
798 MAX ID,MIN NSCC,CLIQUE

5.66 circuit

DESCRIPTION LINKS GRAPH

Origin [256]

Constraint circuit(NODES)

Synonyms atour, cycle.

Argument NODES : collection(index−int, succ−dvar)

Restrictions required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose
Enforce to cover a digraph G described by the NODES collection with one circuit visiting

once all vertices of G.

Example









〈
index− 1 succ− 2,
index− 2 succ− 3,
index− 3 succ− 4,
index− 4 succ− 1

〉









The circuit constraint holds since its NODES argument depicts the following Hamiltonian

circuit visiting successively the vertices 1, 2, 3, 4 and 1.

All solutions Figure 5.162 gives all solutions to the following non ground instance of the

circuit constraint: S1 ∈ [3, 4], S2 ∈ [1, 2], S3 ∈ [1, 4], S4 ∈ [2, 4],
circuit(〈1 S1, 2 S2, 3 S3, 4 S4〉).

¬ (〈31,12,43,24〉)
­ (〈41,12,23,34〉)

Figure 5.162: All solutions corresponding to the non ground example of the circuit

constraint of the All solutions slot (the index attribute is displayed as indices of the

succ attribute)

Typical |NODES| > 2

Symmetry Items of NODES are permutable.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Argument
Argument of the constraint and its corresponding type.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

All solutions
Example of all solutions for a non ground instance of the constraint.

Typical
Typical condition on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

20030820 799

Remark In the original circuit constraint of CHIP the index attribute was not explicitly present.

It was implicitly defined as the position of a variable in a list.

Within the context of linear programming [5] this constraint was introduced under the

name atour. In the same context [215, page 380] provides continuous relaxations of the

circuit constraint.

Within the KOALOG constraint system this constraint is called cycle.

Algorithm Since all succ variables of the NODES collection have to take distinct values one can reuse

the algorithms associated with the alldifferent constraint. A second necessary condi-

tion is to have no more than one strongly connected component. Pruning for enforcing this

condition can be done by forcing all strong bridges to belong to the final solution, since

otherwise the strongly connected component would be broken apart. A third necessary

condition is that, if the graph is bipartite then the number of vertices of each class should

be identical. Consequently if the number of vertices is odd (i.e., |NODES| is odd) the graph

should not be bipartite. Further necessary conditions (useful when the graph is sparse)

combining the fact that we have a perfect matching and a single strongly connected com-

ponent can be found in [381]. These conditions forget about the orientation of the arcs

of the graph and characterise new required elementary chains. A typical pattern involving

four vertices is depicted by Figure 5.163 where we assume that:

• There is an elementary chain between c and d (depicted by a dashed edge),

• b has exactly 3 neighbours.

In this context the edge between a and b is mandatory in any covering (i.e., the arc from a

to b or the arc from b to a) since otherwise a small circuit involving b, c and d would be

created.

When the graph is planar [217][138] one can also use as a necessary condition discovered

by Grinberg [199] for pruning.

Finally, another approach based an the notion of 1-toughness [116] was proposed in [236]

and evaluated for small graphs (i.e., graphs with up to 15 vertices).

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

http://www.cosytec.com

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

800 MAX ID,MIN NSCC,CLIQUE

a

b

c d
elementary chain

(A) Initial situation: a vertex

b with 3 potential neighbours

a, c, d with an elementary

chain between c and d

a

b

c d
small cycle

elementary chain

(B) Removing edge (a, b)

leads to a contradiction:

a small cycle that does

not contain vertex a

a

b

c d
elementary chain

(C) The first alternative: an

elementary chain between

a and d: (a, b) is kept

a

b

c d
elementary chain

(D) The second alternative: an

elementary chain between

a and c: (a, b) is kept

Figure 5.163: Reasoning about elementary chains and degrees: if we have an elemen-

tary chain between c and d and if b has 3 neighbours then the edge (a, b) is mandatory.

Reformulation Let n and s1, s2, . . . , sn respectively denotes the number of vertices (i.e., |NODES|) and the

successor variables associated with vertices 1, 2, . . . , n. The circuit constraint can be

reformulated as a conjunction of one domain constraint, two alldifferent constraints,

and n element constraints.

• First, we state an alldifferent(〈s1,

s2, . . . , sn〉) constraint for enforcing

distinct values to be assigned to the

successor variables.

