
966 NCC,NTREE,CLIQUE

5.103 cycle

DESCRIPTION LINKS GRAPH

Origin [41]

Constraint cycle(NCYCLE, NODES)

Arguments NCYCLE : dvar

NODES : collection(index−int, succ−dvar)

Restrictions NCYCLE ≥ 1
NCYCLE ≤ |NODES|
required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose

Consider a digraph G described by the NODES collection. NCYCLE is equal to the number

of circuits for covering G in such a way that each vertex of G belongs to a single circuit.

NCYCLE can also be interpreted as the number of cycles of the permutation associated

with the successor variables of the NODES collection.

Example













2,

〈

index− 1 succ− 2,
index− 2 succ− 1,
index− 3 succ− 5,
index− 4 succ− 3,
index− 5 succ− 4

〉

























1,

〈

index− 1 succ− 2,
index− 2 succ− 5,
index− 3 succ− 1,
index− 4 succ− 3,
index− 5 succ− 4

〉

























5,

〈

index− 1 succ− 1,
index− 2 succ− 2,
index− 3 succ− 3,
index− 4 succ− 4,
index− 5 succ− 5

〉













• In the first example we have the fol-

lowing 2 (NCYCLE = 2) cycles: 1 7→
2 7→ 1 and 3 7→ 5 7→ 4 7→ 3. Con-

sequently, the corresponding cycle

constraint holds.

1 2 3 5

4

cycle(2, 〈1 2, 2 1, 3 5, 4 3, 5 4〉)

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20000128 967

• In the second example we have 1
(NCYCLE = 1) cycle: 1 7→ 2 7→ 5 7→
4 7→ 3 7→ 1.

• In the third example we have the fol-

lowing 5 (NCYCLE = 5) cycles: 1 7→
1, 2 7→ 2, 3 7→ 3, 4 7→ 4 and 5 7→ 5.

1 2 5 4 3

cycle(1, 〈1 2, 2 5, 3 1, 4 3, 5 4〉)

1 2 3 4 5

cycle(5, 〈1 1, 2 2, 3 3, 4 4, 5 5〉)

All solutions Figure 5.228 gives all solutions to the following non ground instance of the cycle con-

straint: N ∈ [1, 2], V1 ∈ [2, 4], V2 ∈ [2, 3], V3 ∈ [1, 6], V4 ∈ [2, 5], V5 ∈ [2, 3],
V6 ∈ [1, 6], cycle(N, 〈1 V1, 2 V2, 3 V3, 4 V4, 5 V5, 6 V6〉).

¬ (1, 〈1 4, 2 3, 3 6, 4 5, 5 2, 6 1〉)
­ (2, 〈1 4, 2 2, 3 6, 4 5, 5 3, 6 1〉)
® (2, 〈1 4, 2 3, 3 1, 4 5, 5 2, 6 6〉)

1

4

¬

4

5

5

2

2

3

3

6

6

1

1

4

­

4

5

5

3

3

6

6

1

2

2

1

4

®

4

5

5

2

2

3

3

1

6

6

Figure 5.228: All solutions corresponding to the non ground example of the cycle

constraint of the All solutions slot

Typical NCYCLE < |NODES|
|NODES| > 2

Symmetries • Items of NODES are permutable.

• Attributes of NODES are permutable w.r.t. permutation (index, succ) (permuta-

tion applied to all items).

Arg. properties
Functional dependency: NCYCLE determined by NODES.

Usage The PhD thesis of Éric Bourreau [84] mentions the following applications of extensions of

the cycle constraint:

All solutions
Example of all solutions for a non ground instance of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

968 NCC,NTREE,CLIQUE

• The balanced Euler knight problem where one tries to cover a rectangular chessboard

of size N ·M by C knights that all have to visit between 2 · ⌊⌊(N ·M)/C⌋/2⌋ and

2 · ⌈⌈(N · M)/C⌉/2⌉ distinct locations. For some values of N , M and C there

does not exist any solution to the previous problem. This is for instance the case

when N = M = C = 6. Figure 5.229 depicts the graph associated with the 6× 6
chessboard as well as examples of balanced solutions with respectively 1, 2, 3, 4 and

5 knights.

