
506 MAX NSCC,CLIQUE

5.12 alldifferent

DESCRIPTION LINKS GRAPH AUTOMATON

Origin [256]

Constraint alldifferent(VARIABLES)

Synonyms alldiff, alldistinct, distinct, bound alldifferent, bound alldiff,

bound distinct, rel.

Argument VARIABLES : collection(var−dvar)

Restriction required(VARIABLES, var)

Purpose Enforce all variables of the collection VARIABLES to take distinct values.

Example (〈5, 1, 9, 3〉)

The alldifferent constraint holds since all the values 5, 1, 9 and 3 are distinct.

All solutions Figure 5.25 gives all solutions to the following non ground instance of the alldifferent

constraint: V1 ∈ [2, 4], V2 ∈ [2, 3], V3 ∈ [1, 6], V4 ∈ [2, 5], V5 ∈ [2, 3], V6 ∈ [1, 6],
alldifferent(〈V1, V2, V3, V4, V5, V6〉).

¬ (〈4, 2, 1, 5, 3, 6〉)
­ (〈4, 2, 6, 5, 3, 1〉)
® (〈4, 3, 1, 5, 2, 6〉)
¯ (〈4, 3, 6, 5, 2, 1〉)

Figure 5.25: All solutions corresponding to the non ground example of the

alldifferent constraint of the All solutions slot

Typical |VARIABLES| > 2

Symmetries • Items of VARIABLES are permutable.

• Two distinct values of VARIABLES.var can be swapped; a value of

VARIABLES.var can be renamed to any unused value.

Arg. properties
Contractible wrt. VARIABLES.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Argument
Argument of the constraint and its corresponding type.

Restriction
Additional condition refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

All solutions
Example of all solutions for a non ground instance of the constraint.

Typical
Typical condition on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

20000128 507

Usage The alldifferent constraint occurs in most practical problems directly or indirectly. A

classical example is the n-queens chess puzzle problem: Place n queens on an n by n
chessboard in such a way that no queen attacks another. Two queens attack each other if

they are located on the same column, on the same row, or on the same diagonal. This can be

modelled as the conjunction of three alldifferent constraints. We associate to column i
of the chessboard a domain variable Xi that gives the row number where the corresponding

queen is located. The three alldifferent constraints are:

• alldifferent(X1, X2 + 1, . . . , Xn + n− 1) for the descending diagonals,

• alldifferent(X1, X2, . . . , Xn) for the rows,

• alldifferent(X1 + n− 1, X2 + n− 2, . . . , Xn) for the ascending diagonals.

They are respectively depicted by parts (A), (C) and (D) of Figure 5.26. Figure 5.27

makes explicit the link between the two families of diagonals and the corresponding

alldifferent constraints. Note that this model matches the checker introduced by Gauss

to test whether a permutation of row numbers is a solution or not to the 8 queens problem:

first add the numbers 1 up to 8 to the permutation and check that the resulting numbers

are distinct, second add the numbers 8 down to 1 and perform the same check [440, pages

165–166].

Q

Q

Q

Q

Q

Q

Q

Q

X1X2X3X4X5X6X7X8

1

2

3

4

5

6

7

8

(A)

Q

Q

Q

Q

Q

Q

Q

Q

X1X2X3X4X5X6X7X8

1

2

3

4

5

6

7

8

(C)

Q

Q

Q

Q

Q

Q

Q

Q

X1X2X3X4X5X6X7X8

1

2

3

4

5

6

7

8

(D)

Q

Q

Q

Q

Q

Q

Q

Q

(B)
Q

Q
Q

Q

Q

Q
Q

Q

(E)

Figure 5.26: Descending diagonals (A-B), rows (C) and ascending diagonals (D-E)

A second example taken from [14], where the bipartite graph associated with the

alldifferent constraint is convex, is a ski assignment problem: “a set of skiers have

each specified the smallest and largest ski sizes they will accept from a given set of ski

sizes”. The task is to find a ski size for each skier.

Examples such as Costas arrays and Golomb rulers involve one or several alldifferent

constraints on differences of variables.

Usage
Typical usage of the constraint.

508 MAX NSCC,CLIQUE

Q

i j

Xi

j
−

i

Xj 6= Xi + (j − i)

j
−

i
Xj 6= Xi − (j − i)

j − i

∀i ∈ [1, n− 1], ∀j ∈ [i+ 1, n] we have :

(A)

alldifferent(〈X1 + n− 1, . . . ,Xn〉) :

⇒
∀i ∈ [1, n− 1],∀j ∈ [i+ 1, n] :
Xi + n− i 6= Xj + n− j,i.e. Xj 6= Xi + (j − i)

alldifferent(〈X1, . . . ,Xn + n− 1〉) :

⇒
∀i ∈ [1, n− 1],∀j ∈ [i+ 1, n] :
Xi + i− 1 6= Xj + j − 1,i.e. Xj 6= Xi − (j − i)

(B)

Figure 5.27: (A) For every pair of columns i, j (i < j), given the position Xi of the

queen on column i, we respectively have from the ascending and descending diago-

nals that Xj 6= Xi + (j − i) and Xj 6= Xi − (j − i) (B) Equivalence of the two

alldifferent constraints respectively associated with the ascending and descend-

ing diagonals with the two families of disequalities (i.e., the orange and the red one)

depicted in Part (A)

Quite often, the alldifferent constraint is also used in conjunction with several

element constraints, especially in the context of assignment problems [215, pages 372–

374], or with several precedence constraints, especially in the context of symmetry break-

ing or scheduling problems [75].

