5.102 cutset

	DESCRIPTION	LINKS	GRAPH
Origin	[156]		
Constraint	<pre>cutset(SIZE_CUTSET, NODES)</pre>		
Arguments	SIZE_CUTSET : dvar NODES : collection(index-int, succ-si	.nt, bool-dvar)
Restrictions	$\begin{array}{l} \text{SIZE_CUTSET} \geq 0\\ \text{SIZE_CUTSET} \leq \texttt{NODES} \\ \textbf{required}(\texttt{NODES}, [\texttt{index}, \texttt{succ}, \texttt{NODES}.\texttt{index} \geq 1\\ \texttt{NODES}.\texttt{index} \leq \texttt{NODES} \\ \textbf{distinct}(\texttt{NODES}, \texttt{index})\\ \texttt{NODES}.\texttt{bool} \geq 0\\ \texttt{NODES}.\texttt{bool} \leq 1 \end{array}$	bool])	
Purpose	Consider a digraph G with n vertice the subset of kept vertices of cardin form a graph without circuit.	ces described by the NO ality $n - \texttt{SIZE_CUTSET}$	DES collection. Enforces that I and their corresponding arcs
Example	$\left(\begin{array}{c} \text{index} -1 & \text{succ} -1\\ 1, \left\langle\begin{array}{c} \text{index} -2 & \text{succ} -2\\ \text{index} -3 & \text{succ} -2\\ \text{index} -4 & \text{succ} -2\end{array}\right.\right)$	$ \begin{array}{ll} \{2,3,4\} & \texttt{bool}-1, \\ \{3\} & \texttt{bool}-1, \\ \{4\} & \texttt{bool}-1, \\ \{1\} & \texttt{bool}-0 \end{array} $	
	The cutset constraint holds since the bool attribute is set to 1 corresp (SIZE_CUTSET = 1) vertex has its b	the vertices of the pond to a graph withou ool attribute set to 0.	NODES collection for which at circuit and since exactly one
Typical	$\begin{array}{l} \texttt{SIZE_CUTSET} > 0 \\ \texttt{SIZE_CUTSET} \leq \texttt{NODES} \\ \texttt{NODES} > 1 \end{array}$		
Symmetry	Items of NODES are permutable.		
Usage	The article [156] introducing the cr areas such that deadlock breaking or	utset constraint ment	ions applications from various
Remark	The undirected version of minimum feedback vertex set proble	the cutset constant.	raint corresponds to the
Algorithm	The filtering algorithm presented in Levy and Low [260] as well as from	[156] uses graph redu Lloyd, Soffa and Wang	ction techniques inspired from g [264].

962

20030820

Keywords

application area: deadlock breaking, program verification.
constraint type: graph constraint.
final graph structure: circuit, directed acyclic graph, acyclic, no loop.
problems: minimum feedback vertex set.

Arc input(s)	NODES
Arc generator	$CLIQUE \mapsto collection(nodes1, nodes2)$
Arc arity	2
Arc constraint(s)	 in_set(nodes2.index,nodes1.succ) nodes1.bool = 1 nodes2.bool = 1
Graph property(ies)	• MAX_NSCC \le 1 • NVERTEX = NODES - SIZE_CUTSET
Graph class	• ACYCLIC • NO_LOOP

Graph model

We use a set of integers for representing the successors of each vertex. Because of the arc constraint, all arcs such that the bool attribute of one extremity is equal to 0 are eliminated; Therefore all vertices for which the bool attribute is equal to 0 are also eliminated (since they will correspond to isolated vertices). The graph property MAX_NSCC ≤ 1 enforces the size of the largest strongly connected component to not exceed 1; Therefore, the final graph cannot contain any circuit.

Part (A) of Figure 5.227 shows the initial graph from which we have chosen to start. It is derived from the set associated with each vertex. Each set describes the potential values of the succ attribute of a given vertex. Part (B) of Figure 5.227 gives the final graph associated with the **Example** slot. Since we use the **NVERTEX** graph property, the vertices of the final graph are stressed in bold. The cutset constraint holds since the final graph does not contain any circuit and since the number of removed vertices SIZE_CUTSET is equal to 1.

Figure 5.227: Initial and final graph of the cutset set constraint

964