• Some pick-up delivery problems where a fleet of vehicles has to transport a set of

orders. Each order is characterised by its initial location, its final destination and its

weight. In addition one also has to take into account the capacity of the different

vehicles.

Remark In the original cycle constraint of CHIP the index attribute was not explicitly present. It

was implicitly defined as the position of a variable in a list.

In an early version of the CHIP there was a constraint named circuit that, from a declar-

ative point of view, was equivalent to cycle(1, NODES). In ALICE [256] the circuit

constraint was also present.

Given a complete digraph of n vertices as well as an unrestricted number of circuits

NCYCLE, the total number of solutions to the corresponding cycle constraint corresponds

to the sequence A000142 of the On-Line Encyclopaedia of Integer Sequences [392]. Given

a complete digraph of n vertices as well as a fixed number of circuits NCYCLE between 1
and n, the total number of solutions to the corresponding cycle constraint corresponds to

the so called Stirling number of first kind.

Algorithm Since all succ variables have to take distinct values one can reuse the algorithms associated

with the alldifferent constraint. A second necessary condition is to have no more than

NCYCLE strongly connected components. Pruning for enforcing this condition, as soon as

we have NCYCLE strongly connected components, can be done by forcing all strong bridges

to belong to the final solution, since otherwise we would have more than NCYCLE strongly

connected components. Since all the vertices of a circuit belong to the same strongly

connected component an arc going from one strongly connected component to another

strongly connected component has to be removed.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

http://www.cosytec.com
http://www.cosytec.com
http://oeis.org/A000142

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

20000128 969

Reformulation Let n and s1, s2, . . . , sn respectively de-

notes the number of vertices (i.e., |NODES|)
and the successor variables associated with

vertices 1, 2, . . . , n. The cycle constraint

can be reformulated as a conjunction of

one alldifferent constraint, n · (n −
1) element constraints, n minimum con-

straints, and one nvalue constraint.

• First, we state an

alldifferent(〈s1, s2, . . . , sn〉) con-

straint for enforcing distinct values to

be assigned to the successor variables.

• Second, the key idea is to extract for

each vertex i (with i ∈ [1, n]) all the

vertices that belong to the same cycle.

This is done by stating a conjunction

of n − 1 element constraints of the

form:

element(i, 〈s1, s2, . . . , sn〉, si,1),

element(si,1, 〈s1, s2, . . . , sn〉, si,2),

. .

element(si,n−2, 〈s1, s2, . . . , sn〉, si,n−1).

Then, using a minimum(mi,

〈i, si,1, si,2, . . . , si,n−1〉) constraint,

we get a unique representative for the

cycle containing vertex i.

• Third, using a nvalue(NCYCLE,

〈m1,m2, . . . ,mn〉) constraint, we get

the number of distinct cycles.

1 4

3

2

Illustration of the reformulation of

cycle(2, 〈1 4, 2 2, 3 1, 4 3〉)

alldifferent(〈4, 2, 1, 3〉)
∥

∥

∥

∥

∥

∥

element(1, 〈4, 2, 1, 3〉, 4)
element(4, 〈4, 2, 1, 3〉, 3)
element(3, 〈4, 2, 1, 3〉, 1)

min= 1(representative of

the cycle containing

vertex 1)

∥

∥

∥

∥

∥

∥

element(2, 〈4, 2, 1, 3〉, 2)
element(2, 〈4, 2, 1, 3〉, 2)
element(2, 〈4, 2, 1, 3〉, 2)

min= 2(representative of

the cycle containing

vertex 2)

∥

∥

∥

∥

∥

∥

element(3, 〈4, 2, 1, 3〉, 1)
element(1, 〈4, 2, 1, 3〉, 4)
element(4, 〈4, 2, 1, 3〉, 3)

min= 1(representative of

the cycle containing

vertex 3)

