

d’optimisation sont, à la fois, non-convexes, non-lisses et discrets. Cette thèse vise à appréhender ces complexités, sans recourir à la 

convexification des équations de flux de puissance, et en considérant l'interdépendance des incertitudes, via une contrainte probabiliste 

jointe ou une décomposition par scénarios dans le cas de leviers discrets. 

Précisément, la première méthodologie proposée s'applique à une version continue de l'AC-OPF sous contrainte probabiliste jointe. 

Une contribution de ce travail porte sur la conception d’une procédure numérique (oracle) traitant la contrainte probabiliste comme la 

différence de deux fonctions convexes. L'oracle est alors associé à une méthode de faisceaux pour les problèmes DoC (différence de 

convexes). Une seconde contribution porte sur le développement d'un nouvel algorithme de faisceaux offrant des garanties de 

convergence plus fortes sous des hypothèses plus faibles. Il produit ainsi un point critique (satisfaisant des conditions KKT généralisées) 

de l'AC-OPF probabiliste. Basé sur la méthode DoC précédente, cet algorithme exploite un programme maître différent, ainsi qu’une 

règle originale de mise à jour du paramètre proximal. Il s'applique à la classe générale des problèmes d'optimisation non-convexes et 

non-lisses dont objectif et contraintes sont modélisables comme différence de fonctions convexes et faiblement convexes (CwC). 

L'évaluation empirique de l'algorithme est menée sur différents problèmes non-convexes et stochastiques. Ses performances pratiques 

sont comparées à celles de la méthode DoC sur un cas d'étude de l'AC-OPF probabiliste dans un réseau de distribution à 33 nœuds. 
La seconde méthodologie proposée considère des règles discrètes en gestion prévisionnelle, telles que des règles de priorité et d'équité 

pour la modulation de puissance. 

L'expérimentation montre les limites de la méthode des faisceaux pour intégrer des variables entières. Comme alternative, il est proposé 

un modèle d'optimisation attachant une variable binaire par scénario, et maximisant le nombre de scénarios réalisés dans un budget 

limité. La dualisation des contraintes couplantes et la coordination par blocs permettent de séparer les règles discrètes de l'AC-OPF 

stochastique, qui se décompose, à son tour, en AC-OPF déterministes individuels par scénario. Si la convergence théorique n'est plus 

garantie par cette séparation, la pertinence pratique de l'approche est illustrée numériquement. 
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