
724 PRODUCT , SUCC

5.53 bin packing

DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived from cumulative.

Constraint bin packing(CAPACITY, ITEMS)

Arguments CAPACITY : int

ITEMS : collection(bin−dvar, weight−int)

Restrictions CAPACITY ≥ 0
required(ITEMS, [bin, weight])
ITEMS.weight ≥ 0
ITEMS.weight ≤ CAPACITY

Purpose

Given several items of the collection ITEMS (each of them having a specific weight), and

different bins of a fixed capacity, assign each item to a bin so that the total weight of the

items in each bin does not exceed CAPACITY.

Example



 5,

〈

bin− 3 weight − 4,
bin− 1 weight − 3,
bin− 3 weight − 1

〉





The bin packing constraint holds since the sum of the height of items that are as-

signed to bins 1 and 3 is respectively equal to 3 and 5. The previous quantities are both less

than or equal to the maximum CAPACITY 5. Figure 5.120 shows the solution associated

with the example.

­ ¬

®

1 2 3 4 5

≤ 5

bins

su
m

o
f

w
ei

g
h
ts

¬ bin− 3 weight − 4
­ bin− 1 weight − 3
® bin− 3 weight − 1

ITEMS

Figure 5.120: Bin-packing solution to the Example slot

Typical CAPACITY >maxval(ITEMS.weight)
CAPACITY ≤sum(ITEMS.weight)
|ITEMS| > 1
range(ITEMS.bin) > 1
range(ITEMS.weight) > 1
ITEMS.bin ≥ 0
ITEMS.weight > 0

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

20000128 725

Symmetries • CAPACITY can be increased.

• Items of ITEMS are permutable.

• ITEMS.weight can be decreased to any value ≥ 0.

• All occurrences of two distinct values of ITEMS.bin can be swapped; all occur-

rences of a value of ITEMS.bin can be renamed to any unused value.

Arg. properties
Contractible wrt. ITEMS.

Remark Note the difference with the classical bin-packing problem [275, page 221] where one

wants to find solutions that minimise the number of bins. In our case each item may be

assigned only to specific bins (i.e., the different values of the bin variable) and the goal is

to find a feasible solution. This constraint can be seen as a special case of the cumulative

constraint [1], where all task durations are equal to 1.

In [379] the CAPACITY parameter of the bin packing constraint is replaced by a collection

of domain variables representing the load of each bin (i.e., the sum of the weights of the

items assigned to a bin). This allows representing problems where a minimum level has to

be reached in each bin.

Coffman and al. give in [119] the worst case bounds of different list algorithms for

the bin packing problem (i.e., given a positive integer CAPACITY and a list L of inte-

ger sizes weight
1
, weight

2
, . . . , weight

n
(0 ≤ weight

i
≤ CAPACITY), what is the

smallest integer m such that there is a partition L = L1 ∪ L2 ∪ · · · ∪ Lm satisfying
∑

weighti∈Lj
weight

i
≤ CAPACITY for all j ∈ [1, m]?).

Algorithm Initial filtering algorithms are described in [291, 288, 289, 290, 379]. More recently, lin-

ear continuous relaxations based on the graph associated with the dynamic programming

approach for knapsack by Trick [408], and on the more compact model introduced by Car-

valho [101, 102] are presented in [89].

Systems pa
k in Choco, binpa
king in Gecode, bin pa
king in MiniZinc.

See also generalisation: bin packing capa (fixed overall capacity replaced by non-fixed ca-

pacity), cumulative (task of duration 1 replaced by task of given duration),

cumulative two d (task of duration 1 replaced by square of size 1 with a height),

indexed sum (negative contribution also allowed, fixed capacity replaced by a set of vari-

ables).

used in graph description: sum ctr.

Keywords application area: assignment.

characteristic of a constraint: automaton, automaton with array of counters.

constraint type: resource constraint.

final graph structure: acyclic, bipartite, no loop.

modelling: assignment dimension, assignment to the same set of values.

modelling exercises: assignment to the same set of values.

Cond. implications bin packing(CAPACITY, ITEMS)
with CAPACITY ≥ |ITEMS|

implies atmost nvector(NVEC : CAPACITY, VECTORS : ITEMS).

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntBinPacking.html
http://www.gecode.org/
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#bin_packing
http://www.g12.cs.mu.oz.au/minizinc/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

Cond. implications
Conditional implications.

726 PRODUCT , SUCC

Arc input(s) ITEMS ITEMS

Arc generator PRODUCT 7→collection(items1, items2)

Arc arity 2

Arc constraint(s) items1.bin = items2.bin

Graph class • ACYCLIC

• BIPARTITE

• NO LOOP

Sets SUCC 7→




source,

variables − col

(

VARIABLES−collection(var−dvar),
[item(var− ITEMS.weight)]

)





Constraint(s) on sets sum ctr(variables,≤, CAPACITY)

Graph model We enforce the sum ctr constraint on the weight of the items that are assigned to the same

bin.

Parts (A) and (B) of Figure 5.121 respectively show the initial and final graph associated

with the Example slot. Each connected component of the final graph corresponds to the

items that are all assigned to the same bin.

ITEMS

ITEMS

1

1 23

2 3

ITEMS

ITEMS

1:3,4

1:3,4 3:3,1

2:1,3

2:1,3

3:3,1

(A) (B)

Figure 5.121: Initial and final graph of the bin packing constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20000128 727

Automaton Figure 5.122 depicts the automaton associated with the bin packing constraint. To each

item of the collection ITEMS corresponds a signature variable Si that is equal to 1.

arith(C,≤, CAPACITY)

s{C[]← 0}
1,
{C[BINi]← C[BINi] + WEIGHTi}

Figure 5.122: Automaton of the bin packing constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