∥

∥

∥

∥

∥

∥

element(4, 〈4, 2, 1, 3〉, 3)
element(3, 〈4, 2, 1, 3〉, 1)
element(1, 〈4, 2, 1, 3〉, 4)

min= 1(representative of

the cycle containing

vertex 4)

n
v
a
l
u
e
=
2

Counting

Length (n) 2 3 4 5 6 7 8 9 10

Solutions 2 6 24 120 720 5040 40320 362880 3628800

Number of solutions for cycle: domains 0..n

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

Counting
Information on the solution density.

970 NCC,NTREE,CLIQUE

2 4 6 8 10

10−4

10−3

10−2

10−1

Length

O
b
se

rv
ed

d
en

si
ty

Solution density for cycle

2 4 6 8 10

0

5 · 10−2

0.1

0.15

0.2

Length

O
b
se

rv
ed

d
en

si
ty

Solution density for cycle

20000128 971

Length (n) 2 3 4 5 6 7 8 9 10

Total 2 6 24 120 720 5040 40320 362880 3628800

Parameter

value

1 1 2 6 24 120 720 5040 40320 362880

2 1 3 11 50 274 1764 13068 109584 1026576

3 - 1 6 35 225 1624 13132 118124 1172700

4 - - 1 10 85 735 6769 67284 723680

5 - - - 1 15 175 1960 22449 269325

6 - - - - 1 21 322 4536 63273

7 - - - - - 1 28 546 9450

8 - - - - - - 1 36 870

9 - - - - - - - 1 45

10 - - - - - - - - 1

Solution count for cycle: domains 0..n

0.2 0.4 0.6 0.8 1
10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

Parameter value as fraction of length

O
b
se

rv
ed

d
en

si
ty

Solution density for cycle

size 6

size 7

size 8

size 9

size 10

972 NCC,NTREE,CLIQUE

0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

2.5
·10−3

Parameter value as fraction of length

O
b
se

rv
ed

d
en

si
ty

Solution density for cycle

size 6

size 7

size 8

size 9

size 10

See also common keyword: alldifferent (permutation),

circuit cluster (graph constraint, one succ),

cycle card on path (permutation,graph partitioning constraint),

cycle or accessibility (graph constraint),

cycle resource (graph partitioning constraint),

derangement (permutation),

graph crossing (graph constraint,graph partitioning constraint),

inverse (permutation),

map (graph partitioning constraint),

symmetric alldifferent (permutation),

tour (graph constraint),

tree (graph partitioning constraint).

implies: alldifferent.

implies (items to collection): atleast nvector.

related: balance cycle (counting number of cycles versus controlling how balanced the

cycles are).

specialisation: circuit (NCYCLE set to 1).

used in reformulation: alldifferent, element, minimum, nvalue.

Keywords characteristic of a constraint: core.

combinatorial object: permutation.

constraint arguments: business rules.

constraint type: graph constraint, graph partitioning constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20000128 973

filtering: strong bridge, DFS-bottleneck.

final graph structure: circuit, connected component, strongly connected component,

one succ.

modelling: cycle, functional dependency.

problems: pick-up delivery.

puzzles: Euler knight.

Cond. implications • cycle(NCYCLE, NODES)
with NCYCLE = 1

implies balance cycle(BALANCE, NODES)
when BALANCE = 0.

• cycle(NCYCLE, NODES)
implies permutation(VARIABLES : NODES).

Cond. implications
Conditional implications.

