
630 PRODUCT , SUCC

5.34 assign and counts

DESCRIPTION LINKS GRAPH AUTOMATON

Origin N. Beldiceanu

Constraint assign and counts(COLOURS, ITEMS, RELOP, LIMIT)

Arguments COLOURS : collection(val−int)
ITEMS : collection(bin−dvar, colour−dvar)
RELOP : atom

LIMIT : dvar

Restrictions required(COLOURS, val)
distinct(COLOURS, val)
required(ITEMS, [bin, colour])
RELOP ∈ [=, 6=, <,≥,>,≤]

Purpose
Given several items (each of them having a specific colour that may not be initially

fixed), and different bins, assign each item to a bin, so that the total number n of items

of colour COLOURS in each bin satisfies the condition n RELOP LIMIT.

Example













〈4〉 ,

〈
bin− 1 colour− 4,
bin− 3 colour− 4,
bin− 1 colour− 4,
bin− 1 colour− 5

〉

,≤, 2













Figure 5.80 shows the solution associated with the example. The items and the

bins are respectively represented by little squares and by the different columns. Each little

square contains the value of the key attribute of the item to which it corresponds. The

items for which the colour attribute is equal to 4 are located under the thick line.

items assigned colour 4

items assigned a colour

different from colour 4

¬

®

­

¯

1 2 3 4 5

≤ 2

bins

¬ bin− 1 colour − 4
­ bin− 3 colour − 4
® bin− 1 colour − 4
¯ bin− 1 colour − 5

ITEMS

Figure 5.80: Assignment of the items to the bins

The assign and counts constraint holds since for each used bin (i.e., namely bins 1 and

3) the number of assigned items for which the colour attribute is equal to 4 is less than or

equal to the limit 2.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20000128 631

Typical |COLOURS| > 0
|ITEMS| > 1
range(ITEMS.bin) > 1
RELOP ∈ [<,≤]
LIMIT > 0
LIMIT < |ITEMS|

Symmetries • Items of COLOURS are permutable.

• Items of ITEMS are permutable.

• All occurrences of two distinct values of ITEMS.bin can be swapped; all occur-

rences of a value of ITEMS.bin can be renamed to any unused value.

Arg. properties
• Contractible wrt. ITEMS when RELOP ∈ [<,≤].

• Extensible wrt. ITEMS when RELOP ∈ [≥, >].

Usage Some persons have pointed out that it is impossible to use constraints such as among,

atleast, atmost, count, or global cardinality if the set of variables is not initially

known. However, this is for instance required in practice for some timetabling problems.

See also assignment dimension removed: count, counts.

used in graph description: counts.

Keywords application area: assignment.

characteristic of a constraint: coloured, automaton, automaton with array of counters,

derived collection.

final graph structure: acyclic, bipartite, no loop.

modelling: assignment dimension.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

632 PRODUCT , SUCC

Derived Collection
col(VALUES−collection(val−int), [item(val− COLOURS.val)])

Arc input(s) ITEMS ITEMS

Arc generator PRODUCT 7→collection(items1, items2)

Arc arity 2

Arc constraint(s) items1.bin = items2.bin

Graph class • ACYCLIC

• BIPARTITE

• NO LOOP

Sets SUCC 7→




source,

variables − col

(

VARIABLES−collection(var−dvar),
[item(var− ITEMS.colour)]

)





Constraint(s) on sets counts(VALUES, variables, RELOP, LIMIT)

Graph model We enforce the counts constraint on the colour of the items that are assigned to the same

bin.

Parts (A) and (B) of Figure 5.81 respectively show the initial and final graph associated with

the Example slot. The final graph consists of the following two connected components:

• The connected component containing six vertices corresponds to the items that are

assigned to bin 1.

• The connected component containing two vertices corresponds to the items that are

assigned to bin 3.

ITEMS

ITEMS

1

1234

234

ITEMS

ITEMS

1:1,4

1:1,4 3:1,44:1,5

2:3,4

2:3,4

3:1,44:1,5

(A) (B)

Figure 5.81: Initial and final graph of the assign and counts constraint

The assign and counts constraint holds since for each set of successors of the vertices

of the final graph no more than two items take colour 4.

Derived Collection
Declaration of a new collection that is derived from one or several arguments of the constraint.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20000128 633

Automaton Figure 5.82 depicts the automaton associated with the assign and counts constraint. To

each colour attribute COLOURi of the collection ITEMS corresponds a 0-1 signature vari-

able Si. The following signature constraint links COLOURi and Si: COLOURi ∈ COLOURS ⇔
Si. For all items of the collection ITEMS for which the colour attribute takes its value in

COLOURS, counts for each value assigned to the bin attribute its number of occurrences n,

and finally imposes the condition n RELOP LIMIT.

arith(C, RELOP, LIMIT)

s{C[]← 0}
in(COLOURi, COLOURS),
{C[BINi]← C[BINi] + 1}

not in(COLOURi, COLOURS)

Figure 5.82: Automaton of the assign and counts constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

