5.11 all_min_dist

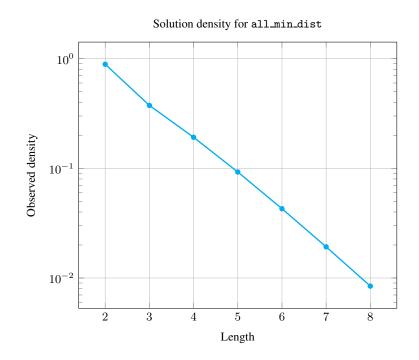
	DESCRIPTION	LINKS	GRAPH
Origin	[343]		
Constraint	all_min_dist(MINDIST, VARIA	BLES)	
Synonyms	minimum_distance, inter_dis	tance.	
Arguments	MINDIST : int VARIABLES : collection((var-dvar)	
Restrictions	$\begin{split} \texttt{MINDIST} &> 0 \\ \texttt{VARIABLES} < 2 \lor \texttt{MINDIST} \\ & \texttt{required}(\texttt{VARIABLES},\texttt{var}) \end{split}$	<range(variables.v< th=""><th>ar)</th></range(variables.v<>	ar)
Purpose	Enforce for each pair (var_i, var_i) $ var_i - var_j \ge MINDIST.$	$_{j})$ of distinct variables (of the collection VARIABLES that
Example	$(2,\langle 5,1,9,3\rangle)$		
	The all_min_dist constraint hole $ 1-9 , 1-3 , 9-3 $ are all growthe all_min_dist constraint.		
All solutions	Figure 5.23 gives all solution all_min_dist constraint: V_1 all_min_dist($3, \langle V_1, V_2, V_3, V_4 \rangle$)	$\in [0,5], V_2 \in [3,9]$	
	2 3 4 5	$\begin{array}{c} (3, \langle 0, 3, 6, 9 \rangle) \\ (3, \langle 0, 3, 6, 10 \rangle) \\ (3, \langle 0, 3, 7, 10 \rangle) \\ (3, \langle 0, 4, 7, 10 \rangle) \\ (3, \langle 0, 9, 6, 3 \rangle) \\ (3, \langle 1, 4, 7, 10 \rangle) \end{array}$	

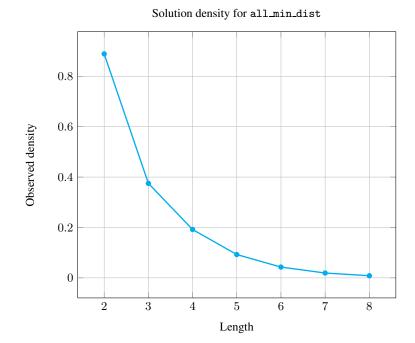
Figure 5.23: All solutions corresponding to the non ground example of the all_min_dist constraint of the **All solutions** slot