974 NCC,NTREE,CLIQUE

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

Graph of potential moves

of a 6× 6 chessboard

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

1 knight

(36 moves)

2 knights

(18 and 18 moves)

3 knights

(12, 12 and 12 moves)

4 knights

(8, 8, 10 and 10 moves)

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

5 knights

(6, 6, 8, 8 and 8 moves)

i− 1 s− 9, i− 19 s− 8,

i− 2 s− 10, i− 20 s− 16,

i− 3 s− 11, i− 21 s− 13,

i− 4 s− 12, i− 22 s− 30,

i− 5 s− 18, i− 23 s− 36,

i− 6 s− 17, i− 24 s− 35,

i− 7 s− 3, i− 25 s− 14,

i− 8 s− 4, i− 26 s− 15,

i− 9 s− 5, i− 27 s− 31,

i− 10 s− 6, i− 28 s− 32,

i− 11 s− 22, i− 29 s− 33,

i− 12 s− 23, i− 30 s− 34,

i− 13 s− 2, i− 31 s− 20,

i− 14 s− 1, i− 32 s− 19,

i− 15 s− 7, i− 33 s− 25,

i− 16 s− 24, i− 34 s− 26,

i− 17 s− 21, i− 35 s− 27,

i− 18 s− 29, i− 36 s− 28

NODES (i for index, s for succ)

Figure 5.229: Graph of potential moves of a 6× 6 chessboard, corresponding balanced

knight’s tours with 1 up to 5 knights, and collection of nodes passed to the cycle

constraint corresponding to the solution with 5 knights; note that their is no balanced

knight’s tour on a 6× 6 chessboard where each knight exactly performs 6 moves.

20000128 975

Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) nodes1.succ = nodes2.index

Graph property(ies) • NTREE= 0
• NCC= NCYCLE

Graph class ONE SUCC

Graph model From the restrictions and from the arc constraint, we deduce that we have a bijection from

the successor variables to the values of interval [1, |NODES|]. With no explicit restrictions it

would have been impossible to derive this property.

In order to express the binary constraint that links two vertices one has to make explicit the

identifier of the vertices. This is why the cycle constraint considers objects that have two

attributes:

• One fixed attribute index that is the identifier of the vertex,

• One variable attribute succ that is the successor of the vertex.

The graph property NTREE = 0 is used in order to avoid having vertices that both do

not belong to a circuit and have at least one successor located on a circuit. This concretely

means that all vertices of the final graph should belong to a circuit.

Parts (A) and (B) of Figure 5.230 respectively show the initial and final graph associated

with the first example of the Example slot. Since we use the NCC graph property, we

show the two connected components of the final graph. The constraint holds since all the

vertices belong to a circuit (i.e., NTREE = 0) and since NCYCLE = NCC = 2.

NODES

1

2

3

4

5

NTREE=0,NCC=2

CC#1 CC#2

1:1,2

2:2,1

3:3,5

5:5,4

4:4,3

(A) (B)

Figure 5.230: Initial and final graph of the cycle constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

976 NCC,NTREE,CLIQUE

Quiz

EXERCISE 1 (checking whether a ground instance holds or not)a

A. Does the constraint cycle(1, 〈1 2, 2 1, 3 2〉) hold?

B. Does the constraint cycle(2, 〈1 3, 2 2, 3 1〉) hold?

C. Does the constraint cycle(3, 〈1 1, 2 2, 3 3〉) hold?

D. Does the constraint cycle(2, 〈1 5, 2 4, 3 3, 4 2, 5 1〉) hold?

aHint: go back to the definition of cycle.

EXERCISE 2 (finding all solutions)a

Give all the solutions to the constraint:















N ∈ {2, 4},
V1 ∈ {1, 3, 4, 5}, V2 ∈ {3, 4}, V3 ∈ {2, 3, 5, 6},
V4 ∈ {1, 4, 6}, V5 ∈ {2, 6}, V6 ∈ {3, 4, 6},
cycle(N, 〈1 V1, 2 V2, 3 V3, 4 V4, 5 V5, 6 V6〉).

aHint: follow the order induced by the functional dependency between the

arguments of cycle, start with variables that have the smallest domain.

EXERCISE 3 (identifying infeasible values)a

A. Describe the following digraph G
in terms of successor variables and

their corresponding domains. Give

the implicit assumption behind this

description.

