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5.96 cumulative

DESCRIPTION LINKS GRAPH AUTOMATON

Origin [1]

Constraint cumulative(TASKS, LIMIT)

Synonym cumulative max.

Arguments TASKS : collection









origin−dvar,

duration−dvar,

end−dvar,

height−dvar









LIMIT : int

Restrictions require at least(2, TASKS, [origin, duration, end])
required(TASKS, height)
TASKS.duration ≥ 0
TASKS.origin ≤ TASKS.end

TASKS.height ≥ 0
LIMIT ≥ 0

Purpose

Cumulative scheduling constraint or scheduling under resource constraints. Consider a

set T of tasks described by the TASKS collection. The cumulative constraint enforces

that at each point in time, the cumulated height of the set of tasks that overlap that point,

does not exceed a given limit. A task overlaps a point i if and only if (1) its origin is less

than or equal to i, and (2) its end is strictly greater than i. It also imposes for each task

of T the constraint origin+ duration = end.

Example













〈

origin− 1 duration − 3 end− 4 height − 1,
origin− 2 duration − 9 end− 11 height − 2,
origin− 3 duration − 10 end− 13 height − 1,
origin− 6 duration − 6 end− 12 height − 1,
origin− 7 duration − 2 end− 9 height − 3

〉

, 8













Figure 5.213 shows the cumulated profile associated with the example. To each task of

the cumulative constraint, i.e. each line of the example, corresponds a set of rectangles

coloured with the same colour: the sum of the lengths of the rectangles corresponds to the

duration of the task, while the height of the rectangles (i.e., all the rectangles associated

with a task have the same height) corresponds to the resource consumption of the task.

The cumulative constraint holds since at each point in time we do not have a cumulated

resource consumption strictly greater than the upper limit 8 enforced by the last argument

of the cumulative constraint.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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¯ o− 6 d− 6 e− 12 h− 1
° o− 7 d− 2 e− 9 h− 3

TASKS

(

o for origin, d for duration,

e for end, h for height

)

Figure 5.213: Resource consumption profile corresponding to the five tasks of the Ex-

ample slot (note that the vertical position of a task does not really matter but is only

used for displaying the contribution of a task to the resource consumption profile)

All solutions Figure 5.214 gives all solutions to the following non ground instance of the cumulative

constraint:

O1 ∈ [1, 5], D1 ∈ [4, 4], E1 ∈ [1, 9], H1 ∈ [2, 6],
O2 ∈ [2, 7], D2 ∈ [6, 6], E2 ∈ [1, 9], H2 ∈ [3, 3],
O3 ∈ [3, 6], D3 ∈ [3, 6], E3 ∈ [1, 9], H3 ∈ [1, 2],
O4 ∈ [1, 8], D4 ∈ [2, 3], E4 ∈ [1, 9], H4 ∈ [3, 4],
cumulative(〈O1 D1 E1 H1 1, O2 D2 E2 H2 2, O3 D3 E3 H3 3, O4 D4 E4 H4 4〉, 5).

Typical |TASKS| > 1
range(TASKS.origin) > 1
range(TASKS.duration) > 1
range(TASKS.end) > 1
range(TASKS.height) > 1
TASKS.duration > 0
TASKS.height > 0
LIMIT <sum(TASKS.height)


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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¬ (〈1 4 5 2, 3 6 9 3, 5 3 8 1, 1 2 3 3〉)
 (〈1 4 5 2, 3 6 9 3, 5 3 8 2, 1 2 3 3〉)
® (〈1 4 5 2, 3 6 9 3, 5 4 9 1, 1 2 3 3〉)
¯ (〈1 4 5 2, 3 6 9 3, 5 4 9 2, 1 2 3 3〉)
° (〈1 4 5 2, 3 6 9 3, 6 3 9 1, 1 2 3 3〉)
± (〈1 4 5 2, 3 6 9 3, 6 3 9 2, 1 2 3 3〉)
² (〈2 4 6 2, 3 6 9 3, 6 3 9 1, 1 2 3 3〉)
³ (〈2 4 6 2, 3 6 9 3, 6 3 9 2, 1 2 3 3〉)
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Figure 5.214: All solutions corresponding to the non ground example of the

cumulative constraint of the All solutions slot

Symmetries • Items of TASKS are permutable.

• TASKS.duration can be decreased to any value ≥ 0.

• TASKS.height can be decreased to any value ≥ 0.

• One and the same constant can be added to the origin and end attributes of all

items of TASKS.