Other examples involving several alldifferent constraints sharing some variables can

be found in the Usage slot of the k alldifferent constraint.

Remark Even if the alldifferent constraint did not have this form, it was specified in AL-

ICE [255, 256] by asking for an injective correspondence f between variables and values:

x 6= y ⇒ f(x) 6= f(y). From an algorithmic point of view, the algorithm for computing

the cardinality of the maximum matching of a bipartite graph was not used in ALICE for

checking the feasibility of the alldifferent constraint, even though the algorithm was

already known in 1976. This is because the goal of ALICE was to show that a general

system could be as efficient as dedicated algorithms. For this reason the concluding part

of [255] explicitly mentions that specialised algorithms should be discarded. On the one

hand, many people, especially from the OR community, have complained about such a

radical statement [364, page 28]. On the other hand, the motivation of such a statement

stands from the fact that a truly intelligent system should not rely on black-box algorithms,

but should rather be able to reconstruct them from some kind of first principles. How to

achieve this is still an open question.

Some solvers use, in a pre-processing phase before stating all constraints, an algorithm for

automatically extracting large cliques [88, 153] from a set of binary disequalities in order

to replace them by alldifferent constraints.

W.-J. van Hoeve provides a survey about the alldifferent constraint in [421].

For possible relaxation of the alldifferent constraints see the

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

20000128 509

alldifferent except 0, the k alldifferent (i.e., some different),

the soft alldifferent ctr, the soft alldifferent var and the

weighted partial alldiff constraints, and Figure 2.4 of Section 2.1.5.

Within the context of linear programming, relaxations of the alldifferent constraint are

described in [441] and in [215, pages 362–367].

Within the context of constraint-centered search heuristics, G. Pesant and A. Za-

narini [447] have proposed several estimators for evaluating the number of solutions of

an alldifferent constraint (since counting the total number of maximum matchings of

the corresponding variable-value graph is #P-complete [413]). Faster, but less accurate es-

timators, based on upper bounds of the number of solutions were proposed three years later

by the same authors [448].

Given n variables taking their values within the interval [1, n], the total number of solutions

to the corresponding alldifferent constraint corresponds to the sequence A000142 of

the On-Line Encyclopaedia of Integer Sequences [392].

Algorithm The first complete filtering algorithm was independently found by M.-C. Costa [123] and

J.-C. Régin [340]. This algorithm is based on a corollary of C. Berge that characterises the

edges of a graph that belong to a maximum matching but not to all [57, page 120].1 Sim-

ilarly, Dulmage-Mendelsohn decomposition [148] was also used recently by [129, 130] to

characterise such edges and prune the corresponding variables both for the alldifferent

constraint and for other constraints like alldifferent except 0, correspondence,

inverse, same, used by, global cardinality low up, soft alldifferent var,

soft same var, soft used by var. Assuming that all variables have no holes in their

domain, M. Leconte came up with a filtering algorithm [259] based on edge finding. A

first bound-consistency algorithm was proposed by Bleuzen-Guernalec et al. [78]. Later

on, two different approaches were used to design bound-consistency algorithms. Both ap-

proaches model the constraint as a bipartite graph. The first identifies Hall intervals in

this graph [324, 266] and the second applies the same algorithm that is used to compute

arc-consistency, but achieves a speedup by exploiting the simpler structure [194] of the

graph [281]. Ian P. Gent et al. discuss in [189] implementations issues behind the com-

plete filtering algorithm and in particular the computation of the strongly connected com-

ponents of the residual graph (i.e., a graph constructed from a maximum variable-value

matching and from the possible values of the variables of the alldifferent constraint),

which appears to be the main bottleneck in practice. Figures 2.1 and 2.2 of Section 2.1.3

illustrate the filtering of the alldifferent constraint with respect to arc-consistency

and bound-consistency. The leftmost part of Figure 3.29 illustrates a flow model for the

alldifferent constraint where there is a one-to-one correspondence between feasible

flows in the flow model and solutions of the alldifferent constraint.

From a worst case complexity point of view, assuming that n is the number of variables

and m the sum of the domains sizes, we have the following complexity results:

• Complete filtering is achieved in O(m
√
n) by Régin’s algorithm [340].

• Range consistency is done in O(n2) by Leconte’s algorithm [259].

• Bound-consistency is performed in O(n log n) in [324, 281, 266]. If sort can be

achieved in linear time, typically when the alldifferent constraint encodes a per-

1A similar result is in fact given in [309].

http://oeis.org/A000142

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

510 MAX NSCC,CLIQUE

mutation,2 the worst case complexity of the algorithms described in [281, 266] goes

down to O(n).