B. Model with a single cycle constraint the problem of finding a

Hamiltonian cycleb in the graph G.

C. Identify variable-value pairs that do not belong to any solution to

the cycle constraint stated in the previous question.

aHint: make a link between the successor variables and the arcs of the graph,

identify the basic constraint on the successor variables, make a what-if reasoning

wrt. the arcs and the strongly connected components.
bGiven a digraph G with p vertices, a Hamiltonian cycle of G is a succession

of arcs v1 7→ v2, v2 7→ v3, · · · , vp−1 7→ vp, vp 7→ v1 of G such that the

vertices v1, v2, · · · , vp are all distinct.

6

5

1

2

3

4

G

Quiz
A set of small exercises for checking that the meaning of the constraint is well understood.

20000128 977

EXERCISE 4 (variable-based degree of violation)a

A. Compute the variable-based degree of violationb of the following

constraints:

(a) cycle(4, 〈1 2, 2 3, 3 1, 4 4〉),

(b) cycle(1, 〈1 3, 2 4, 3 3, 4 4〉),

(c) cycle(6, 〈1 2, 2 2, 3 4, 4 4, 5 6, 6 5〉).

B. Give a formula for evaluating the variable-based degree of

violation of any ground instance of the cycle constraint.

aHint: focus first on the basic constraint on the successor variables, then on

the first argument of cycle.
bGiven a constraint for which all variables are fixed, the variable-based de-

gree of violation is the minimum number of variables to assign differently in

order to satisfy the constraint.

EXERCISE 5 (De Bruijn sequence)a

Given an alphabet A = {0, 1, . . . , n − 1} and an integer m > 0 the

corresponding De Bruijn digraph Gn
m = (V,E) of order m is defined as

follows:

• The set of vertices V consist of every potential word of length m
over the alphabet A.

• The set E contains all arcs w1 7→ w2 where w1 and w2 are words

of length m over the alphabet A such that the last m− 1 letters of

w1 coincide with the first m− 1 first letters of w2.

Given an alphabet A = {0, 1, . . . , n − 1} and an integer m > 0 a

De Bruijn sequence snm of order m is a word over the alphabet A such

that every word of length m over the alphabet A occursb exactly once in

s.

A. Given an alphabet A = {0, 1, . . . , n− 1} define a De Bruijn

sequence of order m wrt the De Bruijn digraph of order m
defined on the same alphabet A. Illustrate this link on the

De Bruijn sequence 0 1 0 1 1 1 0 0 when n = 2, m = 3 and

A = {0, 1}.

B. Based on the previous correspondence give a compact model for

De Bruijn sequences of order m that uses a single cycle

constraint.

aHint: define the vertices of the De Bruijn digraph G2
3 , define the arcs of G2

3 ,

search a pattern on G2
3 corresponding to a De Bruijn sequence.

bA word w = w0w1 · · ·wm−1 occurs in a sequence s = s0s1 · · · sp−1

(p ≥ m) if there exists a position i (0 ≤ i < p) such that w0 = si, w1 =
s(i+1) mod p, · · · , wm−1 = s(i+m−1) mod p.

978 NCC,NTREE,CLIQUE

SOLUTION TO EXERCISE 1

A. No, since the successor attributes 2, 1, 2 are not all different.

B. Yes, since we have two cycles namely 1 7→ 3 7→ 1 and 2 7→ 2.

C. Yes, since we have three cycles namely 1 7→ 1, 2 7→ 2 and 3 7→ 3.

D. No, since we have three cycles namely 1 7→ 5 7→ 1, 2 7→ 4 7→ 2
and 3 7→ 3, rather than two cycles as stated by the first argument

of the cycle constraint.

