
990 NCC,NTREE,NVERTEX,CLIQUE ;NVERTEX,CLIQUE ,∀

5.106 cycle resource

DESCRIPTION LINKS GRAPH

Origin CHIP

Constraint cycle resource(RESOURCE, TASK)

Arguments RESOURCE : collection(id−int, first task−dvar, nb task−dvar)
TASK : collection(id−int, next task−dvar, resource−dvar)

Restrictions required(RESOURCE, [id, first task, nb task])
RESOURCE.id ≥ 1
RESOURCE.id ≤ |RESOURCE|
distinct(RESOURCE, id)
RESOURCE.first task ≥ 1
RESOURCE.first task ≤ |RESOURCE|+ |TASK|
RESOURCE.nb task ≥ 0
RESOURCE.nb task ≤ |TASK|
required(TASK, [id, next task, resource])
TASK.id > |RESOURCE|
TASK.id ≤ |RESOURCE|+ |TASK|
distinct(TASK, id)
TASK.next task ≥ 1
TASK.next task ≤ |RESOURCE|+ |TASK|
TASK.resource ≥ 1
TASK.resource ≤ |RESOURCE|

Purpose

Consider a digraph G defined as follows:

• To each item of the RESOURCE and TASK collections corresponds one vertex of G.

A vertex that was generated from an item of the RESOURCE (respectively TASK)

collection is called a resource vertex (respectively task vertex).

• There is an arc from a resource vertex r to a task vertex t if t ∈
RESOURCE[r].first task.

• There is an arc from a task vertex t to a resource vertex r if r ∈
TASK[t].next task.

• There is an arc from a task vertex t1 to a task vertex t2 if t2 ∈
TASK[t1].next task.

• There is no arc between two resource vertices.

Enforce to cover G in such a way that each vertex belongs to a single circuit. Each

circuit is made up from a single resource vertex and zero, one or more task vertices.

For each resource-vertex a domain variable indicates how many task-vertices belong to

the corresponding circuit. For each task a domain variable provides the identifier of the

resource that can effectively handle that task.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

20030820 991

Example

























〈

id− 1 first task− 5 nb task− 3,
id− 2 first task− 2 nb task− 0,
id− 3 first task− 8 nb task− 2

〉

,

〈

id− 4 next task− 7 resource − 1,
id− 5 next task− 4 resource − 1,
id− 6 next task− 3 resource − 3,
id− 7 next task− 1 resource − 1,
id− 8 next task− 6 resource − 3

〉

























The cycle resource constraint holds since the graph corresponding to the vertices

described by its arguments consists of the following 3 disjoint circuits:

• The first circuit involves the resource vertex 1 as well as the task vertices 5, 4 and 7.

• The second circuit is limited to the resource vertex 2.

• Finally the third circuit is made up from the remaining vertices, namely the resource

vertex 3 and the task vertices 8 and 6.

Typical |RESOURCE| > 1
|TASK| > 1
|TASK| > |RESOURCE|

Symmetries • Items of RESOURCE are permutable.

• Items of TASK are permutable.

• All occurrences of two distinct values in RESOURCE.id or TASK.resource can be

swapped.

Usage This constraint is useful for some vehicles routing problem where the number of locations

to visit depends of the vehicle type that is actually used. The resource attribute allows

expressing various constraints such as:

• The compatibility or incompatibility between tasks and vehicles,

• The fact that certain tasks should be performed by the same vehicle,

• The pre-assignment of certain tasks to a given vehicle.

Remark This constraint could be expressed with the cycle constraint of CHIP by using the follow-

ing optional parameters:

• The resource node parameter [84, page 97],

• The circuit weight parameter [84, page 101],

• The name parameter [84, page 104].

See also common keyword: cycle (graph partitioning constraint).

Keywords characteristic of a constraint: derived collection.

constraint type: graph constraint, resource constraint, graph partitioning constraint.

final graph structure: connected component, strongly connected component.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Usage
Typical usage of the constraint.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

http://www.cosytec.com

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

992 NCC,NTREE,NVERTEX,CLIQUE ;NVERTEX,CLIQUE ,∀

Derived Collection

col





























RESOURCE TASK−collection





index−int,

succ−dvar,

name−dvar



 ,

















item





index− RESOURCE.id,

succ− RESOURCE.first task,

name− RESOURCE.id



 ,

item





index− TASK.id,

succ− TASK.next task,

name− TASK.resource

















































Arc input(s) RESOURCE TASK

Arc generator CLIQUE 7→collection(resource task1, resource task2)

Arc arity 2

Arc constraint(s) • resource task1.succ = resource task2.index

• resource task1.name = resource task2.name

Graph property(ies) • NTREE= 0
• NCC= |RESOURCE|
• NVERTEX= |RESOURCE|+ |TASK|

Graph class ONE SUCC

For all items of RESOURCE:

Arc input(s) RESOURCE TASK

Arc generator CLIQUE 7→collection(resource task1, resource task2)

Arc arity 2

Arc constraint(s) • resource task1.succ = resource task2.index

• resource task1.name = resource task2.name

• resource task1.name = RESOURCE.id

Graph property(ies) NVERTEX= RESOURCE.nb task+ 1

Graph model The graph model of the cycle resource constraint illustrates the following points:

• How to differentiate the constraint on the length of a circuit according to a resource

that is assigned to a circuit? This is achieved by introducing a collection of resources

and by asking a different graph property for each item of that collection.

• How to introduce the concept of name that corresponds to the resource that handles

a given task? This is done by adding to the arc constraint associated with the cycle

constraint the condition that the name variables of two consecutive vertices should

be equal.

Part (A) of Figure 5.234 shows the initial graphs (of the second graph constraint) associated

with resources 1, 2 and 3 of the Example slot. Part (B) of Figure 5.234 shows the corre-

sponding final graphs (of the second graph constraint) associated with resources 1, 2 and 3.

Derived Collection
Declaration of a new collection that is derived from one or several arguments of the constraint.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20030820 993

Since we use the NVERTEX graph property, the vertices of the final graphs are stressed

in bold. To each resource corresponds a circuit of respectively 3, 0 and 2 task-vertices.

RESOURCE_TASK

1

2

3

4

5

6

7

8

1:NVERTEX=4
2:NVERTEX=1
3:NVERTEX=3

RESOURCE:1 RESOURCE:2 RESOURCE:3

1:1,5,1

5:5,4,1

4:4,7,1

7:7,1,1

2:2,2,2 3:3,8,3

8:8,6,3

6:6,3,3

(A) (B)

Figure 5.234: Initial and final graph of the cycle resource constraint

Signature Since the initial graph of the first graph constraint contains |RESOURCE| + |TASK| ver-

tices, the corresponding final graph cannot have more than |RESOURCE| + |TASK| vertices.

Therefore we can rewrite the graph property NVERTEX = |RESOURCE| + |TASK| to

NVERTEX≥ |RESOURCE|+ |TASK| and simplify NVERTEX to NVERTEX.

Signature
Provides some explanations about the graph based signature of the constraint.