• LIMIT can be increased.

Arg. properties
Contractible wrt. TASKS.

Usage The cumulative constraint occurs in most resource scheduling problems where one has

to deal with renewable and/or non-renewable resources:


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.
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• Renewable resources typically correspond to machines or persons, and tasks require

such resources during all their execution (i.e. a resource starts to be used at the

beginning of the task and is released at the end of the task). This means that, once a

task has finished its work, the resource it was using is available for other tasks. Tasks

are defined by their origin, duration, end and resource consumption and can not be

interrupted. When the duration and resource consumption are not fixed tasks can be

defined by their load, i.e. the product of their duration and resource consumption. To

express the dependency between a non-fixed duration/resource consumption of a task

with another decision variable (e.g., to state that the duration of a task depends on its

start) one can use the element constraint where the decision variable corresponds to

the index argument of the element constraint.

• Non renewable resources typically correspond to stock or money, i.e., resources that

do not come back when a task finishes to use them. In this context the cumulative

constraint is used for modelling producer-consumer problems, i.e. problems where

a first set of tasks produces a non-renewable resource, while a second set of tasks

consumes this resource so that a limit on the minimum or the maximum stock at

each instant is imposed.

The cumulative constraint is also used as a necessary condition for non-overlapping rect-

angles (see the diffn constraint).

Remark In the original cumulative constraint of CHIP the LIMIT parameter was a domain vari-

able corresponding to the maximum peak of the resource consumption profile. Given a fixed

time frame, this variable could be used as a cost in order to directly minimise the maximum

resource consumption peak. Fixing this variable is potentially dangerous since it imposes

the maximum peak to be equal to a given target value.

Some systems like Ilog CP Optimizer also assume that a zero-duration task overlaps a point

i if and only if (1) its origin is less than or equal to i, and (2) its end is greater than or equal

to i. Under this definition, the height of a zero-duration task is also taken into account in

the resource consumption profile.

Note that the concept of cumulative is different from the concept of rectangles

non-overlapping even though, most of the time, each task of a ground solution to a

cumulative constraint is simply drawn as a single rectangle. As illustrated by Fig-

ure 5.266, this is in fact not always possible (i.e., some rectangles may need to be bro-

ken apart). In fact the cumulative constraint is only a necessary condition for rectangles

non-overlapping (see Figure 5.265 and the corresponding explanation in the Algorithm

slot of the diffn constraint).

In MiniZinc (http://www.minizin.org/) the tasks of a cumulative constraint have

no end attribute.

Algorithm The first filtering algorithms were related to the notion of compulsory part of a task [250].

They compute a cumulated resource profile of all the compulsory parts of the tasks and

prune the origins of the tasks with respect to this profile in order to not exceed the resource

capacity. These methods are sometimes called time tabling. Even though these methods are

quite local, i.e., a task has a non-empty compulsory part only when the difference between

its latest start and its earliest start is strictly less than its duration, it scales well and is there-

fore widely used. Later on, more global algorithms5 based on the resource consumption of

5Even though these more global algorithms usually can prune more early in the search tree, these algo-

rithms do not catch all deductions derived from the cumulated resource profile of compulsory parts.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

http://www.cosytec.com
http://www.minizinc.org/

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.
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the tasks on specific intervals were introduced [154, 103, 265]. A popular variant, called

edge finding, considers only specific intervals [283]. An efficient implementation of edge

finding in O(kn log n), where k is the number of distinct task heights and n is the number

of tasks, based on a specific data structure, so called a cumulative Φ-tree [435], is provided

in [434]. When the number of distinct task heights k is not small, a usually almost faster

implementation in O(n2) is described in [230]. A O(n2 log n) filtering algorithm based

on tasks that can not be the earliest (or not be the latest) is described in [375].

Within the context of linear programming, the reference [216] provides a relaxation of the

cumulative constraint.

A necessary condition for the cumulative constraint is obtained by stating a

disjunctive constraint on a subset of tasks T such that, for each pair of tasks of T ,

the sum of the two corresponding minimum heights is strictly greater than LIMIT. This can

be done by applying the following procedure:

• Let h be the smallest minimum height strictly greater than ⌊ LIMIT

2
⌋ of the tasks of the

cumulative constraint. If no such task exists then the procedure is stopped without

stating any disjunctive constraint.

• Let Th denote the set of tasks of the cumulative constraint for which the minimum

height is greater than or equal to h. By construction, the tasks of Th cannot overlap.