SOLUTION TO EXERCISE 2

(variables of a same cycle are coloured with the same colour)

N, 〈1 V1, 2 V2, 3 V3, 4 V4, 5 V5, 6 V6〉

¬ (2, 〈1 1, 2 4,3 5,4 6,5 2,6 3〉)
1 7→ 1, 2 7→ 4 7→ 6 7→ 3 7→ 5 7→ 2

­ (2, 〈1 3, 2 4,3 5,4 1,5 2,6 6〉)
1 7→ 3 7→ 5 7→ 2 7→ 4 7→ 1, 6 7→ 6

® (2, 〈1 5, 2 3,3 2,4 1,5 6,6 4〉)
1 7→ 5 7→ 6 7→ 4 7→ 1, 2 7→ 3 7→ 2

¯ (2, 〈1 5, 2 4,3 6,4 1,5 2,6 3〉)
1 7→ 5 7→ 2 7→ 4 7→ 1, 3 7→ 6 7→ 3

° (4, 〈1 1, 2 3,3 5,4 4,5 2,6 6〉)
1 7→ 1, 2 7→ 3 7→ 5 7→ 2, 4 7→ 4, 6 7→ 6

the five solutions

20000128 979

SOLUTION TO EXERCISE 3

A. To each vertex v of G we associate a successor variable Sv whose initial

domain is set to the labels of the successors of v. Thus we have:

{

S1 ∈ {2, 6}, S2 ∈ {1, 2, 3, 4}, S3 ∈ {1, 3},
S4 ∈ {2, 3}, S5 ∈ {2, 5, 6}, S6 ∈ {2, 5}.

The implicit hypothesis is that, in solutions to the modelled problem, each

vertex of the corresponding induced subgraph of G has exactly one successor.

B. Since we were asked to have a single cycle we set the first argument of cycle

to 1 and obtain cycle(1, 〈1 S1, 2 S2, 3 S3, 4 S4, 5 S5, 6 S6〉).

C. Since there is a single cycle, Si 6= i (with i ∈ [1, 6]).
A necessary condition for the cycle constraint is that

all its successor variables are assigned distinct values,

i.e. each vertex has exactly one predecessor in a ground

solution. Consequently, infeasible variable-value pairs

for alldifferent are also infeasible for cycle. Any

edge that does not belong to a matching of cardinality 6
in the corresponding variable-value graph Gval

var given on

the right can not be part of a solution. As a result G′ is

shown below on the right.

We now deal with the fact that we should have a

single cycle. A necessary condition is that the graph

G′ consists of a single strongly connected component.

We identify the arcs u 7→ v of G′ such that, if they were

removed, the number of strongly connected components

of G′ would be greater than one. For such arcs u 7→ v
we remove all arcs w 7→ v (with w 6= u).

• If we remove 1 7→ 6 from G′ we obtain G′

196,

which has the two strongly connected components

depicted by the two blue rectangles. Consequently

the arc 5 7→ 6 is forbidden.

• If we remove 5 7→ 2 from G′ we obtain G′

592,

which has the two strongly connected components

depicted by the two blue rectangles. Consequently

the arc 1 7→ 2 is forbidden.

As a consequence we have a unique solution S1 = 6, S2 = 4, S3 = 1,

S4 = 3, S5 = 2, S6 = 5 corresponding to the Hamiltonian cycle

1 7→ 6 7→ 5 7→ 2 7→ 4 7→ 3 7→ 1.

S5

S6

S1

S2

S3

S4

5

6

1

2

3

4Gval

var

6

5

1

2

3

4

G′

6

5

1

2

3

4

G′

196

6

5

1

2

3

4

G′

592

980 NCC,NTREE,CLIQUE

SOLUTION TO EXERCISE 4

A. (a) The variable-based degree of violation is equal to 1 since the

alldifferent constraint holds and since we just have to correct the

number of cycles (we have the two cycles 1 7→ 2 7→ 3 7→ 1 and 4 7→ 4
rather than one cycle). Therefore we only need to set the first argument

of the cycle constraint to 2.

cycle(

2

4, 〈1 2, 2 3, 3 1, 4 4〉)

