
852 NSINK,NSOURCE,PRODUCT

5.77 common modulo

DESCRIPTION LINKS GRAPH

Origin Derived from common.

Constraint common modulo(NCOMMON1, NCOMMON2, VARIABLES1, VARIABLES2, M)

Arguments NCOMMON1 : dvar

NCOMMON2 : dvar

VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)
M : int

Restrictions NCOMMON1 ≥ 0
NCOMMON1 ≤ |VARIABLES1|
NCOMMON2 ≥ 0
NCOMMON2 ≤ |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
M > 0

Purpose

NCOMMON1 is the number of variables of the collection of variables VARIABLES1 taking

a value situated in an equivalence class (congruence modulo a fixed number M) derived

from the values assigned to the variables of VARIABLES2 and from M.

NCOMMON2 is the number of variables of the collection of variables VARIABLES2 taking

a value situated in an equivalence class (congruence modulo a fixed number M) derived

from the values assigned to the variables of VARIABLES1 and from M.

Example (3, 4, 〈0, 4, 0, 8〉 , 〈7, 5, 4, 9, 2, 4〉 , 5)

In the example, the last argument M = 5 defines the equivalence classes a ≡ 0
(mod 5), a ≡ 1 (mod 5), a ≡ 2 (mod 5), a ≡ 3 (mod 5), and a ≡ 4 (mod 5)
where a is an integer. As a consequence the items of collection 〈0, 4, 0, 8〉 respectively

correspond to the equivalence classes a ≡ 0 (mod 5), a ≡ 4 (mod 5), a ≡ 0 (mod 5),
and a ≡ 3 (mod 5). Similarly the items of collection 〈7, 5, 4, 9, 2, 4〉 respectively

correspond to the equivalence classes a ≡ 2 (mod 5), a ≡ 0 (mod 5), a ≡ 4 (mod 5),
a ≡ 4 (mod 5), a ≡ 2 (mod 5), and a ≡ 4 (mod 5). The common modulo constraint

holds since:

• Its first argument NCOMMON1 = 3 is the number of equivalence classes associated

with the items of collection 〈0, 4, 0, 8〉 that also correspond to equivalence classes

associated with 〈7, 5, 4, 9, 2, 4〉.

• Its second argument NCOMMON2 = 4 is the number of equivalence classes associ-

ated with the items of collection 〈7, 5, 4, 9, 2, 4〉 that also correspond to equivalence

classes associated with 〈0, 4, 0, 8〉.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20030820 853

Typical |VARIABLES1| > 1
range(VARIABLES1.var) > 1
|VARIABLES2| > 1
range(VARIABLES2.var) > 1
M > 1
M <maxval(VARIABLES1.var)
M <maxval(VARIABLES2.var)

Symmetries • Arguments are permutable w.r.t. permutation (NCOMMON1, NCOMMON2)
(VARIABLES1, VARIABLES2) (M).

• Items of VARIABLES1 are permutable.

• Items of VARIABLES2 are permutable.

• An occurrence of a value u of VARIABLES1.var can be replaced by any other

value v such that v is congruent to u modulo M.

• An occurrence of a value u of VARIABLES2.var can be replaced by any other

value v such that v is congruent to u modulo M.

Arg. properties
• Functional dependency: NCOMMON1 determined by VARIABLES1, VARIABLES2

and M.

• Functional dependency: NCOMMON2 determined by VARIABLES1, VARIABLES2

and M.

See also specialisation: common (variablemod constant replaced by variable).

Keywords characteristic of a constraint: modulo.

constraint arguments: constraint between two collections of variables,

pure functional dependency.

final graph structure: acyclic, bipartite, no loop.

modelling: functional dependency.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

854 NSINK,NSOURCE,PRODUCT

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.varmod M = variables2.varmod M

Graph property(ies) • NSOURCE= NCOMMON1

• NSINK= NCOMMON2

Graph class • ACYCLIC

• BIPARTITE

• NO LOOP

Graph model Parts (A) and (B) of Figure 5.183 respectively show the initial and final graph associated

with the Example slot. Since we use the NSOURCE and NSINK graph properties, the

source and sink vertices of the final graph are stressed with a double circle. Since the graph

has only 3 sources and 4 sinks the variables NCOMMON1 and NCOMMON2 are respectively

equal to 3 and 4. Note that the vertices corresponding to the variables that take values 8, 7
or 2 were removed from the final graph since there is no arc for which the associated arc

constraint holds.

VARIABLES1

VARIABLES2

1

1234 56

234

NSOURCE=3,NSINK=4

1:0

2:5

2:4

3:4 4:9 6:4

3:0

(A) (B)

Figure 5.183: Initial and final graph of the common modulo constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20030820 855