Within the context of explanations [228], the explanation of the filtering algorithm that

achieves arc-consistency for the alldifferent constraint is described in [359, pages 60–

61]. Given the residual graph (i.e., a graph constructed from a maximum variable-value

matching and from the possible values of the variables of the alldifferent constraint),

the removal of an arc starting from a vertex belonging to a strongly connected component

C1 to a distinct strongly connected component C2 is explained by all missing arcs starting

from a descendant component of C2 and ending in an ancestor component of C1 (i.e., since

the addition of any of these missing arcs would merge the strongly connected components

C1 and C2). Let us illustrate this on a concrete example. For this purpose assume we have

the following variables and the values that can potentially be assigned to each of them,

A ∈ {1, 2}, B ∈ {1, 2}, C ∈ {2, 3, 4, 6}, D ∈ {3, 4}, E ∈ {5, 6}, F ∈ {5, 6},

G ∈ {6, 7, 8}, H ∈ {6, 7, 8}. Figure 5.28 represents the residual graph associated with

the maximum matching corresponding to the assignment A = 1, B = 2, C = 3, D = 4,

E = 5, F = 6, G = 7, H = 8. It has four strongly connected components containing

respectively vertices {A,B, 1, 2}, {C,D, 3, 4}, {E, F, 5, 6} and {G,H, 7, 8}. Arcs that

are between strongly connected components correspond to values that can be removed:

• The removal of value 2 from variable C is explained by the absence of the arcs

corresponding to the assignments A = 3, A = 4, B = 3 and B = 4 (since adding

any of these missing arcs would merge the blue and the pink strongly connected

components containing the vertices corresponding to value 2 and variable C).

• The removal of value 6 from variable C is explained by the absence of the arcs

corresponding to the assignments E = 3, E = 4, F = 3 and F = 4. Again

adding the corresponding arcs would merge the two strongly connected components

containing the vertices corresponding to value 6 and variable C.

• The removal of value 6 from variable G is explained by the absence of the arcs

corresponding to the assignments E = 7, E = 8, F = 7 and F = 8.

• The removal of value 6 from variable H is explained by the absence of the arcs

corresponding to the assignments E = 7, E = 8, F = 7 and F = 8.

An additional example for illustrating the generation of explanations for the

alldifferent constraint when there are more values than variables is provided by Fig-

ure 2.3 of Section 2.1.4.

After applying bound-consistency the following property holds for all variables of an

alldifferent constraint. Given a Hall interval [l, u], any variable V whose range

[V , V] intersects [l, u] without being included in [l, u] has its minimum value V (respec-

tively maximum value V) that is located before (respectively after) the Hall interval (i.e.,

V < l ≤ u < V).

The alldifferent constraint is entailed if and only if there is no value v that can be

assigned two distinct variables of the VARIABLES collection (i.e., the intersection of the

two sets of potential values of any pair of variables is empty).

2In this context the total number of values that can be assigned to the variables of the alldifferent

constraint is equal to the number of variables. Under this assumption sorting the variables on their minimum

or maximum values can be achieved in linear time.

20000128 511

A 1

B 2

C 3

D 4

E 5

F 6

G 7

H 8

Figure 5.28: Strongly connected components of the residual graph il-

lustrating the explanation of the removal of a value for the constraint

alldifferent(〈A,B,C,D,E, F,G,H〉), A ∈ {1, 2}, B ∈ {1, 2}, C ∈ {2, 3, 4, 6},

D ∈ {3, 4}, E ∈ {5, 6}, F ∈ {5, 6}, G ∈ {6, 7, 8}, H ∈ {6, 7, 8}: the explanation

why value 2 is removed from variable C corresponds to all missing arcs whose

addition would merge the blue and the pink strongly connected components (i.e., the

missing arcs corresponding to the assignments A = 3, A = 4, B = 3 and B = 4 that

are depicted by thick pink lines)

Reformulation The alldifferent constraint can be reformulated into a set of disequalities constraints.

This model neither preserves bound-consistency nor arc-consistency:

• On the one hand a model, involving linear constraints, preserving bound-consistency

was introduced in [71]. For each potential interval [l, u] of consecutive values this

model uses |VARIABLES| 0-1 variables B1,l,u, B2,l,u, . . . , B|VARIABLES|,l,u for mod-

elling that each variable of the collection VARIABLES is assigned a value within in-

terval [l, u] (i.e., ∀i ∈ [1, |VARIABLES|] : Bi,l,u ⇔ VARIABLES[i].var ∈ [l, u]),3

and an inequality constraint for enforcing the condition that the sum of the corre-

sponding 0-1 variables is less than or equal to the size u− l+1 of the corresponding

interval (i.e. B1,l,u +B2,l,u + · · ·+B|VARIABLES|,l,u ≤ u− l + 1).

• On the other hand, it was shown in [74] that there is no polynomial sized decompo-

sition that preserves arc-consistency.

Finally the alldifferent(VARIABLES) constraint can also be reformu-

lated as the conjunction sort(VARIABLES, SORTED VARIABLES) ∧
strictly increasing(SORTED VARIABLES). Unlike the naive reformulation, i.e.,

a disequality constraint between each pair of variables, the sort-based reformulation

is linear in space.

3How to encode the reified constraint Bi,l,u ⇔ VARIABLES[i].var ∈ [l, u] with linear constraints is

described in the Reformulation slot of the in interval reified constraint.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

512 MAX NSCC,CLIQUE

Counting

Length (n) 2 3 4 5 6 7 8 9 10

Solutions 6 24 120 720 5040 40320 362880 3628800 39916800

Number of solutions for alldifferent: domains 0..n

2 4 6 8 10
10−3

10−2

10−1

100

Length

O
b
se

rv
ed

d
en

si
ty

Solution density for alldifferent

Counting
Information on the solution density.