(b) Since we have two occurrences of 3 and two occurrences of 4 in the

successor variables the variable-based degree of violation is at least

equal to 2. Since, as shown below, it is possible the building of a single

cycle 1 7→ 3 7→ 2 7→ 4 7→ 1 by just changing the assignment of two

variables, the variable-based degree of violation is equal to 2.

cycle(1, 〈1 3, 2 4, 3

2

3, 4

1

4〉)

(c) Since we have two occurrences of 2 and two occurrences of 4 in the

successor variables the variable-based degree of violation is at least

equal to 2. Since just changing the values of two successor variables

does not allow the building of 6 cycles the variable-based degree of

violation is at least equal to 3. It is equal to 3 as shown by the

following assignment that corresponds to the three cycles 1 7→ 2 7→ 1,

3 7→ 4 7→ 3, 5 7→ 6 7→ 5.

cycle(

3

6, 〈1 2, 2

1

2, 3 4, 4

3

4, 5 6, 6 5〉)

B. Within the graph associated with the cycle constraint let ncycle , nmap and

nsource respectively denote the number of connected components

corresponding to a single cycle, the number of connected components with at

least one source, and the number of sources.

Given N the first argument of the cycle constraint the variable-based degree

of violation is equal to nsource + δ where δ is equal to 0 if

N ∈ [ncycle + (nmap > 0),ncycle + nmap] and 1 otherwise. The idea is

that we have to change at least nsource successor variables to fulfil the

alldifferent constraint, and possibly the first argument N if we can not

reach N cycles by just changing nsource successor variables. The figures

below illustrate the formula for the three examples of the previous question:

(a) We have 0 + 4 /∈ [2 + (0 > 0), 2 + 0] = 1,

(b) We have 2 + 1 /∈ [0 + (2 > 0), 0 + 2] = 2,

(c) We have 2 + 6 /∈ [1 + (2 > 0), 1 + 2] = 3.

1

2 3

4

ncycle = 2
nmap = 0
source = 0

(a)

1

3

2

4

ncycle = 0
nmap = 2
source = 2

(b)

1

2

3

4

5

6

ncycle = 1
nmap = 2
source = 2

(c)

20000128 981

SOLUTION TO EXERCISE 5

A. A De Bruijn sequence of order m over an alphabet A = {0, 1, . . . , n− 1} can

be seen as a Hamiltonian cyclea on the De Bruijn digraph of order m defined

over the same alphabet A, where the sequence of letters corresponds to the

sequence of last letters of the words associated with the successive vertices of

the cycle. Visiting once each vertex of the digraph allows the corresponding

cyclic sequence to contain exactly once each word of length m of the alphabet

A.

B. Each vertex of the De Bruijn graph associated with a word w is labelled by

the decimal number plus oneb corresponding to w. Then to each vertex of the

De Bruijn graph corresponds a successor variable whose initial domain is set

to the labels of the successors of v. Finally a cycle constraint with one cycle

is posted.







S1 ∈ {1, 2}, S2 ∈ {3, 4}, S3 ∈ {5, 6}, S4 ∈ {7, 8},
S5 ∈ {1, 2}, S6 ∈ {3, 4}, S7 ∈ {5, 6}, S8 ∈ {7, 8},
cycle(1, 〈1 S1, 2 S2, 3 S3, 4 S4, 5 S5, 6 S6, 7 S7, 8 S8〉).

A solution corresponds to the sequence (S1 − 1) mod n, (S2 − 1) mod n, · · · ,

(S8 − 1) mod n.

aGiven a digraph G with p vertices, a Hamiltonian cycle of G is a succession of arcs v1 7→
v2, v2 7→ v3, · · · , vp−1 7→ vp, vp 7→ v1 of G such that the vertices v1, v2, · · · , vp are all dis-

tinct.
b+1 since, within the cycle constraint, vertices are labelled from 1 up to the total number

of vertices.

000

001

100

010 101

110

011

111

De Bruijn digraph of

order 3 over A = {0, 1}

0

1

0

1

1

1

0

0

01011100

A De Bruijn sequence of

order 3 over A = {0, 1}