Typical

 $\begin{array}{l} \texttt{MINDIST} > 1 \\ |\texttt{VARIABLES}| > 1 \end{array}$

500

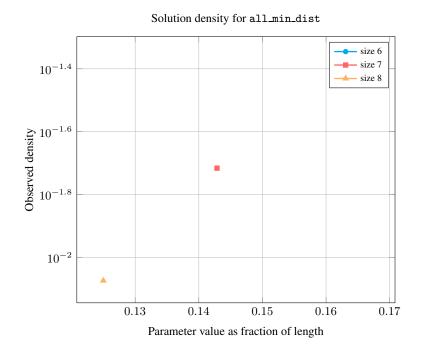

20050508

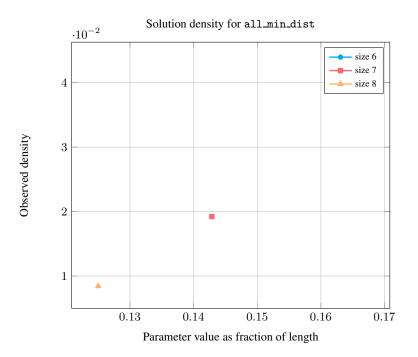

• MINDIST can be decreased to any value ≥ 1 .
• Items of VARIABLES are permutable.
• Two distinct values of VARIABLES.var can be swapped.
• One and the same constant can be added to the var attribute of all items of VARIABLES.
Contractible wrt. VARIABLES.
Contractore wit. Valerableb.
The all_min_dist constraint was initially created for handling frequency allocation prob- lems. In [11] it is used for scheduling tasks that all have the same fixed duration in the context of air traffic management in the terminal radar control area of airports.
The all_min_dist constraint can be modelled as a set of tasks that should not overlap. For each variable var of the VARIABLES collection we create a task t where var and MINDIST respectively correspond to the origin and the duration of t .
Some solvers use in a pre-processing phase, while stating constraints of the form $ X_i - X_j \ge D_{ij}$ (where X_i and X_j are domain variables and D_{ij} is a constant), an algorithm for automatically extracting large cliques [88] from such inequalities in order to state all_min_dist constraints.
K. Artiouchine and P. Baptiste came up with a cubic time complexity algorithm achieving bound-consistency in [11, 12] based on the adaptation of a feasibility test algorithm from M.R. Garey <i>et al.</i> [185]. Later on, CG. Quimper <i>et al.</i> , proposed a quadratic algorithm achieving the same level of consistency in [332].

Counting

Length (n)	2	3	4	5	6	7	8
Solutions	8	24	120	720	5040	40320	362880
Number of solutions for all min dist: domains 0 n							

Number of solutions for all_min_dist: domains 0..n





Length (n)		2	3	4	5	6	7	8
Total		8	24	120	720	5040	40320	362880
Parameter	1	6	24	120	720	5040	40320	362880
value	2	2	-	-	-	-	-	-

Solution count for all_min_dist: domains 0..n

See also	generalisation: diffn(line segment, of same length, replaced by orthotope), disjunctive(line segment, of same length, replaced by line segment), multi_inter_distance(LIMIT parameter introduced to specify capacity ≥ 1).
	<pre>implies: alldifferent_interval, soft_alldifferent_var.</pre>
	related: distance.
	specialisation: all different (line segment, of same length, replaced by variable).
Keywords	application area: frequency allocation problem, air traffic management.
	characteristic of a constraint: sort based reformulation.
	constraint type: value constraint, decomposition, scheduling constraint.
	filtering: bound-consistency.
	final graph structure: acyclic.
	problems: maximum clique.
Cond. implications	all_min_dist(MINDIST, VARIABLES) implies soft_all_equal_max_var(N, VARIABLES) when $N \ge VARIABLES - 1$.

20050508

Arc input(s)	VARIABLES
Arc generator	$CLIQUE(<) \mapsto \texttt{collection}(\texttt{variables1}, \texttt{variables2})$
Arc arity	2
Arc constraint(s)	$\texttt{abs}(\texttt{variables1.var}-\texttt{variables2.var}) \geq \texttt{MINDIST}$
Graph property(ies)	$\mathbf{NARC} = VARIABLES * (VARIABLES - 1)/2$
Graph class	• ACYCLIC • NO_LOOP
	• N0_1001

Graph model

We generate a *clique* with a minimum distance constraint between each pair of distinct vertices and state that the number of arcs of the final graph should be equal to the number of arcs of the initial graph.

Parts (A) and (B) of Figure 5.24 respectively show the initial and final graph associated with the **Example** slot. The all_min_dist constraint holds since all the arcs of the initial graph belong to the final graph: all the minimum distance constraints are satisfied.

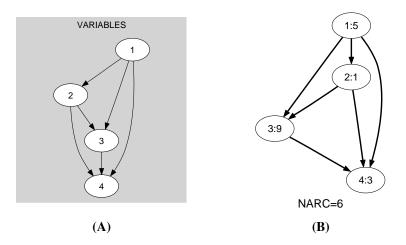


Figure 5.24: Initial and final graph of the all_min_dist constraint