20000128 513

2 4 6 8 10

0

0.2

0.4

0.6

Length

O
b
se

rv
ed

d
en

si
ty

Solution density for alldifferent

Systems allDifferent in Choco, linear in Gecode, alldifferent in JaCoP, alldiff
in JaCoP, alldistin
t in JaCoP, all different in MiniZinc, all different
in SICStus, all distin
t in SICStus.

Used in alldifferent consecutive values, circuit cluster, correspondence,

cumulative convex, max occ of consecutive tuples of values,

max occ of sorted tuples of values, size max seq alldifferent,

size max starting seq alldifferent, sort permutation.

See also common keyword: circuit, circuit cluster, cycle, derangement (permutation),

golomb (all different), proper circuit (permutation), size max seq alldifferent,

size max starting seq alldifferent (all different,disequality),

symmetric alldifferent (permutation).

cost variant: minimum weight alldifferent, weighted partial alldiff.

generalisation: all min dist (variable replaced by line segment, all

of the same size), alldifferent between sets (variable replaced by

set variable), alldifferent cst (variable replaced by variable + constant),

alldifferent interval (variable replaced by variable/constant),

alldifferent modulo (variable replaced by variable mod constant),

alldifferent partition (variable replaced by variable ∈ partition),

diffn (variable replaced by orthotope), disjunctive (variable replaced by task),

global cardinality (control the number of occurrence of each value with a counter

variable), global cardinality low up (control the number of occurrence of each value

with an interval), lex alldifferent (variable replaced by vector), nvalue (count

number of distinct values).

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntDistinct.html
http://www.gecode.org/
http://jacopapi.osolpro.com/JaCoP/constraints/Alldifferent.html
http://www.jacop.eu/
http://jacopapi.osolpro.com/JaCoP/constraints/Alldiff.html
http://www.jacop.eu/
http://jacopapi.osolpro.com/JaCoP/constraints/Alldistinct.html
http://www.jacop.eu/
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#all_different
http://www.g12.cs.mu.oz.au/minizinc/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/

Used in
List of constraints that use this constraint in their description.

See also
Related constraints grouped by semantics links.

514 MAX NSCC,CLIQUE

implied by: alldifferent consecutive values, circuit, cycle,

strictly decreasing, strictly increasing.

implies: alldifferent except 0, multi global contiguity, not all equal.

negation: some equal.

part of system of constraints: neq.

shift of concept: alldifferent on intersection, alldifferent same value.

soft variant: alldifferent except 0 (value 0 can be

used several times), open alldifferent (open constraint),

soft alldifferent ctr (decomposition-based violation measure),

soft alldifferent var (variable-based violation measure).

system of constraints: k alldifferent.

used in reformulation: in interval reified (bound-consistency preserving reformu-

lation), sort, strictly increasing.

uses in its reformulation: cycle, elements alldifferent, sort permutation.

Keywords characteristic of a constraint: core, all different, disequality, sort based reformulation,

automaton, automaton with array of counters.

combinatorial object: permutation.

constraint type: system of constraints, value constraint.

filtering: bipartite matching, bipartite matching in convex bipartite graphs,

convex bipartite graph, flow, Hall interval, arc-consistency, bound-consistency, SAT,

DFS-bottleneck, entailment.

final graph structure: one succ.

modelling exercises: n-Amazons, zebra puzzle.

problems: maximum clique, graph colouring.

puzzles: n-Amazons, n-queens, Costas arrays, Euler knight, Golomb ruler,

magic hexagon, magic square, zebra puzzle, Sudoku.

Cond. implications • alldifferent(VARIABLES)
implies lex alldifferent(VECTORS : VARIABLES).

• alldifferent(VARIABLES)
implies soft alldifferent ctr(C, VARIABLES).

• alldifferent(VARIABLES)
implies balance(BALANCE, VARIABLES)

when BALANCE = 0.

• alldifferent(VARIABLES)
implies soft all equal max var(N, VARIABLES)

when N < |VARIABLES|.

• alldifferent(VARIABLES)
implies soft all equal min var(N, VARIABLES)

when N > |VARIABLES|.

Keywords
Related keywords grouped by meta-keywords.

Cond. implications
Conditional implications.

20000128 515

• alldifferent(VARIABLES)
implies change(NCHANGE, VARIABLES, CTR)

when NCHANGE = |VARIABLES| − 1
and CTR ∈ [6=].

• alldifferent(VARIABLES)
implies circular change(NCHANGE, VARIABLES, CTR)

when NCHANGE = |VARIABLES|
and CTR ∈ [6=].

• alldifferent(VARIABLES)
implies longest change(SIZE, VARIABLES, CTR)

when SIZE = |VARIABLES|
and CTR ∈ [6=].

• alldifferent(VARIABLES)
with |VARIABLES| > 0

implies length first sequence(LEN, VARIABLES)
when LEN = 1.

• alldifferent(VARIABLES)
with |VARIABLES| > 0

implies length last sequence(LEN, VARIABLES)
when LEN = 1.

• alldifferent(VARIABLES)
with |VARIABLES| > 0

implies min nvalue(MIN, VARIABLES)
when MIN = 1.

516 MAX NSCC,CLIQUE

Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) MAX NSCC≤ 1

Graph class ONE SUCC

Graph model We generate a clique with an equality constraint between each pair of vertices (including a

vertex and itself) and state that the size of the largest strongly connected component should

not exceed one.