But we can possibly add one more task as shown by the next step.

• When it exists, we can add one task that does not belong to Th and such that its

minimum height is strictly greater than LIMIT− h. Again, by construction, this task

cannot overlap all the tasks of Th.

When the tasks are involved in several cumulative constraints more sophisticated meth-

ods are available for extracting disjunctive constraints [17, 16].

In the context where, both the duration and height of all the tasks are fixed, [37] provides

two kinds of additional filtering algorithms that are especially useful when the slack σ (i.e.,

the difference between the available space and the sum of the surfaces of the tasks) is very

small:

• The first one introduces bounds for the so called cumulative longest hole problem.

Given an integer ǫ that does not exceed the resource limit, and a subset of tasks

T ′ for which the resource consumption is a most ǫ, the cumulative longest hole

problem is to find the largest integer lmax
ǫ

σ(T
′) such that there is a cumulative

placement of maximum height ǫ involving a subset of tasks of T ′ where, on one

interval [i, i+ lmax
ǫ

σ(T
′)−1] of the cumulative profile, the area of the empty space

does not exceed σ.

• The second one used dynamic programming for filtering so called balancing knap-

sack constraints. When the slack is 0, such constraints express that the total height

of tasks ending at instant i must equal the total height of tasks starting at instant i.

Such constraints can be generalised to non-zero slack.

Systems umulativeMax in Choco, umulative in Gecode, umulative in JaCoP,umulative in MiniZinc, umulative in SICStus.

See also assignment dimension added: coloured cumulatives (sum of task heights replaced

by number of distinct colours, assignment dimension added), cumulatives (negative

heights allowed and assignment dimension added).


Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntScheduling.html
http://www.gecode.org/
http://jacopapi.osolpro.com/JaCoP/constraints/Cumulative.html
http://www.jacop.eu/
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#cumulative
http://www.g12.cs.mu.oz.au/minizinc/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/

See also
Related constraints grouped by semantics links.



20000128 929

common keyword: calendar (scheduling constraint),

coloured cumulative (resource constraint, sum of task heights replaced

by number of distinct values), coloured cumulatives (resource constraint),

cumulative convex (resource constraint, task defined by a set of points),

cumulative product (resource constraint, sum of task heights replaced by product

of task heights), cumulative with level of priority (resource constraint, a

cumulative constraint for each set of tasks having a priority less than or equal to a

given threshold).

generalisation: cumulative two d (task replaced by rectangle with a height).

implied by: diffn (cumulative is a neccessary condition for each dimension of the

diffn constraint).

related: lex chain less, lex chain lesseq (lexicographic ordering on the origins of

tasks, rectangles, . . .), ordered global cardinality (controlling the shape of the

cumulative profile for breaking symmetry).

soft variant: soft cumulative.

specialisation: atmost (task replaced by variable), bin packing (all tasks have a

duration of 1 and a fixed height), disjunctive (all tasks have a height of 1),

multi inter distance (all tasks have the same duration equal to DIST and the same

height equal to 1).

used in graph description: sum ctr.

Keywords characteristic of a constraint: core, automaton, automaton with array of counters.

complexity: sequencing with release times and deadlines.

constraint type: scheduling constraint, resource constraint, temporal constraint.

filtering: linear programming, dynamic programming, compulsory part,

cumulative longest hole problems, Phi-tree.

modelling: zero-duration task.

problems: producer-consumer.

puzzles: squared squares.

Cond. implications cumulative(TASKS, LIMIT)
with TASKS.height > 0

implies coloured cumulative(TASKS : TASKS, LIMIT : LIMIT).


Keywords
Related keywords grouped by meta-keywords.


Cond. implications
Conditional implications.
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Arc input(s) TASKS

Arc generator SELF 7→collection(tasks)

Arc arity 1

Arc constraint(s) tasks.origin+ tasks.duration = tasks.end

Graph property(ies) NARC= |TASKS|

Arc input(s) TASKS TASKS

Arc generator PRODUCT 7→collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s) • tasks1.duration > 0
• tasks2.origin ≤ tasks1.origin

• tasks1.origin < tasks2.end

Graph class • ACYCLIC

• BIPARTITE

• NO LOOP

Sets SUCC 7→




source,

variables − col

(

VARIABLES−collection(var−dvar),
[item(var− TASKS.height)]

)





Constraint(s) on sets sum ctr(variables,≤, LIMIT)

Graph model The first graph constraint forces for each task the link between its origin, its duration and

its end. The second graph constraint makes sure, for each time point t corresponding to

the start of a task, that the cumulated heights of the tasks that overlap t does not exceed the

limit of the resource.