• Second, the key idea is, starting from

vertex 1, to successively extract the

vertices t1, t2, . . . , tn−1 of the cir-

cuit until we come back on vertex

1, where ti (with i ∈ [2, n −
1]) denotes the successor of ti−1

and t1 the successor of vertex 1.

Since we have one single circuit all

the t1, t2, . . . , tn−1 should be differ-

ent from 1. Consequently we state

a domain(〈t1, t2, . . . , tn1
〉, 2, n) con-

straint for declaring their initial do-

mains. To express the link between

consecutive ti we also state a con-

junction of n element constraints of

the form:

element(1, 〈s1, s2, . . . , sn〉, t1),

element(t1, 〈s1, s2, . . . , sn〉, t2),

. .

element(tn−1, 〈s1, s2, . . . , sn〉, 1).

• Finally we add a redundant con-

straint for stating that all ti (with

i ∈ [1, n − 1]) are distinct,

i.e. alldifferent(〈t1, t2, . . . , tn−1〉).

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

20030820 801

1 2

34

Illustration of the reformulation of

circuit(〈1 2, 2 3, 3 4, 4 1〉)

alldifferent(〈2, 3, 4, 1〉)

domain(〈2,3,4〉, 2, 4)

alldifferent(〈2, 3, 4〉)

∥

∥

∥

∥

∥

∥

∥

∥

element(1, 〈2, 3, 4, 1〉, 2)
element(2, 〈2, 3, 4, 1〉, 3)
element(3, 〈2, 3, 4, 1〉, 4)
element(4, 〈2, 3, 4, 1〉, 1)

Counting

Length (n) 2 3 4 5 6 7 8 9 10

Solutions 1 2 6 24 120 720 5040 40320 362880

Number of solutions for circuit: domains 0..n

Counting
Information on the solution density.

802 MAX ID,MIN NSCC,CLIQUE

2 4 6 8 10

10−5

10−4

10−3

10−2

10−1

Length

O
b
se

rv
ed

d
en

si
ty

Solution density for circuit

2 4 6 8 10

0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

Length

O
b
se

rv
ed

d
en

si
ty

Solution density for circuit

Systems
ir
uit in Gecode,
ir
uit in JaCoP,
ir
uit in SICStus.

See also common keyword: alldifferent (permutation), circuit cluster (graph constraint,

Systems
References to the constraint in some concrete constraint programming systems.

http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntGraph.html
http://www.gecode.org/
http://jacopapi.osolpro.com/JaCoP/constraints/Circuit.html
http://www.jacop.eu/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/

See also
Related constraints grouped by semantics links.

20030820 803

one succ), path (graph partitioning constraint, one succ),

proper circuit (permutation, one succ), tour (graph partitioning constraint,

Hamiltonian).

generalisation: cycle (introduce a variable for the number of circuits).

implies: alldifferent, proper circuit, twin.

implies (items to collection): lex alldifferent.

related: strongly connected.

Keywords combinatorial object: permutation.

constraint type: graph constraint, graph partitioning constraint.

filtering: linear programming, planarity test, strong bridge, DFS-bottleneck.

final graph structure: circuit, one succ.

problems: Hamiltonian.

Cond. implications • circuit(NODES)
implies cycle(NCYCLE, NODES)

when NCYCLE = 1.

• circuit(NODES)
with |NODES| > 1

implies derangement(NODES).

• circuit(NODES)
with |NODES| > 1

implies k alldifferent(VARS : NODES).

• circuit(NODES)
implies permutation(VARIABLES : NODES).

Keywords
Related keywords grouped by meta-keywords.

Cond. implications
Conditional implications.

804 MAX ID,MIN NSCC,CLIQUE

Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) nodes1.succ = nodes2.index

Graph property(ies) • MIN NSCC= |NODES|
• MAX ID≤ 1

Graph class ONE SUCC

Graph model The first graph property enforces to have a single strongly connected component containing

|NODES| vertices. The second graph property imposes to only have circuits. Since each

vertex of the final graph has only one successor we do not need to use set variables for

representing the successors of a vertex.

Parts (A) and (B) of Figure 5.164 respectively show the initial and final graph associated

with the Example slot. The circuit constraint holds since the final graph consists of one

circuit mentioning once every vertex of the initial graph.

NODES

1

2

3

4

MIN_NSCC=4,MAX_ID=1

MIN_NSCC

1:1,2

2:2,3

3:3,4

4:4,1

(A) (B)

Figure 5.164: Initial and final graph of the circuit constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20030820 805