Parts (A) and (B) of Figure 5.29 respectively show the initial and final graph associated

with the Example slot. Since we use the MAX NSCC graph property we show one

of the largest strongly connected component of the final graph. The alldifferent holds

since all the strongly connected components have at most one vertex: a value is used at

most once.

VARIABLES

1

2

3

4

MAX_NSCC=1

MAX_NSCC

1:5 2:1 3:9 4:3

(A) (B)

Figure 5.29: Initial and final graph of the alldifferent constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20000128 517

Automaton Figure 5.30 depicts the automaton associated with the alldifferent constraint. To each

item of the collection VARIABLES corresponds a signature variable Si that is equal to 1.

The automaton counts the number of occurrences of each value and finally imposes that

each value is taken at most one time.

arith(C,<, 2)

s{C[]← 0}
1,
{C[VARi]← C[VARi] + 1}

Figure 5.30: Automaton of the alldifferent constraint

Quiz

EXERCISE 1 (checking whether a ground instance holds or not)a

A. Does the constraint alldifferent(〈5, 1, 4, 8, 1〉) hold?

B. Does the constraint alldifferent(〈8, 2, 4, 3〉) hold?

C. Does the constraint alldifferent(〈0〉) hold?

aHint: go back to the definition of alldifferent.

EXERCISE 2 (finding all solutions)a

Give all the solutions to the constraint:







V1 ∈ [3, 5], V2 ∈ [3, 4], V3 ∈ [2, 7],
V4 ∈ [3, 4], V5 ∈ [2, 7],
alldifferent(〈V1, V2, V3, 6, V4, V5〉).

aHint: identify infeasible values, enumerate solutions in lexicographic order.

EXERCISE 3 (finding all solutions)a

Give all the solutions to the constraint:







V1 ∈ [4, 6], V2 ∈ [1, 3], V3 ∈ [1, 4], V4 ∈ [1, 2],
V5 ∈ [4, 7], V6 ∈ [4, 6], V7 ∈ [1, 2],
alldifferent(〈V1, V2, V3, V4, V5, V6, V7〉).

aHint: focus on variables with smallest domain first, identify Hall intervals

for finding infeasible values, enumerate solutions in lexicographic order.

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

Quiz
A set of small exercises for checking that the meaning of the constraint is well understood.

518 MAX NSCC,CLIQUE

EXERCISE 4 (finding all solutions)a

Give all the solutions to the constraint:















V1 ∈ {1, 3}, V2 ∈ {1, 2, 3, 4},
V3 ∈ {1, 5}, V4 ∈ {1, 2, 3, 4, 5, 6},
V5 ∈ {3, 5},
alldifferent(〈V1, V2, V3, V4, V5〉).

aHint: focus on variables with smallest domain first, identify Hall sets for

finding infeasible values, enumerate solutions in lexicographic order.

EXERCISE 5 (identifying infeasible values)a

Identify all variable-value pairs (Vi, val) (1 ≤ i ≤ 6), such that the

following constraint has no solution when variable Vi is assigned value

val :







V1 ∈ {1, 2, 4}, V2 ∈ {1, 2, 3, 4, 6}, V3 ∈ {1, 2, 6},
V4 ∈ [1, 6], V5 ∈ {1, 4, 6}, V6 ∈ {2, 4, 6},
alldifferent(〈V1, V2, V3, V4, V5, V6〉).

aHint: focus on variables with smallest domain first, identify Hall sets for

finding infeasible values.

EXERCISE 6 (identifying infeasible values and counting)a

A. Identify six variable-value pairs (Vi, val) (1 ≤ i ≤ 9), such that

the following conjunction of constraints has no solution when

variable Vi is assigned value val .























V1 ∈ [1, 7], V2 ∈ [1, 7], V3 ∈ [1, 7],
V4 ∈ [1, 4], V5 ∈ [1, 4], V6 ∈ [1, 4],
V7 ∈ [3, 6], V8 ∈ [3, 6], V9 ∈ [3, 6],
alldifferent(〈V1, V2, V3, V4, V5, V6〉),
alldifferent(〈V1, V2, V3, V7, V8, V9〉).

B. Describe concisely the structure of the set of solutions and derive

the total number of solutions.

aHint: group together variables that belong to the same set of constraints and

reason on the number of distinct values assigned to such groups.

20000128 519

EXERCISE 7 (variable-based degree of violation)a

Compute the variable-based degree of violationb of the following con-

straints:

A. alldifferent(〈2, 2, 2, 2〉),
B. alldifferent(〈3, 1, 5, 2, 7〉),
C. alldifferent(〈5, 5, 0, 5, 5, 0, 7〉).
aHint: focus on the groups of variables that are assigned the same value.
bGiven a constraint for which all variables are fixed, the variable-based de-

gree of violation is the minimum number of variables to assign differently in

order to satisfy the constraint.