Parts (A) and (B) of Figure 5.215 respectively show the initial and final graph associated

with the second graph constraint of the Example slot. On the one hand, each source vertex

of the final graph can be interpreted as a time point. On the other hand the successors of

a source vertex correspond to those tasks that overlap that time point. The cumulative

constraint holds since for each successor set S of the final graph the sum of the heights of

the tasks in S does not exceed the limit LIMIT = 8.

Signature Since TASKS is the maximum number of vertices of the final graph of the first graph con-

straint we can rewrite NARC = |TASKS| to NARC ≥ |TASKS|. This leads to simplify

NARC to NARC.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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TASKS
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12 345

2345

(B)

TASKS

TASKS

1:1,3,4,1

1:1,3,4,1

2:2,9,11,2

2:2,9,11,2

3:3,10,13,1

3:3,10,13,1

4:6,6,12,1

4:6,6,12,1

5:7,2,9,3

5:7,2,9,3

Figure 5.215: Initial and final graph of the cumulative constraint
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Automaton Figure 5.96 depicts the automaton associated with the cumulative constraint. To each

item of the collection TASKS corresponds a signature variable Si that is equal to 1.

arith sliding(C,≤, LIMIT)

s{C[ ]← 0}
1,
{

C[ORIi]← C[ORIi] + HEIGHTi,

C[ENDi]← C[ENDi]− HEIGHTi

}

Figure 5.216: Automaton of the cumulative constraint

Quiz

EXERCISE 1 (checking whether a ground instance holds or not)a

A. Does the constraint cumulative(〈1 2 3 3, 2 2 4 2, 4 1 5 1〉, 4)
hold?

B. Does the constraint cumulative(〈1 2 3 1, 4 1 5 2〉, 1) hold?

C. Does the constraint cumulative(〈1 2 3 0, 1 2 3 4, 4 1 6 1〉, 4)
hold?

aHint: go back to the definition of cumulative.

EXERCISE 2 (finding all solutions)a

Give all the solutions to the constraint:







O1 ∈ [1, 9], O2 ∈ [1, 9], O3 ∈ [1, 9], O4 ∈ [1, 9],
E1 ∈ [1, 8], E2 ∈ [1, 8], E3 ∈ [1, 8], E4 ∈ [1, 8],
cumulative(〈O1 1 E1 1, O2 2 E2 2, O3 3 E3 5, O4 4 E4 7〉, 7).

aHint: reason first on the two highest tasks and then on the other tasks.

SOLUTION TO EXERCISE 1

A. No, since the first and second tasks

overlap at time point 2 and use up to

3 + 2 resource units which exceeds the

resource capacity 4.

B. No, since the second task uses 2
resource units, while the resource

capacity is 1.

C. No, since for the third task the origin

plus the duration is different from the

end (4 + 1 6= 6).

1
2

3

1 2 3 4 5

1

2

3

4
(A)

1 2

1 2 3 4 5

1
(B)


Automaton
Explicit description in terms of automaton of the meaning of the constraint.


Quiz
A set of small exercises for checking that the meaning of the constraint is well understood.
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SOLUTION TO EXERCISE 2

(nested disjunctions)

1. Since we have a resource limit of 7 the third task

(of height 5) cannot overlap the fourth task (of

height 7). Since there is no slack on the time axis

(i.e., the difference between the latest end of the

third and fourth tasks and their earliest start is

equal to the sum of their durations,

8− 1 = 3 + 4), this leads to the two configurations

shown on the right.

2. Since there is no available space on top of the

fourth task, the first and second tasks have to be

put on top of the third task. Since on top of the

third task we only have a capacity of 2 the first

and second tasks cannot overlap. Since there is no

remaining slack on the time axis this leads to the

two configurations shown on the right.

3. Combining the two previous observations together

leads to the four solutions shown below.
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〈O1D1E1H1, O2D2E2H2, O3D3E3H3, O4D4E4H4〉

¬ (〈1 1 2 1, 2 2 4 2, 1 3 4 5, 4 4 8 7〉)
 (〈3 1 4 1, 1 2 3 2, 1 3 4 5, 4 4 8 7〉)
® (〈5 1 6 1, 6 2 8 2, 5 3 8 5, 1 4 5 7〉)
¯ (〈7 1 8 1, 5 2 7 2, 5 3 8 5, 1 4 5 7〉)
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