5.114 derangement

	DESCRIPTION	LINKS	GRAPH
Origin	Derived from cycle.		
Constraint	${\tt derangement}({\tt NODES})$		
Argument	NODES : collection(inde:	x-int, succ-dvar)	
Restrictions	$\begin{split} \texttt{NODES} &> 1 \\ \textbf{required}(\texttt{NODES}, [\texttt{index}, \texttt{succ}) \\ \texttt{NODES}.\texttt{index} &\geq 1 \\ \texttt{NODES}.\texttt{index} &\leq \texttt{NODES} \\ \textbf{distinct}(\texttt{NODES}, \texttt{index}) \\ \texttt{NODES}.\texttt{succ} &\geq 1 \\ \texttt{NODES}.\texttt{succ} &\leq \texttt{NODES} \end{split}$	c])	
Purpose	Enforce to have a permutation wi by the succ attribute of the NODE	th no cycle of length on S collection.	e. The permutation is depicted
Example	$\left(\begin{array}{c} \text{index} - 1 & \text{succ} - 2\\ \text{index} - 2 & \text{succ} - 1\\ \text{index} - 3 & \text{succ} - 5\\ \text{index} - 4 & \text{succ} - 3\\ \text{index} - 5 & \text{succ} - 4\end{array}\right)$ In the permutation of the example and $3 \rightarrow 5 \rightarrow 4 \rightarrow 3$. Since these	ble we have the follow	ving 2 cycles: $1 \rightarrow 2 \rightarrow 1$
	corresponding derangement cons	traint holds.	ight strictly greater than one the
Typical	NODES > 2		
Symmetries	 Items of NODES are permut Attributes of NODES are permut <i>tion applied to all items</i>). 	able. ermutable w.r.t. permut	ation (index, succ) (<i>permuta</i> -
Remark	A special case of the cycle [41] c	onstraint.	
Counting			

Length (n)	2	3	4	5	6	7	8	9	10
Solutions	1	2	9	44	265	1854	14833	133496	1334961

Number of solutions for derangement: domains 0..n

1024

common keyword: alldifferent, cycle (permutation).
implied by: symmetric_alldifferent.

<u>NTREE</u>, *CLIQUE*

	<pre>implies: twin. implies (items to collection): k_alldifferent, lex_alldifferent.</pre>
Keywords	characteristic of a constraint: sort based reformulation.
	combinatorial object: permutation.
	constraint type: graph constraint.
	filtering: arc-consistency, DFS-bottleneck.
	final graph structure: one_succ.
Cond. implications	<pre>derangement(NODES) implies permutation(VARIABLES : NODES).</pre>

1026

20000128

Arc input(s)	NODES
Arc generator	$CLIQUE \mapsto \texttt{collection}(\texttt{nodes1}, \texttt{nodes2})$
Arc arity	2
Arc constraint(s)	 nodes1.succ = nodes2.index nodes1.succ ≠ nodes1.index
Graph property(ies)	$\mathbf{NTREE} = 0$
Graph class	ONE_SUCC

Graph model

Signature

Parts (A) and (B) of Figure 5.254 respectively show the initial and final graph associated with the **Example** slot. The derangement constraint holds since the final graph does not contain any vertex that does not belong to a circuit (i.e., **NTREE** = 0).

Figure 5.254: Initial and final graph of the derangement constraint

In order to express the binary constraint that links two vertices of the NODES collection one has to make explicit the index value of the vertices. This is why the derangement constraint considers objects that have two attributes:

- One fixed attribute index that is the identifier of the vertex,
- One variable attribute succ that is the successor of the vertex.

Forbidding cycles of length one is achieved by the second condition of the arc constraint.

Since 0 is the smallest possible value of **NTREE** we can rewrite the graph property **NTREE** = 0 to **NTREE** \leq 0. This leads to simplify **NTREE** to **NTREE**.