EXERCISE 8 (preventing conflict around the tableab)

Provide a concise and efficient model for the following problem. Given a

set M of n men, a set W of n women, a set of pairs C where each pair

(m,w) ∈ C represents a conflict between the man m (m ∈ M) and the

woman w (w ∈ W), a rectangular table, the goal is to place on one side

of the table all the n men and on the opposite side all the n women in

such a way that two persons that are in conflict do not sit face to face.

aAdapted from the 2011 constraint programming exam at Polytechnique,

C. Dürr.
bHint: break some symmetry of the problem.

520 MAX NSCC,CLIQUE

EXERCISE 9 (identifying equalities from a clique of disequalitiesa)

[CONTEXT] Given an undirected graph G = (V, E), colour each vertex

v ∈ V in such a way that (1) two vertices that are linked by an edge

of the set of edges E are not assigned the same colour, and (2) no more

than m distinct colours are used to colour all the vertices of G. The goal

of the exercise is to find out necessary conditions for this problem that

go beyond the cardinality of a (maximum) clique.

A. [IDENTIFYING PAIRS OF VERTICES THAT SHOULD BE ASSIGNED

THE SAME COLOUR]

(a) Given the vertices of the following

graph G to colour with at most

three distinct colours, explain why

vertices v1 and v3 should be assi-

gned the same colour.

(b) For graph G provide all pairs of vertices that should be

assigned the same colour if no more than three distinct

colours have to be used.

B. [GENERALISING THE NECESSARY CONDITION]

Given a clique of n vertices C of the graph G, let VC denotes the

set of vertices that do not belong to C and that are all connected

to all vertices of C. Assuming that one should use at most m
distinct colours provide a necessary condition on the set VC .

aHint: restrict extra values wrt a clique of disequalities.

v1 v2 v3

v4 v5 v6

G

EXERCISE 10 (8-queens: unfeasibility of a partial solution a)

Consider the 8-queens problemb where we

start filling the chessboard in a systematic

way: we place a first queen in a1 and

a second queen in b3. Prove that it is

not possible to extend this partial assign-

ment to a complete solution.

aHint: consider each of the 4 remaining

positions on column c; extract information

from the conjunction of the three alldifferent constraints that allows the

modelling of the n-queens problem.
bPlace 8 queens on an 8 by 8 chessboard in such a way that no queen attacks

another. Two queens attack each other if they are located on the same column,

on the same row, or on the same diagonal.

Q

Q

a b c d e f g h

1
2
3
4
5
6
7
8

20000128 521

SOLUTION TO EXERCISE 1

A. No, since value 1 is used twice.

B. Yes, since all values 8, 2, 4 and 3 are distinct.

C. Yes, since value 0 is only used once.

SOLUTION TO EXERCISE 2

〈V1, V2, V3, V4, V5〉

¬ (〈5, 3, 2, 4, 7〉)
­ (〈5, 3, 7, 4, 2〉)
® (〈5, 4, 2, 3, 7〉)
¯ (〈5, 4, 7, 3, 2〉)

the four solutions
Values 3 and 4 have

to be assigned to the

two variables V2 and

V4. Consequently,

V1, V3 and V5 are

different from 3 and

4.

Values 3, 4 and 5 have to be assigned to V1, V2 and V4. Value

6 is directly mentioned in the constraint. Consequently the two

remaining variables V3 and V5 can only be assigned values 2
and 7.

522 MAX NSCC,CLIQUE

SOLUTION TO EXERCISE 3

7

6 6 6 ¹

5 5 5 ¹

4 4 4 4 ¸

3 3 ·

2 2 2 2 ¶

1 1 1 1 ¶

V4 V7 V2 V3 V1 V6 V5

Hall
intervals 〈V1, V2, V3, V4, V5, V6, V7〉

¬ (〈5, 3, 4, 1, 7, 6, 2〉)
­ (〈5, 3, 4, 2, 7, 6, 1〉)
® (〈6, 3, 4, 1, 7, 5, 2〉)
¯ (〈6, 3, 4, 2, 7, 5, 1〉)

the four solutions

Let us reorder the variables by increasing minimum value, and by in-

creasing maximum value in case of tie, for instance, V4, V7, V2, V3, V1,

V6, V5.

¶ Since values 1 and 2 have to be assigned to V4 and V7 (interval

[1, 2] is a Hall intervala), they cannot be assigned to the other

variables and consequently V2 is fixed to 3.

· Since V2 is fixed to 3, V3 is fixed to 4.

¸ Since V3 is fixed to 4, V1 and V6 can only be assigned values 5 or

6 (interval [5, 6] is a Hall interval).

¹ Since values 5 and 6 cannot be assigned to V5, V5 is fixed to 7.

aGiven a set of domain variables, a Hall interval is an interval of values [ℓ, u]
such that there are u− ℓ+ 1 variables whose domains are contained in [ℓ, u].

20000128 523

SOLUTION TO EXERCISE 4

6

5 5 5 ¶

4 4

3 3 3 3 ¶

2 2

1 1 1 1 ¶

V1 V3 V5 V2 V4

Hall set

〈V1, V2, V3, V4, V5〉

¬ (〈1, 2, 5, 4, 3〉)
­ (〈1, 2, 5, 6, 3〉)
® (〈1, 4, 5, 2, 3〉)
¯ (〈1, 4, 5, 6, 3〉)
° (〈3, 2, 1, 4, 5〉)
± (〈3, 2, 1, 6, 5〉)
² (〈3, 4, 1, 2, 5〉)
³ (〈3, 4, 1, 6, 5〉)

the eight solutions

Let us reorder the variables by increasing domain size, increasing

minimum, and increasing maximum in case of tie, i.e., V1, V3, V5,

V2, V4. Since values 1, 3 and 5 have to be assigned to V1, V3 and

V5 ({1, 3, 5} is a Hall seta), they cannot be assigned to the other

variables and consequently values 1, 3 and 5 are removed from V2

and V4 (see ¶).

aGiven a set of domain variables, a Hall set is a set of values H such

that there are |H| variables whose domains are contained in H.

524 MAX NSCC,CLIQUE

SOLUTION TO EXERCISE 5

V2 V4V1 V3 V5 V6

3

5

1

2

4

6

H
al

l
se

t
H

1
=

{1
,2
,4
,6
}

(A) Initial domains

Vi

Vi

Vi

Vi

vj

vj

vj

vj

vj /∈ dom(Vi)

vj ∈ dom(Vi)

vj ∈ Hall set Hk

dom(Vi) ⊆ Hk

vj pruned

from dom(Vi)

V2V1 V3 V4 V5 V6

3

1

2

4

5

6

After filtering

wrt Hall set H1

H
al

l
se

t
H

2
=

{3
}

(B)

V1 V2 V3 V4 V5 V6

1

2

3

4

5

6

After filtering

wrt Hall set H2(C)

1. In part (A) we first identify the Hall seta H1 = {1, 2, 4, 6}
which contains the domains of variables V1, V3, V5 and V6.

2. In part (B) we remove values 1, 2, 4 and 6 from those

variables for which the domain is not included within the

Hall set H1, namely V2 and V4, see ×.

3. After the previous filtering we identify in part (B) a new Hall

set H2 = {3} which contains the domain of V2.

4. Finally in part (C) we remove value 3 from those variables

for which the domain is not included within the Hall set H2,

namely V4, see ×.

aGiven a set of domain variables, a Hall set is a set of values H such

that there are |H| variables whose domains are contained in H.

20000128 525

SOLUTION TO EXERCISE 6

A. (i) The cardinality of the union of the domains of

V1, V2, . . . , V9 is equal to 7. Since V1, V2 and V3 will be

assigned 3 distinct values, the remaining variables

V4, V5, . . . , V9 should not be assigned more than 7− 3 = 4
distinct values.

(ii) V4, V5, . . . , V9 can be partitioned in two sets {V4, V5, V6}
and {V7, V8, V9} which respectively correspond to the

variables that only belong to the first and to the second

alldifferent. The first set will be assigned distinct values

in interval [1, 4], while the second set will be assigned

distinct values in interval [3, 6].

(iii) Since V4, V5, . . . , V9 should not be assigned more than 4
distinct values, the two values 3 and 4 that belong both to

[1, 4] and [3, 6] should be both assigned to {V4, V5, V6} and

to {V7, V8, V9}. Consequently values 3 and 4 cannot be

assigned to variables V1, V2 and V3.

B. As illustrated by the next figure, we have four families of

solutions ¬, ­, ® and ¯ where the three sets of variables

{V1, V2, V3}, {V4, V5, V6} and {V7, V8, V9} are assigned values

from three distinct set of values. This leads to a total number of

solutions of 4 · 3! · 3! · 3! = 864.

{1, 5,7}

{V1, V2, V3}

{2, 3,4}

{V4, V5, V6}

{3, 4, 6}

{V7, V8, V9}

¬

{1, 6,7}

{V1, V2, V3}

{2, 3,4}

{V4, V5, V6}

{3, 4, 5}

{V7, V8, V9}

­

{2, 5,7}

{V1, V2, V3}

{1, 3,4}

{V4, V5, V6}

{3, 4, 6}

{V7, V8, V9}

®

{2, 6,7}

{V1, V2, V3}

{1, 3,4}

{V4, V5, V6}

{3, 4, 5}

{V7, V8, V9}

¯

526 MAX NSCC,CLIQUE

SOLUTION TO EXERCISE 7

A. The degree of violation is equal to 3 since at least three

occurrences of value 2 (e.g. the three in red) out of the four

occurrences of value 2 need to be assigned differently (e.g., 3, 4, 5
in blue) in order to obtain a solution.

alldifferent(〈2,
3,4,5

2, 2,2〉)

B. The degree of violation is equal to 0 since the constraint holds,

i.e. no value needs to be assigned differently.

C. The degree of violation is equal to 4 since at least three

occurrences of value 5 and one occurrence of value 0 (e.g. the

three 5 and the 0 in red) need to be assigned differently (e.g., 1, 3,

6, 4 in blue) in order to obtain a solution.

alldifferent(〈5,
1,3,6,4

5, 0,5,5, 0, 7〉)

SOLUTION TO EXERCISE 8

Without loss of generality let us assume

that the sets M and W are both equal

to {1, 2, . . . , n}. We associate to each

woman w in W a variable Fw providing

the man which sits in front of w.a

¬ To prevent any conflict, the initial

domain of each variable

Fw (w ∈ W) is set to all the men

of M that are not in conflict with

woman w, i.e. the men m ∈ M
such that (m,w) /∈ C.

­ To enforce the fact that each

woman can only sit in front of a

single man we enforce an

alldifferent(〈F1, F2, . . . , Fn〉)
constraint.

aNote that this model does not introduce

variables for the men, i.e. each man is a value

and each woman a variable. The model also

eliminates some symmetry, i.e., it does not

care where a woman sits.

AN INSTANCE

W = {Bea ,Lea ,Lili}
M = {Leo,Luis,Tom}
C = {(Luis ,Bea),

(Tom,Bea),

(Luis,Lea),

(Leo,Lili)}

A SOLUTION

(red edges corres-

pond to conflicts)

Bea Lili Lea

Leo Luis Tom

20000128 527

SOLUTION TO EXERCISE 9

A. [IDENTIFYING PAIRS OF VERTICES THAT SHOULD BE ASSIGNED

THE SAME COLOUR]

(a) Since we have to use at most 3
distinct colours, since v2 and v5
use two distinct colours, and

since v1 and v3 are both linked

to v2 and v5, we infer that

v1 and v3 both have to use

the third and last available colour.

(b) For a similar reason:

• v2 and v4 use the

same colour since

they are both lin-

ked to v1 and v5.

• v2 and v6 use the

same colour since

they are both lin-

ked to v3 and v5.

B. [GENERALISING THE NECESSARY CONDITION]

Since we should use at most m distinct

colours and since all vertices of the set

VC are linked to all vertices of the clique

C of n vertices, the set VC should use at

most m− n distinct colours. In the pre-

vious setting we had m = 3 and n = 2,

i.e., one unique colour for all elements

of VC . The figure on the right illustrates

the constraint generated wrt the clique C = {v2, v5}.

v1 v2 v3

v4 v5 v6

same colour

G

v1 v2 v3

v4 v5 v6

G

v1 v2 v3

v4 v5 v6

G

v1 v2 v3

v4 v5 v6

VC

C

atmost nvalue(m − 2,VC)

G′

528 MAX NSCC,CLIQUE

SOLUTION TO EXERCISE 10

We do case reasoning depending on where we place the queen on the

third column. After placing the third queen we mark all cells that are

located on the same column, row, or diagonal of one of the three already

placed queens. Then we focus on the rows or columns for which no more

than three consecutive cells are still empty since it allows to prune the

next row or column.

• [PLACING A QUEEN ON c5]

After marking all cells that are

located on a same column, row,

or diagonal than a1, b3, and c5
we get the chessboard shown

on the right.

Then we focus on row 8, which

contains only two consecutive free

cells. Since the eighth row must

contain one queen this queen will

be located at position d8 or e8. In

both cases the cell d7 will be

forbidden. By performing the

same reasoning on the sixth row

we also find out that the cell h7
is forbidden. As a result no

queen can be placed on row 7.

• [MOVING THE THIRD QUEEN

FROM c5 TO c6]

After marking all cells that are

located on a same column, row,

or diagonal than a1, b3, and c6
we get the chessboard shown

on the right.

We focus on row 5, which contains only three consecutive free

cells, see (D). Since row 5 must contain a queen, this queen

will be located at position f5, g5, or h5. In all three cases the

cell g4 will be forbidden. Similarly by considering the fourth

row, see (E), we find out that no queen can be placed on g5.

As a result no queen can be placed on column g.

Q

Q

Q

a b c d e f g h

1
2
3
4
5
6
7
8

(A)

Q

Q

Q

Q Q

Q Q

a b c d e f g h

1

2

3

4

5

6

7

8

(B)

Q

Q

Q

a b c d e f g h

1
2
3
4
5
6
7
8

(C)

Q

Q

Q

a b c d e f g h

1

2

3

4

5

6

7

8

Q Q Q

(D)

Q

Q

Q

a b c d e f g h

1

2

3

4

5

6

7

8

Q Q Q

(E)

20000128 529

SOLUTION TO EXERCISE 10 (continued)

• [MOVING THE THIRD QUEEN FROM c6 TO c7]

After marking all cells that are located on a same column, row, or diagonal

than a1, b3, and c7 we get the chessboard shown in (F).

Since on column d only position d2 is free a queen ¬ is placed on d2 and

we mark with small red crosses the new forbidden positions, see (G). Then

on row 6 only position g6 is free. Consequently a queen ­ is placed on g6,

which forbids all remaining free positions on row 5.

• [MOVING THE THIRD QUEEN FROM c7 TO c8]

After marking all cells that are located on a same column, row, or diagonal

than a1, b3, and c8 we get the chessboard shown in (H).

Then we focus on row 5, see (I), which contains only two consecutive free

cells. Since the fifth row must contain one queen this queen will be located

at position g5 or h5. In both cases the cell g6 is forbidden.

By performing the same reasoning we also find out that cell h6 is forbidden.

Since on row 6 only position d6 is free, a queen ¬ is placed on d6 and we

mark with small blue crosses the new forbidden positions. Then on column f

only position f2 is free. Consequently a queen ­ is placed on f2 and we

mark with small green crosses the new forbidden positions. Now row 7 and

column e have only one free cell, namely h7 and e4 which are located on the

same diagonal. Consequently, we cannot place the last two queens on e4
and h7. Hence the first two queens cannot be placed on a1 and b3.

Q

Q

Q

a b c d e f g h

1
2
3
4
5
6
7
8

(F)

Q

Q

Q

¬

­

a b c d e f g h

1
2
3
4
5
6
7
8

(G)

Q

Q

Q

a b c d e f g h

1
2
3
4
5
6
7
8

(H)

Q

Q

Q

a b c d e f g h

1

2

3

4

5

6

7

8

Q Q

¬

­

(I)

